
Compressed Dynamic Binary Relations∗

Nieves R.Brisaboa+, Guillermo de Bernardo+, and Gonzalo Navarro†

+Database Laboratory

University of A Coruña
{brisaboa, gdebernardo}@udc.es

†Dept. of Computer Science

University of Chile
gnavarro@dcc.uchile.cl

Abstract We introduce a dynamic data structure for the compact repre-
sentation of binary relations R ⊆ A × B. Apart from checking whether two
objects (a, b) ∈ A×B are related, and listing the objects of B related to some
a ∈ A and vice versa, the structure allows inserting and deleting pairs (a, b) in
the relation, as well as modifying the base sets A and B. The data structure
is a dynamic variant of the k2-tree, a static compact representation that takes
advantage of clustering in the binary relation to achieve compression. We ap-
ply our dynamic data structure to the representation of Web graphs and RDF
databases, showing that it combines good compression ratios with fast query
and update times.

1 Introduction
Binary relations arise everywhere in Computer Science: graphs, matchings, discrete
grids, inverted indexes, and pairs of database columns are just some examples. For-
mally, a binary relation between two sets A and B is a subset R ⊆ A× B. Typical
operations of interest are: determine whether a pair (a, b) is inR, find all the elements
b ∈ B such that (a, b) ∈ R, given a ∈ A, and vice versa. More sophisticated ones aim,
for example, at retrieving all pairs (a, b) ∈ R where a ∈ [a1, a2] and b ∈ [b1, b2]. For
example, on a Web graph (where nodes are Web pages and relations are hyperlinks)
the above operations determine whether a link exists between two pages, find the
direct or reverse neighbors of a node, and find all the links between two Web sites.
On an inverted index, these allow one to determine whether a word appears in a
document, to list the documents where a word appears, to list the local vocabulary
of a document, and the more sophisticated one enables on-the-fly stemming as well
as hierarchical or versioned document collections.

Two two natural ways to represent binary relations extend graph representations:
a binary adjacency matrix or an adjacency list. On large binary relations, reducing
space while retaining functionality is crucial in order to operate efficiently in main

∗NB and GdB were partially funded by MICINN (PGE and FEDER) grants TIN2009-14560-
C03-02, TIN2010-21246-C02-01 and CDTI CEN-20091048, and by Xunta de Galicia (co-funded with
FEDER) ref. 2010/17. GdB was also funded by MICINN ref. BES-2010-033262 (FPI program). GN
was partially funded by the Millennium Institute for Cell Dynamics and Biotechnology (ICDB),
Grant ICM P05-001-F, Mideplan, Chile.

1

memory. There has been work on compressing general binary relations [2], as well as
specific ones such as Web graphs [3].

Brisaboa et al. [5] introduced a compact data structure called k2-tree. It was
initially proposed for the compression of Web graphs, where it was shown to be very
competitive (see also [6]). Since then, it has also been successfully applied to other
domains such as RDF databases [1] and social networks [6]. In fact, k2-trees can be
used for the representation of general binary relations and take advantage of clustering
in the binary matrix to achieve compression. They support elegantly all the described
operations (simple and sophisticated) as instances of a more general query.

However, just like the other compressed representations of graphs and binary
relations, k2-trees are essentially static. This discourages their use in cases where the
binary relation changes due to the insertion or deletion of pairs (a, b) (e.g., adding
or removing edges in a graph) or of elements in A and B (e.g., adding or removing
graph nodes, or words or documents in inverted indexes).

In this paper we introduce the dk2-tree, a dynamic version of the k2-tree. This
structure achieves space utilization close to that of the static structure, and allows
the insertion and deletion of pairs and elements in the sets (i.e., changing bits and
inserting/deleting rows/columns in the binary matrix). Our experiments show that
dk2-trees achieve good space/time tradeoffs in comparison with the equivalent static
representation. We also show that the added capabilities of the dynamic structure
make it suitable for the representation of dynamic binary matrices.

