arXiv:1302.2839v1 [cs.IT] 12 Feb 2013

This paper is a preprint (IEEE “accepted” status).

IEEE copyright notice. (¢) 2012 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

DOI. 10.1109/DCC.2012.40

http://doi.iceecomputersociety.org/10.1109/DCC.2012.40

http://doi.ieeecomputersociety.org/10.1109/DCC.2012.40

Mixing Strategies in Data Compression
Christopher Mattern

Fakultéat fiir Informatik und Automatisierung
Technische Universitat Ilmenau
[Imenau, Germany
christopher.mattern@tu-ilmenau.de

Abstract

We propose geometric weighting as a novel method to combine multiple models
in data compression. Our results reveal the rationale behind PAQ-weighting and
generalize it to a non-binary alphabet. Based on a similar technique we present a new,
generic linear mixture technique. All novel mixture techniques rely on given weight
vectors. We consider the problem of finding optimal weights and show that the
weight optimization leads to a strictly convex (and thus, good-natured) optimization
problem. Finally, an experimental evaluation compares the two presented mixture
techniques for a binary alphabet. The results indicate that geometric weighting
is superior to linear weighting.

1 Introduction
1.1 Background

The combination of multiple models is a central aspect of many modern data compression
algorithms, such as Prediction by Partial Matching (PPM) [2 8, @], Context Tree
Weighting (CTW) [10, 11] or “Pack” (PAQ) [5,[8]. All of these algorithms belong to the
class of statistical data compression algorithms, which share a common structure: The
compressor consists of a model and a coder; and it processes the data (a string 2 € X" for
some alphabet X, |X'| > 2) sequentially. In the k-th step, 1 < k < n, the model estimates
the probability distribution P(- | 2%71) of the next symbol based on the already processed
sequence 7' = zy25 ... 2,_1. The task of the coder is to map a symbol z € X to a
codeword of a length close to — log P(z | #¥~1) bits (throughout this paper log is to the base
two). For decompression the coder maps the encoding, given P(- | 2571, to 2. Arithmetic
Coding (AC) closely approximates the ideal code length and is known to be asymptotically
optimal [3]. Therefore, the prediction accuracy of the model is crucial for compression.

Mixture models or mixtures combine multiple models into a single model suitable for
encoding. Let us now consider a simple example, which gives two reasons for our interest
in mixtures. First, assume that we have m > 1 models available. Model 7,1 <17 < m,
maps an arbitrary ™ to a prediction P;(x™) (a probability distribution), where

R = T R |47 = 1]f(if)) 0

and P;j(zF) > 0, 1 <i <m, k> 0. When we compress " with a single model i, we
need to encode the choice of i in —log W (i) bits (where W (i) is the prior probability of

selecting model 7) and we need to store the encoded string, which adds — log P;(z™) bits.
If we knew 2" in advance, we could select

i =arg min [~log(W(5)) —log(F;(z"))]. (2)

Surprisingly (as previously observed in e.g., [7]), a simple linear mixture P(z") :=
™ W(j)P;(z™) will never do worse than (2), since

=1

—1og(IW (1)) — log(P,(a")) = — log(W (i) P,(«"))

where 7 is the model that minimizes . Such a mixture makes it possible to combine
the advantages of different models without cumulating their disadvantages. Secondly,
the sequential processing allows us to refine the mixture adaptively (in favor of the locally
more accurate models).

1.2 Previous Work

Most of the major statistical compression techniques (PPM, CTW and PAQ) are based on
mixtures. In PPM the concept of “escape” symbols is related to the computation of a recur-
sively defined mixture distribution. The escape probability plays the role of a weight in a
linear mixture. In [2] Bunton gave a very comprehensive (at that time) synopsis on that topic.
Previously, several different methods for the estimation of escape probabilities had been
proposed, e.g., PPMA, PPMB, PPMC, PPMD, PPMP, PPMX [8], PPMII [9]. CTW relies
on the efficient combination of exponentially many (depending on a “tree depth” parameter)
models for tree sources. However, the structure of PPM and CTW restrict the type of mod-
els they combine (order- N models for PPM and models for tree sources for CTW). Recently,
some of the techniques of CTW led to S-weighting [4], as a linear general-purpose weighting
method. We are interested in general-purpose mixture techniques, which combine arbitrary
(and eventually totally different) models. The practical success of this approach was initi-
ated by Mahoney with PAQ (see [8] for details). PAQ combines a large amount of totally
different models (e.g., models for text, for images, etc.). Asa minor part earlier work we suc-
cessfully employed a simple linear mixture model for encoding Burrows-Wheeler-Transform
(BWT) output and proposed a method for the parameter optimization on training data [6].

