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Abstract

In this work we investigate the behavior of the minimal rate needed in order to guarantee a
given probability that the distortion exceeds a prescribedthreshold, at some fixed finite quantization
block length. We show that the excess coding rate above the rate-distortion function is inversely
proportional (to the first order) to the square root of the block length. We give an explicit expression
for the proportion constant, which is given by the inverseQ-function of the allowed excess
distortion probability, times the square root of a constant, termed theexcess distortion dispersion.
This result is the dual of a corresponding channel coding result, where the dispersion above is
the dual of the channel dispersion. The work treats discretememoryless sources, as well as the
quadratic-Gaussian case.

I. INTRODUCTION

Rate-distortion theory [1] tells us that in the limit of large block-lengthn, a discrete mem-
oryless source (DMS) with distributionp can be represented with some average distortion
D by a code of any rate greater than the rate-distortion function (RDF)

R(p, D) = min
W :Ep,W [d(X,X̂)]≤D

I(p,W ), (1)

where d(x, x̂) is the distortion measure,W (x̂|x) is any channel from the source to the
reproduction alphabet andI(·, ·) denotes the mutual information. However, beyond the
expected distortion, one may be interested in ensuring that the distortion for one source
block is below some threshold. To that end, we define anexcess distortion eventE(D) as

E(D) , {d(x, x̂) > D}, (2)

where d(x, x̂) , 1
n

∑n
i=1 d(xi, x̂i) is the distortion between the source and reproduction

wordsx and x̂.
A natural question to ask is how fast can the probability of such event be made to decay as

a function of the block length. An asymptotic answer is givenby Marton’s excess distortion
exponent [2]: for the best code of rateR,

lim
n→∞

−1

n
log Pr{E(D)} = min

q:R(q,D)≥R
D(q‖p) , F (R,p, D), (3)

assuming the limit exists.D(·‖·) is the divergence between the two distributions.1 Intuitively
speaking, this result means that, asymptotically, the error probability is governed by the first-
order empirical statistics of the source sequence; if the sequence happens to be “too rich”
to be quantized with rateR, en error (excess distortion event) will occur.

1Throughout the paper logarithms are taken with the natural basee and rates are given in nats.
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We are interested in the following related question: for a given excess distortion probabil-
ity ε, what is the optimal (minimal) rate required to achieve it? This question is unanswered
by Marton’s exponent, and even the asymptotical behavior ofthe optimal rate is unknown.

A similar question can be asked in the context of channel coding: for a given error
probability ε, what is the maximal communication rate that can be achieved. Again, this
question is unanswered by the channel error exponent [3]. The asymptotics of the rate
behavior was first studied in the 1960’s [4] using the normal approximation. This result was
recently tightened and extended to the Gaussian channel, along with nonasymptotic results,
in a comprehensive work by Polyanskiy et al. [5]. In channel coding the maximal rate that
can be achieved over a channelW is approximately given by

R ∼= C(W )−
√

V (W )

n
Q−1(ε), (4)

whereC(W ) is the channel capacity,Q is the complementary Gaussian cumulative distri-
bution function, and the quantityV (W ) is a constant that depends on the channel only,
termed the channel dispersion. See [5] for details and more refinements of (4).

Our main result is the following. Suppose the sourcep is to be quantized with distortion
thresholdD, and a fixed probability for excess distortionε > 0. Then the minimal rateR
needed for quantization in blocks of lengthn is given by

R ∼= R(p, D) +

√

V (p, D)

n
Q−1(ε), (5)

whereV (p, D) is a constant which we call theexcess distortion dispersion, given in detail
later on. We show that (5) holds for any DMS under some smoothness conditions on
R(p, D), and for a Gaussian source with quadratic distortion measure, see Theorems 1 and
2 respectively.

It is worth noting that that there is a large body of previous work regarding the redundancy
of lossy source coding in related setting. However, these works are mostly concerned with
two questions: the behavior of the word-length of variable-rate codes where the distortion
should always be below some threshold (a.k.a.D-semifaithful codes) [6], or the average
excess distortion of fixed-rate codes; see e.g. [7],[8] and the references therein. We consider
the excess-distortion probability, thus bridging betweenthese works and the concepts of
excess-distortion exponent and dispersion discussed above. In this context, the work by
Kontoyiannis [8] is of special interest, since it introduces a constant which equalsV (p, D),
see in the sequel.