2 k2-trees
A k2-tree is conceptually a k2-ary tree that corresponds to a recursive partition of a
binary matrix. At each partitioning step, the current matrix of size n× n is divided
in k2 submatrices of size n/k × n/k. Figure 1 shows an example of the division of a
binary matrix using a k2-tree, for k=2. The submatrices are numbered from 0 to k2-1,
starting from left to right and top to bottom. The first level of the tree contains one
node with k2 children, representing the k2 submatrices in which the original matrix
is divided. Each of these children is represented using a single bit: 1 if the submatrix
has at least one cell with value 1, or 0 otherwise. A 0 child means that there are no
ones in the corresponding submatrix, so its children are not represented in the next
level. The method proceeds recursively for each 1 child until the current submatrix
is full of zeros or we reach the basic cells of the original matrix.

To access a cell of the matrix, the tree is navigated from the root until a 0 is found
or the last level is reached. Starting at the root, one of the k2 children is selected at
each level, depending on the submatrix that we want to access. If the value for that
node is 0 we have found an empty submatrix, and navigation ends. If the value is 1,
we proceed recursively to the next level accessing one of its k2 children. For example,
if we want to access the highlighted position in Figure 1 (row 9, column 7), we start
at the root of the k2-tree. From the row and column we are looking for we know
that the desired cell is in the third submatrix, so we proceed to the third child. As
it contains a 1, we continue the search at the next level. We repeat the process until
we reach a zero node or the desired cell of the k2-tree.

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000 00

00011100 00

00000000 10

01000011 00

00000000 00

10000000 01

00000000 01

01000000 00

01000000 00

00000000

00

00000000

00000000

00000000

00000000

01010000
1 1 0000 1 1 11 0 0 10 0 1 0 10 0

0011 0010

1 1 1 0

1 1 0 1 1 0 1 0 0 1 0 0

0011 0010 0001 0100 0010 10100010

00 11

0010 1000

T = 1110 1101 1010 0100 0110 1001 0101 0010 1010 1100

L = 0011 0011 0010 0010 0001 0010 0100 0010 1000 0010 1010

Figure 1: example of k2-tree for a binary matrix

This conceptual tree is implemented using two bit arrays: T (Tree) contains the
bits for all the levels of the tree except for the last one. The bits are taken in a
levelwise traversal of the conceptual tree. L (Leaves) stores the bits of the last level
of the tree.

Starting at a given node (a position pos in the bit array T), it is easy to see that
the k2 children of that node will be at pos′ = rank1(T, pos) × k2, because each bit
set to one in a level add k2 bits to the next level and bits set to zero do not have
descendants. A rank structure is built over T to provide an efficient rank1 operation.
Following the same example in Figure 1, if we want to navigate to the third child of
the root we access position 2 in T (we start numbering positions in 0). It contains a
1, so we will move to position rank1(T, 2) × 4 = 3 × 4 = 12 in the bitmap T. That
node contains its k2 children, with values 0-1-0-0, in positions 12-15. The cell we are
looking for is in the second submatrix, so we access the second child at position 13,
and again navigate to rank1(T, 13) × 4 = 32. We continue this procedure until we
find a 0 or we reach the leaf.

In addition to the retrieval of a single cell of the matrix, k2-trees can perform other
operations efficiently. To find all the ones in a row/column, we can modify the basic
search so that at each level of the k2-tree, instead of accessing a single child, we access
the k submatrices of the node that overlap that row(column). With some additional
calculations, the k2-tree can also retrieve any range [u1,u2]-[v1,v2] efficiently.

Several enhancements have been proposed over this first approach. The first
modification is the use of different k values at each level of the k2-tree. Using a
bigger k for the first levels and smaller for the remaining ones, one can achieve better
query times (because the k2-tree’s height is reduced) while keeping the space close
to the optimum. In [7] a compression method for the bitmap L is proposed. In this
approach, the lowest levels of the k2-tree are grouped, yielding submatrices of size
bigger than k (ie. 8 × 8 instead of 2 × 2). These small submatrices are compressed
using variable length codes according to their frequency in the represented matrix.
The bitmap L is replaced with a matrix vocabulary that contains the submatrices
sorted by frequency and the encoded sequence of matrix identifiers. The sequence is

encoded using Direct Access Codes[4] to provide direct access to any position of the
sequence. This variant drastically increased the compression of Web Graphs, showing
similar query times.