1.3 Our Contribution

In Section [3| we propose geometric weighting as a novel non-linear mixture technique. We
obtain the geometric mixture as the solution of a divergence minimization problem. In
addition we show that PAQ-mixing is a special case of geometric weighting for a binary
alphabet. Since geometric weighting depends on a set of weights, we examine the problem
of weight optimization and propose a corresponding optimization method. In Section []
we focus on linear mixtures. In a fashion analogous to Section [3| we describe a new generic
linear mixture and investigate the problem of weight optimization. Finally, we compare
the behavior of the implementations (for a binary alphabet) of the two proposed mixture
techniques and of S-weighting in Section [f] Results indicate that geometric weighting
is superior to the other mixture methods.

2 Preliminaries

First, we fix some notation. Let X denote an alphabet of cardinality 1 < |X'| < co and
let x{ = Z;Tit1 - .. T; be a sequence of length n = j — i + 1 over X'. For short we may
write 2™ for z}. Abbreviations such as (a;)1<;<n expand to (a; as ... a,) and denote row
vectors. Boldface letters indicate matrices or vectors, “7” denotes the transpose operator,
1, =011...)" eR"and Q,, := {v € R™ | v > 0, v"1,, = 1}. We use log to
denote the logarithm with base two, In denotes the natural logarithm.

Suppose that we want to compress a string " € X" sequentially. Ineverystepl < k <n
amodel M : Up>oX'* — P maps the already known prefix 2~ of 2™ to a model distribution
P(- |28 1), PeP,where P :={Q : X — (0,1) | Xy Q(x) = 1}. An encoder trans-
lates this into a code of length close to — log P(x | z*~1) bits for . Now, if there are m > 1
submodels My, My, ..., M, (or submodels 1,2, . .. m, for short), we require a mizture func-
tion fr: X x P™ — (0, 1) to map the m corresponding distributions Py, P, ..., P, to a
single distribution P(z) = fi(z, Py, Ps, ..., Pn), P € P, instep k; fr may depend on zF~1.

An approach in information theory is to suppose that ™ was generated by an unknown
mechanism, which is called a source. W.l.o.g. we may assume that " was generated
sequentially: In every step k the source draws x according to an arbitrary source distri-
bution P € § :=={Q : X = [0,1] | X ex @(x) = 1} (i.e., the distribution P’ may vary
from step to step) and appends it to 27! to yield 2% = 2*~'z. When we encode x, using
a model distribution P € P, we obtain an expected code length of

e e e e

reX zeX

> P'(z)log P(l)

reX

H(P") D(P'||P)

where H(P') is the source entropy and D(P' || P) is the KL-divergence [3], which measures
the redundancy of P relative to P’. Our aim is to find a P, that minimizes the code
length. Since H(P’) is fixed (by the source), we want to minimize D(P’ || P). We have
D(P"|| P) > 0, which is zero iff P = P’, i.e., the best model distribution is the source
distribution itself.

3 Geometric Mixtures

This section contains the major part of our work: We derive geometric weighting as a novel
method for combining multiple models. Now suppose that we have m model distributions
Py, Py, ..., P, available in step k. Since the source distribution P’ is unknown (if it exists
at all) we try to identify an approximate source distribution P € S NP, which we can use
as a model distribution. It should be “close” (in the divergence-sense) to good models and
“far away” from bad models. The terms good and bad refer to short and long code lengths
(due to past observations and/or prior knowledge). We assume that we are given a set of
non-negative weights w;, 1 < i < m, >, w; > 0 (in Section 3.2 we discuss a method of
weight estimation), which quantify how well model i fits the unknown source distribution.
Summarizing, we are looking for the distribution

P —argmmeZ @ |l B). (3)