II. M AIN RESULT FORDISCRETE MEMORYLESS SOURCES

Let the sourceX be drawn from an i.i.d. distributionp over the alphabetX = {1, ..., L},
and let the reproduction alphabet bêX = {1, ..., K}. The distributionp can be seen as a
vectorp = [p1, ..., pL]

T ∈ PL, wherepi = Pr(X = i) andPL is the probability simplex:

PL ,

{

q ∈ RL|qi ≥ 0∀i ∈ {1..L};
L
∑

i=1

qi = 1

}

. (6)

Let d : X ×X̂ → R
+ denote a general nonnegative single-letter distortion measure, bounded

by some finiteDmax. Denote the rate distortion function for the sourcep and the distortion



measured(·, ·) at some levelD by R(p, D). Whenever this function is differentiable w.r.t.
its coordinatespi, define the partial derivatives by

R′(i) ,
∂

∂qi
R(q, D)

∣

∣

∣

∣

q=p

. (7)

Note thatR′(i) implicitly depends onp andD as well. For a random source symbolX, we
may look atR′(i) as the values that a random variableR′(X) takes. Also note that in order
to define the derivative, we extend the definition of the RDFR(p, D) to general vectors
in (0, 1)L (cf. [6, Theorem 2]). In any case, we will only be interested in the value of this
derivative for values ofp within the simplex, i.e. that represent probability distributions.

Let x ∈ X n andx̂ ∈ X̂ n denote the source and reproduction words respectively. Recalling
(2), let Rp,D,ε(n) be the optimal (minimal) code rate at lengthn s.t. the probability of an
excess distortion eventE(D) is at mostε.

It is known thatRp,D,ε(n) → R(p, D) asn → ∞. This can be deduced e.g. by Marton’s
excess distortion exponent [2]. Our main result quantifies the rate of this convergence.

Theorem 1: A DMS with probability p is to be quantized with distortion thresholdD,
block lengthn and excess distortion probabilityε. Assume thatR(q, D) is differentiable
w.r.t. D and twice differentiable w.r.t.q in some neighborhood of(p, D). Then

Rp,D,ε(n) = R(p, D) +

√

V (p, D)

n
Q−1(ε) +O

(

logn

n

)

, (8)

whereV (p, D) is theexcess distortion dispersion, given by

V (p, D) , Var[R′(X)] =
L
∑

i=1

pi(R
′(i))2 −

[

L
∑

x=1

piR
′(i)

]2

. (9)

This result is closely related to the following central-limit theorem (CLT) result of [8]. If
we allow a code with variable rater(x) , l(x)/n, wherel(x) is the length of the codeword
needed to describe the source wordx, then for the best code:

r(x) = R(p, D) +
Gn√
n
+O

(

log n

n

)

,

where{Gn} converge in distribution to a Gaussian random variable of varianceV (p, D).2

If Gn are exactly Gaussian, and then we truncate this variable-length code by assuming an
excess-distortion event at each time that the length is overnR, then the excess distortion
probability exactly satisfies the achievability bound of Theorem 1. However, this is not
immediate, as one needs to take into account the rate of convergence of the sequence
{Gn}.

We follow a different direction, which is closer in spirit tothe derivation of the excess
distortion exponent in [2]. Specifically, we show that theO(1/

√
n) redundancy term comes

only from the probability that the source will produce a sequence whose type is too complex
to be covered with rateR.

The proof is based on the method of types. We adopt the notation of Csiszár and Körner
[9]: The type of a sequencex ∈ X n is the vectorPx ∈ PL whose elements are the relative
frequencies of the alphabet letters inX . Tn denotes all the types of sequences of lengthn.

2The variance has a different expression in [8], we show in Section III-B that the forms are equivalent.



We say that a sequencex has typeq ∈ Tn if Px = q. The type class of the typeq ∈ Tn,
denotedTq, is the set of all sequencesx ∈ X n with type q.