3 Dynamic k2-tree implementation: dk2-trees
The conceptual k2-tree is represented in the static version using the T array for
the internal nodes and the L array for the leaves of the k2-tree. In our dynamic
implementation, we represent T and L with two trees, that we call TTree and LTree.
Our dynamic approach to represent the k2-tree using these trees is called dk2-tree.
Notice that the dk2-tree is not a single tree but a way to implement the conceptual
k2-tree using TTree and LTree, that are the real tree structures we use. The leaves of
TTree and LTree contain rougly the same representation of the bitmaps T and L of
a static k2-tree implementation. The internal nodes will provide access to arbitrary
positions and will also act as a dynamic rank structure. Our representation is in fact
a practical implementation of a dynamic bit vector[8] over T and L.

T = 1110 1101 1010 0100 0110 1001 0101 0010 1010 1100

1110 1101 1010 0100

0011 0011

0010 10101001 01010110

0100 00100001 00100010 0010 1000 00108 / 6 8 / 3 4 / 2 8 / 4 8 / 3 4 / 2

16 / 9 12 / 6 12 / 5

28 / 15 12 / 5

8 8 8 8

L = 0011 0011 0010 0010 0001 0010 0100 0010 1000 0010 1010

1010

8 4

24 20

1100

TTree LTree

Figure 2: Dynamic k2-tree representation

Figure 2 shows the dk2-tree representation for the matrix of Figure 1. Given the
bitmaps T and L of a static k2-tree, we build over them the trees TTree and LTree.
First, we layout the bitmaps T and L in blocks of up to B bits, being B the parameter
for the node size. The nodes of our trees may not be completely full, because we will
split nodes when updating the tree. The internal nodes of our trees contain a set of
entries that are used to access the leaves. Each entry contains, in addition to the
pointer to the child, some information to provide the basic navigation operations.
In TTree, each entry in the internal nodes contains the total number of bits (bit
counters) and number of ones (ones counters) in its descendant leaves. As we move
up TTree, the bit and rank counters are calculated adding up the counters of the
pointed child. Internal nodes for LTree cointain only the bit counters and the pointer
to the child, because as in static k2-trees we do not need to perform rank operations
in L.

3.1 Navigation

To navigate the k2-tree using TTree and LTree, we proceed as we would in a static
k2-tree representation. At each level of the conceptual k2-tree, we must access a
child of the current node in the conceptual k2-tree, that is, access a position in the
bitmaps T or L. In dk2-trees, to access a position in T or L we must find the leaf
of TTree or LTree that contains that position. This is performed by the operation
findLeaf, shown in Procedure 1, that uses the bit and ones counters in the internal

nodes to find the leaf for the searched position. When we reach the leaf, we access
the bit we are looking for (we know the offset in the leaf because findLeaf has already
calculated the number of bits before the beginning of the leaf). If the bit we access
has value 0, we end our navigation. If it is 1, we must calculate the rank value up
to that position. Again, we already know the rank value at the beginning of the leaf
using the ones counters, so we just need to perform the rank operation inside the leaf
(rankLeaf operation). Procedure 2 shows the complete process to access a single cell
of the matrix. All the operations supported by static k2-trees can be performed in
the dk2-tree implementation in the same way.