3.1 Divergence Minimization

In order to solve we adopt the method of Lagrangian multipliers. First, we set
Q(z | 2°71) = 0, and 87 = (6,),ex to omit the implicit dependence on k and to simplify
the equations. Now we rewrite to yield

mmel > 0, [log(6s) — log(P;(x | 2" 1)), (4)

= rzeX

s.t.Zszland9x>O,x€X

reX

and formulate its Lagrangian

sz > 0, {log — log(P;(x | x"‘_l))]

= TeX

—A(l—Z«Qg;)—Z(uz@x).

zeX reX

The variable A and the vector u = (p,).cx denote the Lagrange multipliers. A local
minimum 6%, *, p* satisfies the Karush-Kuhn-Tucker (KKT) conditions (see, e.g. [1])

OL(0™, *, u*)
00,
0, >0, i 20, 61, =0 (6)

=0, (5)

for all x € X and

o=t (7)

zeX
Due to () we obtain x} = 0 for all z € X. Equation ([5) can be transformed to

(Z wi> A+ log (6,27) = log [[Al | 21" (8)
i=1 =1

Now we fix a disjoint pair # 2’ of symbols from X and subtract the corresponding
instances of , which results in

m R(x/ | xk—l)‘|wi w;
gy, =0, ————~| | where w, — 9
fEr T ®)

Again, we fix a single character z and substitute any other occurrence of =’ # x in (7))
via @ Thus we have

VA Hl (@ |2 ﬂ
v Pz | zk1) | 7

' eX\{z} =1

which we rewrite to yield

g T P |2t

— . 10
" S I, P | 2) (10

Finally, we reintroduce the dependencies on k and obtain the geometric mixture

. Py Py | bty o)
P(x|a"™) = fulw, P, Py, Fu) = > XTII’" Pi(a | ah=tywi/ @wim)?
'€ =11

(11)

where w! = (w;)1<i<m is composed of the non-negative weights w;. It remains to show
that minimizes . For this, we observe that the Hessian of (4]) is

w’1,, - diag ((1/60,)cx)

which is positive definite, since 6, > 0 for all x € X.
3.2 Weight Estimation and Convexity

The mixture function requires m non-negative weights w? = (w;)1<j<m, which we
still need to obtain. In our situation the sequence z™ is known (and fixed) and the sequence
probability is given as a function of w as

. n T Pilay | et/
PP, ... P,) = : . 12
kl;[lfk(xk; 1,42)) kl;[l Zx’eX H;ll PZ<ZIZ'/ ‘ xk—l)wi/(lem) ()

We now wish to find a weight vector w, which maximizes (a maximum-likelihood esti-
mation). Since a maximization of the sequence probability is equivalent to a minimization
of its code length, we may alternatively solve

n m]Dz E—1\w; /(wT 1)
mul}nz (— log > i Aee | 277)) . (13)
k=1

wex 1y Py’ | gh=1)ywi/(wim)

We define w* to be the minimizer of .

Now we want to show that the cost function of is convex. Since the cost function is
a sum, we analyze a slight modification of a single term /(w) := — In(g(w)/h(w)) (since
log(z) ~ In(z)). W.Lo.g. we may assume that w € Q,, (due to (9)). In order to simplify
the analysis of the Hessian of [(w) we set

g(w) := [[Pilay, | ab~1)w = Xty wiln Plewlet™) — o' QG
=1

)

m

hw) =3 T[Pz] a"Y)w =3 ew" Q)

zEX i=1 rEX
Q(m)T = (In Py(z | Ik*l))gigm,
Pz = 6wTQ(£B)/ Z ewTQ(x') — fk(,]}7 P17 P27 ceey Pm)

r'eX

and we obtain

Vy(w)/g(w) = Q(xy), Vig(w)/g9(w) = Q(zr)Q(xr)",
Vh(w)/h(w) = > p.Q(x), Vih(w)/h(w) = 3 p.Q(2)Q(x)".

zeX zeX

The Hessian of [(w) is positive definite, since for v # 0,v € R™

vy - o (V0 Vo(w)" Vig(w) | Vhw) Vh(w)Vh(w)"\
vV (e)

(vTvguw)Q_vTvaxw»v+v

g9(w) g(w) h(w)

= (vTQ(a:k)> (Tka) +IEZX(pm()) (x;px
- 5 (. raw)’) - (S pram)

rzeX zeX

rV2hw) (lezg;u))Q

V
o

holds, where the last line is due to Jensen’s inequality (since >_,cx pr = 1). It follows that

the problem is strictly convex and there exists a single global minimizer w* € €,,.