For a reconstruction word̂x ∈ X̂ , we say thatx is D-covered byx̂ if d(x, x̂) ≤ D.
Proposition 1 (Type covering): Let q ∈ Tn with a corresponding type classTq. Let

A(q, C, D) be the intersection ofTq with the set of source sequencesx ∈ X n which
areD-covered by at least one of the words in a codebookC with rateR (i.e. |C| = enR).
Then:

1) If |∂R(q, D)/∂D| is bounded in some neighborhood ofq, then there exists a codebook
Cq that completelyD-coversTq (i.e. A(q, Cq, D) = Tq), where for large enoughn,

1

n
log |Cq| = R ≤ R(q, D) + J1

log n

n
, (10)

whereJ1 = J1(L,K) is a constant.
2) For any typeq ∈ Tn s.t.R(q, D) > R, the fraction of the type class that isD-covered

by any code with rateR is bounded by

|A(q, Cn, D)|
|Tq|

≤ exp

{

−n

[

R(q, D)− R + J2
log n

n

]}

, (11)

whereJ2 = J2(L,K) is a constant.
The first part of this proposition is a refinement of Berger’s type-covering lemma [1],

found in [6]. The second part is a corollary of [7, Lemma 3]. Both parts of the proposition
are stronger versions than needed in [2], due to the non-exponential treatment of the excess
distortion probability.3 Equipped with this, the missing ingredient is an analysis ofthe
relation between the rateR and the probability of the source to produce a type which
requires a description rate higher thanR. It is given in the following lemma which is
proved in Section V.

Lemma 1 (Rate Redundancy): Consider a DMSp and a distortion thresholdD. Assume
thatR(p, D) is differentiable w.r.t.D and twice differentiable w.r.t.p at some neighborhood
of (p, D). A random source word is denoted byx and its type byPx. Let ε be a given
probability and let∆R be chosen s.t.

Pr{R(Px, D)− R(p, D) > ∆R} = ε.

Then, asn grows,

∆R =

√

V (p, D)

n
Q−1(ε) +O

(

log n

n

)

, (12)

whereV (p, D) is given by (9). The same holds even if we replaceε with ε+ gn, as long

gn = O
(

logn√
n

)

.
Proof of Theorem 1: Achievability part.

Let ∆R > 0. We construct a codeC as follows. The code shall consist of the union of
the codes that cover all the typesq ∈ Φ(n,D,∆R), where

Φ(n,D,∆R) = {q : R(q, D) ≤ R(p, D) + ∆R} ∩ Ωn, (13)

whereΩn =
{

q : ‖p− q‖2 ≤ L logn
n

}

.

3For the first part, Marton uses Berger’s original lemma, while for the second part it is proved that the ratio between
|Tq| and |A(q, C, D)| is upper-bounded by a constant.



Lemma 2: For a source wordx drawn from thep, we havePr{Px /∈ Ωn} ≤ 2L
n2 .

The proof for this technical lemma is omitted. It can be proved using techniques similar to
those in [6, Theorem 2].

The size of the code is bounded by

|C| ≤
∑

q∈Φ(n,D,∆R)

|Cq| ≤ |Tn||Cq∗| ≤ (n+ 1)L|Cq∗|, (14)

whereq∗ is the largest type class that is covered.
Since we assumed thatR(p, D) is differentiable w.r.t.D at p, the derivative is bounded

over any small enough neighborhood ofp. In particular, it is bounded overΩn for large
enoughn, thus for all types covered by the codebook. We can thus applypart 1 of
Proposition 1 and we get a bound on the rate:

R =
1

n
log |C| ≤L

n
log(n+ 1) +

1

n
log |Cq∗| (15)

≤R(p, D) + ∆R +O

(

logn

n

)

. (16)

Since we completely cover all the types inΦ(n,D,∆R), we have that the probability of
excess distortion (2) satisfies

Pr{E(D)} =Pr
{

Px /∈ Φ(n,D,∆R)
}

≤Pr
{

R(Px, D) ≤ R(p, D) + ∆R
}

+ Pr{Px /∈ Ωn} (17)

≤Pr
{

R(Px, D) ≤ R(p, D) + ∆R
}

+
2L

n2
. (18)

where (17) follows from the union bound, and (18) is justifiedby Lemma 2.
We select∆R s.t. the probability for{R(Px, D) > R(p, D) + ∆R} is exactlyε − 2L

n2 ,
and get a code with excess distortion probability at mostε. By Lemma 1 we have

∆R =

√

V (p, D)

n
Q−1(ε) +O

(

log n

n

)

,

and by plugging into (16) the rateR is bounded by the RHS of (8), as required.
Converse part.
Let C be a code with rateR, and suppose that its excess distortion probability isε. Our

goal is to lower bound∆R = R− R(p, D).
Again, the source word isx and its type isPx. The following holds for anyΨ:

ε = Pr{E(D)} =Pr
{

E(D)|R(Px, D) ≤ R +Ψ
}

Pr
{

R(Px, D) ≤ R +Ψ
}

+ Pr
{

E(D)|R(Px, D) > R +Ψ
}

Pr
{

R(Px, D) > R +Ψ
}

≥Pr
{

E(D)|R(Px, D) > R +Ψ
}

Pr
{

R(Px, D) > R +Ψ
}

. (19)

Take a typeq ∈ Tn, and assume thatR(q, D) > R + Ψ. By the second part of
Proposition 1, the fraction of the type classTq that is covered by the codeC is at most

exp

{

−n

[

R(q, D)− R + J2
log n

n

]}

≤ exp {−nΨ+ J2 log n} (20)



By settingΨ = (J2 + 1) logn
n

we get that the fraction is bounded by1/n. Since the source
sequences within a given type are uniformly distributed, weget that the probability of
covering a sequence from a type that itsR(Px, D) is too high is at most1/n. We therefore
have

ε ≥
(

1− 1

n

)

Pr
{

R(Tx, D) > R +Ψ
}

≥ 1

1 + 2
n

Pr
{

R(Tx, D) > R +Ψ
}

, (21)

where the last inequality follows since1− x ≥ 1
1−2x

for all x ∈ [0, 1/2].
We rewrite (21) and get that∆R must satisfy

ε

(

1 +
2

n

)

≥ Pr
{

R(Tx, D)− R(p, D) > ∆R +Ψ
}

. (22)

By Lemma 1 and the fact thatΨ = O
(

logn
n

)

, we get

∆R ≥
√

V (p, D)

n
Q−1(ε) +O

(

logn

n

)

, (23)

as required.

III. EXCESSDISTORTION DISPERSION: PROPERTIES ANDEVALUATION

A. Differentiability of the RDF

In the results above, we assumed differentiability of the RDF R(p, D) with respect to
D (once) andp (twice). In general, the RDF is not differentiable w.r.t. either. However,
it is differentiable “almost always” in the following sense. Let K ′(p, D) be the “effective
reproduction alphabet size”, i.e., the number of reproduction letters of positive probability
for the channel minimizing (1). Then, ifK ′(p, D) is constant in a neighborhood ofD, then
R(p, D) is differentiable w.r.t.D and twice differentiable w.r.t.p at that point.

When keepingp fixed and changingD, such points may represent “jumps” in the excess
distortion dispersionV (p, D). In these points, we can not specify the exact behavior of the
excess rate, but careful derivation should verify that it isbetweenV (p, D−) andV (p, D+).
However, in the process we will encounter at mostL− 2 such points.

B. Alternative Representations

The evaluation of the the excess distortion dispersion seems to be a difficult task, as it
involves derivatives of the RDF w.r.t. the source distribution. However, we have the following
alternative representations.

First we connect the dispersion to the excess-distortion exponent (3), much in the same
way that the channel dispersion constant is related to the channel error exponent; See [5]
for details on the early origins of this approximation by Shannon.

Proposition 2: If R(p,D) is differentiable at distortion levelD, then

V (p,D) =

[

∂2

∂R2
F (R, p,D)

∣

∣

∣

∣

R=R(p,D)

]−1

.

The proof, not included in this version, follows by directlyconsidering the exponent
definition (3) in the limit of small excess rate.



We further show equivalence to the variance of the excess rate in [8], which is close in
spirit to the dispersion as discussed in Section II:

Proposition 3: If R(p, D) is differentiable at distortion levelD, thenV (p,D) = Var[f(X)]
where

f(i) = − logEX̂ exp{−λ[d(xi, x̂)−D]},
where the expectation is taken according to the reproduction distribution induced by the
channel minimizing (1) forp andD, andλ = ∂R(p, D)/∂D at that point.

This form is especially appealing, since it can also be shownthatR(p, D) = E{f(X)},
thus presenting the dispersion as a “second-order RDF”. Theequivalence can be proven by
starting from the RDF presentation above. Applying (9),

V (p, D) = Var







∂

∂qi

L
∑

j=1

qjf(j)

∣

∣

∣

∣

∣

q=p







= Var

{

f(i) +

L
∑

j=1

pj ·
∂f(j)

∂qi

∣

∣

∣

∣

q=p

}

.