Proc. 1 findLeaf(node, pos)
if not isLeaf(node) then

i = 0
data = readData(node)
while (accBits + data[i].bits ≤ pos)
do

accOnes += data[i].ones
accBits += data[i].bits
child = data[i].child
i = i+ 1

end while
return findLeaf(child, pos)

else
return (node, accBits, accOnes)

end if

Proc. 2 findCell(row, col)
1: pos = 0
2: for level = 1 → l − 1 do
3: pos += CalculateChild(row,col,level)
4: (data, accBits, accOnes) = findLeaf(TTree.root, pos)
5: if bitget(data, pos− accBits) then
6: rank = acumOnes + rankLeaf(data, pos− accBits);
7: pos = rank × k2

8: else
9: return 0
10: end if
11: end for
12: pos += CalculateChild(row, col, l)
13: pos -= GetTotalSize(T)
14: (data, accBits) = findLeaf(LTree.root, pos)
15: return bitget(data, pos− accBits)

The cost of operations in dk2-trees can be calculated in relation to the cost in a
static implementation. The time cost for a single link retrieval in our structure can
be separated into (l− 1)× rankLeaf + l× findLeaf , where l is the number of levels
of the conceptual k2-tree. To speed up the rankLeaf operation, we implemented
a simple rank structure, similar to the one used in the static implementation of k2-
trees, that is added to the leaves of TTree. Thus, the main overhead in dk2-trees is the
findLeaf operation. This operation requires traversing a full path in TTree or LTree
for each level of the conceptual k2-tree. However, in practice all operations start at
the leftmost leaf of TTree (the root of the conceptual k2-tree) and continue accessing
different leaves of TTree and LTree from left to right. The findLeaf operation can
start the search from the previous leaf accessed, making this search very efficient at
least for the first levels. Following this approach the cost of each findLeaf operation
depends on the distance between the current leaf and the next we need to access,
because if they are close the will share their parent node or a close ancestor, and we
will save the traversal from the root of the tree to that common ancestor.

3.2 Updating dk2-trees

dk2-trees support the creation and deletion of relations (change zeros into ones and
vice versa) and elements (adding or removing rows/columns to the matrix).

When replacing a zero with a one in a conceptual k2-tree, we start by descending
from the root of the k2-tree choosing always the branch that leads us to the proper
cell. If we reach the last level of the k2-tree (represented in our LTree), we just need
to change the value of the position from 0 to 1 (change a bit in a leaf of LTree). This

situation will only happen if the matrix already contained a cell with a 1 in a position
very close to the position we want to set to 1. Figure 3(left) shows a more general
case: at some level we find a zero in the branch that would lead us to the cell we are
changing to 1. From this point, we need to create a new path in the k2-tree. The new
branch in the k2-tree is represented within a rectangle in Figure 3. This operation can
be translated in the dk2-tree (right side of the figure) as a single operation of setting
a bit to 1 in a leaf of TTree, zero or more operations of adding k2 bits to leaves of
TTree and one operation of adding k2 bits to a leaf of LTree. Additionally, the bits
and ones counters in the internal nodes must be updated whenever we change a leaf
of TTree or LTree.

1 1 0000 1 1 11 0 0 10 0 1 0 10 0

0011 0010

1 1 1 0

1 1 0 1 1 0 1 0 0 1 0 0

0011 0010 0001 0100 0010 10100010

00 11

0010 1000

T = 1110 1101 1010 0100 0110 1001 0101 0010 1010 0100 1100

L = 0011 0011 0010 0010 0001 0010 0100 0010 1000 0010 0010 1010

1

0100

0010

1

1110 1101 1010 0100

0011 0011

0010 10101001 01010110

0100 00100001 00100010 0010 1000 0010 0010

8 / 6 8 / 3 4 / 2 8 / 4 8 / 3 4 / 2

16 / 9 12 / 6 12 / 5

28 / 15 12 / 5

8 8 8 8

1010

8 4

24 20

0100 1100
1

4

10

16

16 / 6

16 / 6

8 / 3

12

24

TTree

LTree

Figure 3: Adding a new one to position (9, 2) of the matrix

When a leaf of TTree or LTree reaches the maximum node size we split it in two
new nodes, always keeping groups of k2 siblings in the same leaf. This is propagated to
the internal nodes, causing the insertion of a new entry in the parent, and eventually
new overflows in the internal nodes. To achieve better space utilization we allow
partial expansions of a node before splitting it. For instance, with a a base node of
512 bytes and three partial expansions we can expand it to 640, 768 and 896 bytes
before splitting. When a fully expanded node overflows, it is split in two nodes of 512
bytes.