We solve the problem ((13]) with an optimization method tailored to a natural requirement
in statistical compression: The sequence to be compressed is processed only once. Since
the cost function is convex, the optimization algorithm does not need strong global search
capabilities. A possible method-of-choice is an instance of iterative gradient descent
[1]. In the k-th step we use the estimates w(k) in place of w* (in ((11f)). Initially we set
w(0) = 1/m - 1,,. In each step k we adjust the weight vector w(k — 1) after we observe
x), via a step towards the direction of steepest descent, i.e.,

— Vi (—log fe(xg, P, P, ..., Py)) (19)

where a4, > 0 is the step size in the k-th step. The choice of oy, is crucial for the convergence
of w(k) tow* [1] (see Sections[3.3land[]). In the case of a geometric mixture function we have

wTll,,

w(k) := max {51m, w(k—1)+ ak(

where ¢, := (wTQ(x))/(w’1,,). As an implementation detail £ > 0 is a small constant
to bound the weights away from zero and to avoid a division by zero in (11

3.3 PAQ Mixtures or Geometric Mixtures for a Binary Alphabet

Before we examine the details of “the” PAQ mixture method, we need to clarify that there
exist multiple PAQ mixture mechanisms [§]. We focus on the latest instance, which was
introduced in 2005 as a part of PAQ7. PAQ computes mixtures for a binary alphabet
and works with the probability of one-bits. The mixture is defined as follows

fe(1, Py, Py, ..., P,) :==sq (Zwl —1)st(Pi(1 | :c’“))>, (20)
wi(k) := wi(k — 1) + a(zy — fi(1, P, Py, ..., Bp)) st(F(1)), (21)

where x;, is the bit we observed in step k£ and

st(z) :=1In 1 . sq(z) = : (22)

”

Let w! = (w;)1<i<m be the weight vector in step k where we assume that w € €2,,,. Now

we rewrite (due to (22))) to yield

fo(1, P, Py, Py) = [1+exp< szln — (1(|1x| :E;)l))}_

ll AT 1

iz D1 x’“)“”
B0] ah=t)w + I (1 |ty
which matches (L1]). It is easy to Check (via substituting (20]) into (L9)), that is
an instance of iterative gradient descent, where a = v is constant in any step and the
max-operation is omitted. When « is sufficiently small, the sequence (w(k))g>1 converges
to some w,, rather than the optimal solution w*. In turn, lim, o w, = w* [1]. A (small)
constant step size a thus needs to be determined experimentally.

4 Linear Mixtures

Let us return to the setting of Section[I.1] Instead of encoding ™ with model ¢ and trans-
mitting our choice in — log W (#) bits, we will not do worse using the mixture distribution

=Y W()Pi(z
i=1
Since we want to process z" sequentially we use the distribution (cf. (1))
P le) 30, Pt W(i)
P(zh-1) P(z+1)

Pi(z"~)W (i) _

NGERNNGE

Wi | 2" P | 2" (23)

1

<.
Il

in step k. There is an obvious interpretation for the mixture . Suppose that there are
m sources and a probabilistic switching mechanism, which selects source ¢ with probability
W (i | 2*71) in step k (we interpret this as the posterior probability of i given z*71).
When a source is selected, it appends a character z (with probability P;(z | #¥71)) to the
sequence 271 to yield 2% = 2%~ 'x. We denote such a source as a switching source.

4.1 [-Weighting

We can modify the probability assignment of to yield a linear mixture technique called
B-weighting, which has its roots in the CTW compression technique and was proposed
n [4]. f-weighting is defined by

m

fk(l?,Pl,PQ, Ce ,Pm) = Zﬁz(k>Pz($ ‘ .’L'k_l),

i=1

After the character zj, is known, we can compare ;(k) and (3;(k — 1) and observe, that
Py | 1)
fr(xg, P1, Py, ..., Pp)

4.2 Generic Linear Weighting
With the method of Lagrangian multipliers (see Section [3.1]) we can show that (in step k)

Bi(k) = Bi(k — 1) and ;(0) = W (7). (24)

P = argglé%ZwiD(Pi | Q), where w; > 0,1 <i<m, and > w; >0, (25)
i=1 =1
yields the linear mixture
W

—)
i=1 Wi

P(l’ | Ik_l) - fk(xa-Pl;PQa s 7Pm) = ZU);R(I ’ Zk_l)? where ’UJ; =
i=1

In the setting of the previous section the normalized weights w; correspond to the switching
probabilities W (i | %~1). Thus, the cost function in (25)) would be proportional to the
expected redundancy of a switching source in step k.