Straightforward derivation shows that the term to the rightof the addition in the last form
is constant ini, thus it does not effect the variance, as required.

C. Some Special Cases

In some cases the evaluation may be simplified, as follows.
1) Zero distortion. WheneverR(p, 0) = H(p), we have

R′(i) =
∂

∂qi
H(q)

∣

∣

∣

∣

q=p

= −1 − log pi.

Thus,

V (p, 0) = Var{log pi}. (24)

This is in agreement with the long known lossless dispersionresult [4].
2) Difference distortion measure with low distortion. Assume that

d(x, x̂) = d([x− x̂] mod L) , d(z).

Since we assumed that each source letter has positive probability, there exists some
D0(p) > 0 s.t. for all D ≤ D0 the optimum backword channel isx = x̂ + z. The
RDF is then given by

R(p, D) = H(p)−H(wz) (25)

where wz is the maximum-entropy distribution such thatE{d(z)} ≤ D [1, Sec.
4.3.1]. Since this distribution isD-independent as long asD < D0(p), we have that
the second term in (25) is fixed inp in a neighborhood of the source distribution.
Consequently the derivatives only come from the first term, and (24) holds for all
0 ≤ D < D0.

3) Hamming distortion measure. In this special case of a difference distortion measure,
the optimum backward channel is modulo-additive also aboveD0, where the modulo
is taken over a reduced alphabet. Consequently, the dispersion is the variance of the
logarithm of a normalized smaller-alphabet distribution.

4) Zero dispersion. The dispersion becomes zero when the source distribution maximizes
the RDF over all possible source distributions among the input alphabet (thus the rate



redundancy in Lemma 1 is zero). Note that this is in agreementwith the fact that for
this case the excess-distortion exponent “jumps” from zeroto infinity at zero excess
rate. For difference measures, this happens if and only if the source is uniform, in
agreement with the observation in [8]. However, in generalp need not be uniform.

IV. GAUSSIAN SOURCE WITH QUADRATIC DISTORTION MEASURE

In this section we part with the assumption that the source isdiscrete. While the derivation
of the excess distortion dispersion for general continuous-amplitude sources is left for
future work, we solve the important special case of Gaussiansource with MSE (quadratic)
distortion measure.

Let the sourceX be i.i.d. zero-mean Gaussian with varianceσ2. The distortion measure
is given by:d(x, y) = (x− y)2. For D ≤ σ2, the quadratic-Gaussian RDF is given by:

R(σ2, D) =
1

2
log

(

σ2

D

)

. (26)

In this case, the excess distortion exponent (3) is given by [10]:

F (R, σ2, D) =
1

2

[

D

σ2
e2R − 1− log

(

D

σ2
e2R

)]

=
e2∆R − 1− 2∆R

2
, (27)

where∆R = R− R(σ2, D).
As in the finite alphabet case, we defineRσ2,D,ε(n) to be the minimal code rate at length

n s.t. the excess distortion probability is at mostε. From the excess distortion exponent
(27) it follows thatRσ2,D,ε(n) → R(σ2, D) asn → ∞.

We are interested in the behavior ofRσ2,D,ε(n) asn grows. We show that the quadratic-
Gaussian case behaves according to (5) just like the finite-alphabet one. Recalling Proposi-
tion 2, one expects the dispersion constant to be

V (σ2, D) =

[

∂2

∂R2
F (R, σ2, D)

∣

∣

∣

∣

R=R(σ2 ,D)

]−1

=
1

2
.

It can also be shown that the value of1
2

can be obtained by a continuous version of (9).
We now show that this is the case indeed.
Theorem 2: Let ε > 0 be a given excess distortion probability. Then the rateRσ2,D,ε(n)

satisfies

O

(

1

n

)

≤ R− R(σ2, D)−
√

1

2n
Q−1(ε) ≤ 5

2n
logn +O

(

1

n

)

(28)

Proof outline: The proof is similar in spirit to the proof of Theorem 1, wherespheres
take the part of types. The type class of types near the sourcedistribution is analogous to
a sphere with radiusr, wherer2 is close tonσ2.