The deletion behaves nearly like the insertion. In this case, we first perform a
search of the complete path in the conceptual k2-tree, until we reach the position
that we want to set to 0, that will be in a leaf of LTree. We set the value of that cell
to 0, and check its k2-1 siblings. If all of them are 0, the current branch of the k2-
tree must be deleted, and we repeat the process up to the upper level of the k2-tree,
affecting now TTree.

The insertion of new elements (rows and/or columns) is done using the free rows
and columns we have. The number of rows/columns in a binary matrix is rounded up
to a power of k to represent it with a k2-tree, so many rows and columns are already
created but left empty and ready to be used. When all the rows(columns) in a n× n
matrix have been used, this matrix is expanded to size kn × kn. This causes the
addition of a new root level in the k2-tree with k2 children, where the first of them
is the old root. Therefore, to add this new root level to the k2-tree we just need to

add k2 bits at the beginning of the leftmost leaf of TTree, handling overflows and
updating the path to the root as we would when we insert a new one.

The deletion of rows/columns is also implemented trivially. When a row/column
is deleted, all the ones belonging to it are deleted, and its identifier is added to a
free-list. Deleted rows may be reused if new rows are inserted afterwards.

3.3 Compression of L

The compression of the bitmap L with a matrix vocabulary obtained very good results
in static k2-trees. In dk2-trees, the leaves in LTree could be encoded using the same
encoding procedure. However, when we update the k2-tree we need to check whether
a given matrix is already in the vocabulary or not, that is, we need this dictionary to
be searchable. This need produces a space overhead the static k2-trees do not have.

We implemented a variant of dk2-tree with a dictionary that contains in addition
to the matrix vocabulary a hash table to search this vocabulary. We also store the
frequency for each submatrix in a frequency array. This helps keeping the vocabulary
size small and allows us to know how good the compression is. Our dictionary uses
a small set of submatrices to build an initial vocabulary and then adds new matrices
as needed. When a matrix has frequency 0 it is deleted from the vocabulary and its
code can be reused. Nevertheless, it can be seen that the overhead added to the size
of the vocabulary is quite important.

To ensure that the compression ratio is good, additional tests can be performed
using the frequency array. If the compression obtained by our current dictionary
worsens too much we can simply compute the optimal values for the vocabulary
using the frequency array, and then rebuild LTree in a single traversal, replacing the
old codes that encode L with the optimum ones. To determine when LTree should
be rebuilt, we can use simple heuristics (we can rebuild always every p insertions, or
count the number of matrices that are out of the order they would have if ordered by
their actual frequency). If we wish to guarantee that the compression of L is never
too far from the optimum, we can even keep track of the actual optimum vocabulary,
getting an important overhead in the total size of our vocabulary but ensuring that
the compression of LTree is close to the optimum.

4 Experimental evaluation
The space utilization of dk2-trees, without any compression of the bitmap L, is never
too bad in comparison with the static k2-trees. Both structures store the same basic
information, the bitmaps T and L, but while static k2-trees use static rank structures
to navigate these bitmaps, in dk2-trees we need the internal nodes of TTree and LTree
to store not only the ones counters used in the rank but also the bit counters. There
are two main causes that make dk2-trees bigger than static k2-trees: first, the internal
fragmentation of the nodes in TTree and LTree, and second, the overhead needed in
dk2-trees to maintain the matrix vocabulary searchable.

We tested dk2-trees in comparison with a static implementation in two different
contexts: the representation of Web Graphs and of RDF graphs.

We run all our experiments in a machine with 4 Intel(R) Xeon(R) E5520 CPU
cores at 2.27 GHz 8 MB cache and 72 GB of RAM memory. The machine runs

Ubuntu GNU/Linux version 9.10 with kernel 2.6.31-19-server (64 bits). Our code is
compiled using gcc 4.4.1, with the -O9 directive.