It is important to understand the difference between and . In P; plays the
role of a model distribution and we seek an approximate source distribution, which we
can use as a model distribution. On the other hand, in P; plays the role of a source
distribution and we seek a model distribution, which matches our assumptions on the
specific source structure (namely, a switching source). We belief that the assumptions
of (3]) are inferior to those of , hence the geometric mixture is more general.

In analogy to Section [3.2) we look for a weight vector w*, which minimizes the code
length of the sequence x™ we want to compress, i.e.,

i wi By, | xk_l)
Z?ll W;
First we analyse the convexity properties of . W .lo.g. weassume that w? = (w;)1<i<m

is an element of €),,,. The convexity properties of follow from the analysis of a single
term of the sum, which is proportional to

wl P(x1) w 1
’le(mk) e:Qm In m7 where P(Ik)T = (R(xk ’ Jfk_l))lgigm-
The Hessian of [(w) is positive definite, since
P(ay)P(x3)" v P(zy)
V2 =T Y = [L) >0
v VWY = v) Y \wlPay)

holds for v # 0, v € R™. We conclude that the problem is strictly convex. Thus,
there exists a single global minimizer w* € §2,,,. As in Section [3.2| we can obtain a weight
update rule via iterative gradient descent

w” ;= argmin > —log (26)
k=1

l(w):=—1In

fk<$k,P1,P2,...,Pm)'wT]_m

where w(0)” := 1/m - 1,, and ¢ is a small positive constant. It is interesting to note, that
when we replace ay, with the matrix diag(w(k — 1)) and omit the max-operation, ([27))

turns into S-weighting (cf. (24)) and w(k) € Q,,,, k > 0.

w(k) := max {51,”, w(k —1) —{—akP(xk) = Jeae P By P 1m}, (27)

5 Experiments

In this section we compare the performance of a geometric mixture (GEQ), a generic linear
mixture (LIN) and S-weighting (BETA) on the files of the well-known Calgary Corpus. We
have implemented the weighting techniques for a binary alphabet. To process non-binary
symbols (here, bytes) we employ an alphabet decomposition. Every symbol z, € X
is processed in N = [log |X|] intermediate steps, for details see, e.g., [6]. To ensure a
fair comparison, the set of models is the same for any mixture method: There are seven
finite-order context models (the probability estimations are conditioned on order-0 to
order-6 contexts). The eighth model is a match model. In step k it searches the longest
matching substring xﬁ:i of length L > 7 in 2¥~2. In the case of a match it predicts
the symbol (here, each bit in the N intermediate steps), which succeeds the matching
substring with probability 1 — 1/L, otherwise each symbol receives the probability 1/|X.

For each mixture technique we select a weight vector w based on an order-1 context
and on the match length L (determined by the match model in every step k). Initially any
weight vector is initialized to 1 /m-1,,. After a weight update we ensure that w > -1, (we
set € = 273%) and w’'1,, = 1. For 3-weighting we can confirm the observation made in [4]:
The weights must be bounded considerably away from zero, i.e., §; > € (weset € = 278). A
weight update based on iterative gradient descent requires a step size ay,. We set ap = 1/16
(GEOD) or ay, = 1/32 (LIN), respectively. The step size (for GEO and LIN) and e (for BETA)
were determined experimentally for maximum compression. We did not notice significant
changes in compression, when the step size was sufficiently small (in the scale of 1072).

Table [1]summarizes our experimental results. GEO outperforms LIN and BETA in almost
every case, expect for the file 0bj1, where the compression is roughly 2% worse than LIN
and BETA. On average LIN compresses about 2% and BETA compresses about 3.6% worse
than GEOQ, respectively. When we compare LIN and BETA we see that BETA produces worse
compression in every case, 1.5% on average. Summarizing we may say that GEO works
better than LIN. In our experiments BETA is inferior to the other weighting techniques.