For the achievability part, we define a “typical” sphere withradius
√

nσ2(1 + αn) with
αn → 0 as n → ∞. αn is chosen s.t. the probability that the source falls outsidethe
sphere is exactlyε, so our code needs toD-cover the entire sphere. Note that the radius is
just over the typical radius of the source. We use a sphere covering result by Rogers [11,
Theorem 3], and find a code that canD-cover the entire typical sphere with no more than
cn5/2 (σ2(1 + αn)/D)

n/2 reconstruction words for some constantc. By arguments similar
to those used in the proof of Lemma 1 we getαn =

√

2/nQ−1 (ε) +O
(

1
n

)

, so the rateR
is bounded according to (28).



For the converse part, we follow the proof of the converse to the excess distortion exponent
in [10]. We get that the excess distortion probability is lower bounded by the probability
to leave a sphere that has a volume ofenR times the volume of a singleD-ball around a
reconstruction point. Again, using the Berry-Esseen theorem we connect excess distortion
probability and the ratio of the radiuses, and get that the rate R is lower bounded according
to (28).

V. PROOF OF THERATE REDUNDANCY LEMMA

Proof of Lemma 1: Let x be a source word with typePx, drawn from the sourcep.
We prove the more general version of the lemma, withε+ gn being the given probability.
The relation betweenε and∆R is given by

ε+ gn = Pr {R(Px, D) > Rp(D) + ∆R} . (29)

By the regularity assumptions onR(p, D), we use the Taylor approximation and write

R(Px, D) = R(p, D) +
L
∑

i=1

(Px(i)− pi)R
′(i) + γ(Px,p), (30)

whereR′(·) was defined in (7), andγ(Px,p) is the correction term for the approximation.
Equation (29) now becomes

ε+ gn = Pr

{

L
∑

i=1

(Px(i)− pi)R
′(i) + γ(Px,p) > ∆R

}

. (31)

By the Taylor approximation theorem, and by the assumption of finite second derivatives
of R(p, D), we have that the correction termγ(Px,p) = O(‖Px − p‖2). This means that
there exists a constantη, s.t. for large enoughn, γ(Px,p) < η‖Px − p‖2. By Lemma 2
there existsΓ = O(logn/n) s.t.Pr{γ(Px,p) > Γ} ≤ 2L

n2 .
Using simple probability rules, for any random variablesA andB and a constantc, we

have that for anyΓ1,Γ2 the following holds:

Pr
{

A +B > c
}

≤ Pr
{

A > c− Γ1

}

+ Pr
{

B > Γ1

}

(32)

Pr
{

A +B > c
}

≥ Pr
{

A > c+ Γ2

}

− Pr
{

B < −Γ2

}

(33)

In our case, we use (32) (resp. (33)) to show the upper (resp. lower) bound on∆R. By
selectingΓ1 = Γ2 = Γ, we get

ε+ gn ≤ Pr

{

L
∑

i=1

(Px(i)− pi)R
′(i) > ∆R − Γ

}

+O

(

1

n2

)

, (34)

ε+ gn ≥ Pr

{

L
∑

i=1

(Px(i)− pi)R
′(i) > ∆R + Γ

}

− O

(

1

n2

)

. (35)

Now consider the probability expression in (34):

Pr

{

L
∑

i=1

(Px(i)− pi)R
′(i) > ∆R− Γ

}

= Pr

{

1

n

n
∑

k=1

R′(xk)−
L
∑

i=1

piR
′(i) > ∆R − Γ

}

.



1
n

∑n
k=1R

′(xk) can be interpreted as an average ofn i.i.d. random variablesR′(X), whose
expectation is given byE[R′(X)] =

∑L
i=1 piR

′(i). Their variance is given byV (p, D),
defined in (9). By the central limit theorem, the sum of i.i.d.random variables normalized
by

√
n converges to a Gaussian random variable asn grows. Specifically, by the Berry-

Esseen theorem (see, e.g. [12, Ch. XVI.5]), we get

Pr

{

1√
n

n
∑

k=1

(R′(xk)− E[R′(X)]) >
√
n(∆R − Γ)

}

= Q

(

(∆R− Γ)

√

n

V (p, D)

)

± 6ξ√
n
, (36)

whereξ = E [|R′(X)−E[R′(X)]|3]. By applying the same derivation∆R + Γ, (34) and
(35) can be written together as

ε+O

(

log n√
n

)

= Q

(

(∆R± Γ)

√

n

V (p, D)

)

. (37)

By the smoothness ofQ−1(·) aroundε and the Taylor approximation we have

∆R =

√

V (p, D)

n
Q−1 (ε) +O

(

log n

n

)

, (38)

as required.
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