4.1 Web Graph representation

We compare our dk2-tree approach with the static one for the representation of Web
Graphs. We test both implementations using a matrix vocabulary for the compression
of L (dyn-comp for dk2-trees, static-comp for static k2-tres) and without compressing
L (dyn-plain and static-plain). Our TTrees and LTrees use a base node size of 512
bytes, with 3 partial expansions to get a good utilization of the nodes of the trees.
Additionally, dk2-trees are built by repeated insertion, so the space utilization of the
nodes is not optimized. We also use a rank structure in the leaves of TTree to speed
up the rank operations. To compress L, we use the optimum values for the submatrix
size for each case (8× 8 matrices for static k2-trees, and 4× 4 matrices for dk2-trees).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12

tim
e

(n
ei

gh
bo

rs
, µ

s/
ed

ge
)

space (bits/edge)

eu-2005

dyn-plain
static-plain
dyn-comp

static-comp

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6

tim
e

(n
ei

gh
bo

rs
, µ

s/
ed

ge
)

space (bits/edge)

indochina

dyn-plain
static-plain
dyn-comp

static-comp

Figure 4: Space time comparison for the collections eu-2005 and indochina

Figure 4 shows a comparison in space and query time for two web graph datasets:
eu-2005, that contains 19 million edges, and indochina, with 194 million. We show
the space in bits per edge of the represented web graph, and the time of the main
operation in the context of Web Graphs: neighbor retrieval (retrieving all the ones in a
row of the matrix), measured in µs/edge. For each approach, the space/time evolution
is given by different values of k (we use the hybrid approach with k=4 for some of
the first levels and 2 for the remaining, getting a space/time tradeoff depending on
how many levels have the bigger k value). With the plain representation, dk2-trees
are close in space to the equivalent static k2-trees, but static k2-trees achieve much
better compression ratios when they compress L, being roughly 2 times smaller than
our approach. In dk2-trees, if we use a matrix vocabulary we do not get the same
improvement: for the collection indochina (and in general for bigger web graphs),
we gain in compression, but we are still far from the improvement of static k2-trees;
for the collection eu-2005, the version compressing L achieves the same size that the
plain version.

4.2 Representation of RDF databases

In [1] k2-trees are used to represent RDF datasets grouping the RDF triples by predi-
cate and using a k2-tree to represent the relations for each predicate. This partition by
predicate, called vertical partitioning, is a common approach that permits represent-
ing the database as binary relations between subjects and objects for each predicate.

We compare dk2-trees in terms of space and time with their static implementation,
following the same approach of building a dk2-tree to represent each predicate.

Table 1 shows the results of space for different RDF collections. We show the
number of triples and predicates in each collection, and the plain size of the pairs
(subject,object) per predicate, where each subject and object is represented by a 32
bit integer. The last two columns show the compression obtained by static k2-trees
and the equivalent dk2-tree. Static k2-trees use a matrix vocabulary, with 8 × 8
leaves. For dk2-trees, we show the result with no compression of L. For the collection
dbtune we also show in parentheses the results compressing L with a vocabulary of
8× 8 matrices, that improves the compression by 10% (in the other collections using
a matrix vocabulary does not improve the results of the plain version). It can be
observed that the dk2-tree representation achieves compression close to the static
structures in all the datasets.

Collection #triples #predicates Plain size k2-tree size dk2-tree size

geonames 9,415,253 20 71.83 17.81 25.14
dbtune 58,920,361 394 449.53 152.38 212.52 (188.13)
dbpedia 232,542,405 39672 1774.46 878.04 1060.59

Table 1: Compression results for RDF collections (sizes in MB)

After this, we implement the basic RDF queries in our structure, those that in-
volve a single query pattern of the form (s,p,o). They are divided according to the
elements that are fixed and free in the triple requested. We denote with ?S, ?P and
?O a free subject, predicate or object, and with S, P, O a fixed one. The different pat-
terns correspond to different k2-tree operations: (S,P,O) requires a single cell retrieval
operation; (S,P,?O) and (?S,P,O) accessing a row or column; (?S,P,?O) involves re-
trieving all the ones in a matrix. The same operations with a free predicate involve
the same operation in all the k2-trees of the collection.