6 Conclusion

In this paper we introduced geometric weighting as a new technique for computing
mixtures in statistical data compression. In addition we introduced a new generic linear
weighting strategy. We explain which assumptions the weighting techniques are based
on. Furthermore, our results reveal that PAQ is an instance of geometric weighting for
a binary alphabet. All of the presented mixture techniques rely on weight vectors. It turns
out that in any of the two cases the weight estimation is a good-natured problem since
it is strictly convex. An experimental study indicates that geometric weighting is superior
to linear weighting (for a binary alphabet).

For future research it would be interesting to obtain statements about the situations where
geometric weighting outperforms linear weighting (and vice-versa). Another topic is how to
select a fixed number of submodels for maximum compression. This leads to the optimiza-
tion of model and mixture parameters (and to the question, whether or not, the optimization
problem remains convex). Such a question is very natural, since we wish to maximize
the compression with limited resources (CPU and RAM). Combining multiple models in
data compression is highly successful in practice, but more research in this area is needed.

Acknowledgment. The author would like to thank Martin Dietzfelbinger, Michael
Rink, Martin Aumueller and the anonymous reviewers for helpful comments and corrections.

Table 1: Compression rates in bpc on the Calgary Corpus for geometric- (GEO), generic
linear- (LIN) and S-weighting (BETA), best results are typeset boldface.

File GEO LIN BETA
bib 1.816 | 1.890 | 1.907
book1 2.212 | 2.304 | 2.313
book2 | 1.864 | 1.943 | 1.965
geo 4.407 | 4.423 | 4.501
news 2.286 | 2.347 | 2.412
objl1 3.672 | 3.603 | 3.610
obj2 2.224 | 2.240 | 2.298
paperl | 2.274 | 2.327 | 2.343
paper?2 | 2.220 | 2.288 | 2.310
pic 0.813 | 0.871 | 0.922
progc 2.276 | 2.327 | 2.361
progl 1.558 | 1.607 | 1.651
progp 1.610 | 1.638 | 1.669
trans 1.384 | 1.430 | 1.453
Average | 2.187 | 2.231 | 2.265

References

[1]
2]

3]
[4]

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition, 1999.
Suzanne Bunton. On-Line Stochastic Processes in Data Compression. PhD thesis,
University of Washington, 1996.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience,
2nd edition, 2006.

Manfred Kufleitner, Edgar Binder, and Alexander Fries. Combining Models in Data
Compression. In Proc. Symposium on Information Theory in the Benelux, volume 30,
pages 135-142, 2009.

Matthew Mahoney. Adaptive Weighing of Context Models for Lossless Data Compression.
Technical report, Florida Tech., Melbourne, USA, 2005.

Christopher Mattern. Combining Non-stationary Prediction, Optimization and Mixing
for Data Compression. In Proc. First International Conference on Data Compression,
Communications and Processing, volume 1, pages 29-37, 2011.

Neri Merhav and Meir Feder. Universal prediction. IEEFE Transactions on Information
Theory, 44:2124-2147, 1998.

David Salomon and Giovanni Motta. Handbook of Data Compression. Springer, 1st edition,
2010.

Dimitry Shkarin. PPM: one step to practicality. In Proc. Data Compression Conference,
volume 12, pages 202-211, 2002.

F. Willems. The context-tree weighting method: extensions. IFEFE Transactions on
Information Theory, 44:792 —798, 1998.

F. Willems, Yuri M. Shtarkov, and T. J. Tjalkens. The context-tree weighting method:
basic properties. IEEE Transactions on Information Theory, 41:653-664, 1995.

	1 Introduction
	1.1 Background
	1.2 Previous Work
	1.3 Our Contribution

	2 Preliminaries
	3 Geometric Mixtures
	3.1 Divergence Minimization
	3.2 Weight Estimation and Convexity
	3.3 PAQ Mixtures or Geometric Mixtures for a Binary Alphabet

	4 Linear Mixtures
	4.1 -Weighting
	4.2 Generic Linear Weighting

	5 Experiments
	6 Conclusion