We run a set of queries of each type over the collection dbpedia. These queries
are selected so that predicates with many and few relations are accessed (typically
in RDF graphs the distribution of relations among the predicates is skewed, because
some predicates are much more frequent than others). We also choose queries in
which the number of results varies from a single result to several hundreds. The
average number of relations per object or subject is not very high, so usually only the
(?S,P,?O) queries will return a higher number of results. Table 2 shows the results
for the query time in ms/query. The efficiency of dk2-trees to answer basic queries is
again relatively close to that of a static k2-tree. The single cell retrieval operations
are several times slower but in operations with a free subject or a free object the time
cost over the dynamic trees gets closer to that of static k2-trees. In these queries,
the time per query in dk2-trees is never over the double of the time in the static
representation.

(S,P,O) (S,P,?O) (?S,P,O) (?S,P,?O) (S,?P,O) (S,?P,?O) (?S,?P,O)

static 0.00085 0.682 0.432 4.433 7.328 74.394 49.397
dk2-trees 0.00282 1.214 0.836 8.081 26.372 115.49 55.512

Table 2: Query times in dataset dbpedia(ms/query)

The dk2-tree representation does not only provide good compression ratios, but
also provides the required functionalities to maintain a fully functional RDF database.

Modifications in the triples stored in the database can be performed as insertions
and deletions in the appropriate dk2-trees. New predicates just require the creation
of a new empty dk2-tree. New subjects and objects require the expansion of the
represented matrices to add a new row or column to all the dk2-trees. Therefore, our
representation can provide all the basic operations needed in a RDF database, with
a compression rate close to that of a static k2-tree representation.

5 Conclusions
The representation of binary relations can be useful in many contexts. In many
cases, there is a need to provide a dynamic representation for these relations. We
have presented dk2-trees, a dynamic version of a inherently static data structure, the
k2-tree, that provides the dynamic operations needed in many contexts: modification
of the contents of the matrix and addition or deletion of rows/columns. dk2-trees
can operate in space close to that of static k2-trees, that are currently state-of-the-art
in Web Graph compression and can achieve good results in the compression of RDF
graphs. Particularly, dk2-trees add all the required capabilities for a RDF database
to the good compression and query times obtained by k2-trees.

More experimentation is needed to achieve compression ratios closer to that of the
best static k2-trees, because the matrix vocabulary for the compression of L does not
achieve so good results in dk2-trees. We also intend to test thoroughly the efficiency
of our data structure when working in external memory. Our tree is suitable for its
direct utilization from external memory, and we expect that the good compression
achieved by dk2-trees will allow the caching of a significant part of our tree, providing
a good I/O efficiency in practice.

References

[1] S. Álvarez-Garćıa, N. R. Brisaboa, J. D. Fernández, and M. A. Mart́ınez-Prieto.
Compressed k2-triples for full-in-memory rdf engines. In AMCIS, 2011.

[2] J. Barbay, F. Claude and G. Navarro. Compact Rich-Functional Binary Relation
Representations. In LATIN, pages 170–183. Springer, 2010.

[3] P. Boldi and S. Vigna. The WebGraph Framework I: Compression techniques. In
WWW, pages 595–601. ACM Press, 2003.

[4] N. R. Brisaboa, S. Ladra, and G. Navarro. Directly addressable variable-length
codes. In SPIRE, pages 122–130, 2009.

[5] N. R. Brisaboa, S. Ladra, and G. Navarro. k2-trees for compact web graph rep-
resentation. In SPIRE, pages 18–30, 2009.

[6] F. Claude and S. Ladra. Practical representations for web and social graphs. In
CIKM, pages 1185–1190, 2011.

[7] S. Ladra. Algorithms and Compressed Data Structures for Information Retrieval.
PhD thesis.

[8] R. Raman, V. Raman, and S. S. Rao. Succinct dynamic data structures. In
WADS, pages 426–437, 2001.

