
Sparse Binary Matrices of LDPC codes for
Compressed Sensing

Weizhi Lu, Kidiyo Kpalma and Joseph Ronsin

Université Européenne de Bretagne, France
INSA de Rennes, IETR, UMR 6164, F-35708, RENNES
{weizhi.lu, kidiyo.kpalma, joseph.ronsin}@insa-rennes.fr

Abstract: Compressed sensing shows that one undetermined measurement
matrix can losslessly compress sparse signals if this matrix satisfies Restricted
Isometry Property (RIP). However, in practice there are still no explicit
approaches to construct such matrices. Gaussian matrices and Fourier matrices
are first proved satisfying RIP with high probabilities. Recently, sparse random
binary matrices with lower computation load also expose comparable
performance with Gaussian matrices. But they are all constructed randomly, and
unstable in orthogonality. In this paper, inspired by these observations, we
propose to construct structured sparse binary matrices which are stable in
orthogonality. The solution lies in the algorithms that construct parity-check
matrices of low-density parity-check (LDPC) codes. Experiments verify that
proposed matrices significantly outperform aforementioned three types of
matrices. And significantly, for this type of matrices with a given size, the
optimal matrix for compressed sensing can be approximated and constructed
according to some rules.

1. Introduction
Compressed sensing [1]-[4] shows that a sparse vector x with k nonzero entries can be
losslessly compressed with an undermined measurement matrix A�Rm×n, where k<<n
and m<<n, supposing that matrix A satisfies RIP [1]. This result attracts substantial
interest for its dominance in the field of high dimension reduction. Generally, there are
two interesting study points for compressed sensing. One is to recover or approximate
sparse vector x, and the other one is to construct undetermined measurement matrix A
satisfying RIP. For the former, recently it has been widely studied as a regression
problem with l1 norm penalty
 min||x||1 s.t. ||y-Ax||2 <ε (1)
which can be solved by linear programming. Moreover, other efficient algorithms [13]-
[15] are also proposed successively for lower computation load. But for the latter, the
explicit construction of undetermined matrices satisfying RIP, remains elusive [5, 6]. As
we know, Fourier matrices [2] and Gaussian matrices [4] are first proved satisfying RIP
with high probabilities. However, Gaussian matrices include significant computation load
due to their randomness and density. Fourier matrices are competitive on computation but
suffer from weaker orthogonality than Gaussian matrices. Furthermore, for above two
types of matrices, there is no explicit way to derive their optimal orthogonality.

Recently, in terms of a weaker RIP [6, 7], sparse random matrices [7] based on
expander codes [8] display comparable performance with Gaussian matrices. This is a

 2

valuable result due to its significant reduction in computation load without performance
loss. But random construction still means that the orthogonality of such matrices is

1 0 1 0 1 0
1 0 0 1 0 1

A
0 1 1 0 1 1
0 1 0 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

(a) (b) (c)

Figure 1: Parity-check matrix of LDPC codes is represented by Tanner graph
uncontrolled and weak. Further, it can’t optimize the sparsity of one matrix with a given
size. In other words, there is no uniform method to determine the smallest number of
nonzero entries for matrices with different sizes. But this is critical in practice. Therefore,
inspired by this observation, we turn to one type of structured sparse matrices, parity-
check matrix of LDPC codes [9], whose orthogonality can be controlled and measured to
some extent during their construction.

As the following section details, the parity-check matrices of LDPC codes are also one
type of sparse binary matrices, but they suffer from much stricter constraints on
orthogonality due to the special construction conditions that LDPC codes require. Here
this type of matrices is constructed for compressed sensing. For a simple statement, they
are called LDPC matrices in the following parts. Compared with aforementioned three
types of matrices, LDPC matrices own three dominances. One is that their orthogonality
is much stronger; and the second is that their orthogonality can be controlled and
analyzed by relative construction algorithms; last but not least, their structured sparse
characters, such as cyclic or quasi-cyclic structures [11], are very competitive for
hardware implementations. Final experiments also verify our expectations. LDPC
matrices show much better performance than other matrices in compressed sensing.
Furthermore, optimal LDPC matrices for compressed sensing can also be obtained by
analyzing and controlling the short cycles in Tanner graph [12] during matrix
construction.

The rest of this paper is organized as follows. First, LDPC matrices are introduced
and analyzed in terms of orthogonality in section 2. Then experiments are designed to
prove our inferences in section 3. Finally, conclusions are given in section 4.

2. LDPC matrices
Here we first introduce the structure characteristics of LDPC matrices defined by LDPC
codes, as well as their construction principles in section 2.1. Then we analyze the
othogonality of LDPC matrices for compressed sensing in section 2.2.

2.1 LDPC matrices defined by LDPC codes
LDPC codes are one kind of linear block codes, which are defined in the null space of
sparse binary parity-check matrix (LDPC matrices). To evaluate their structure and
performance, parity-check matrix is often represented and analyzed by Tanner graph . For
example, Figure 1b shows a Tanner graph associated with parity-check matrix A in

 3

Figure 1a. In this Tanner graph, the upper five circles are often called variable nodes,
sequentially corresponding to the five columns of matrix A. And the lower four squares
are called check nodes, corresponding to the four rows of A. The edges between two
classes of nodes are rendered by the nonzero entries in A. Then we can further derive a
tree from any variable node by nonrepeatedly traversing adjacent nodes. As shown in
Figure 1c, the gray circle denotes the root of a tree. In this tree, there are three cycles
passing through the root variable node, and they respectively includes 4, 6 and 8 edges.
Theoretically, the trees with bigger cycles are preferred because it means that the root
variable node keeps higher independency with other variable nodes. In other words, the
columns of matrix mutually hold lower correlation in structure, which is also the intrinsic
requirements of RIP.

Specially, for LDPC codes, the cycle with 4 edges, e.g. the cycle with dotted lines in
Figure 1c, is usually avoided for iterative decoding. It discloses that nonzero entries can’t
form a square structure in matrix A, as the square with dotted lines in Figure 1a. In other
words, there are at most one same place assigned with nonzero entries for arbitrary two
columns. So LDPC matrices hold stronger constraint on orthogonality in structure than
other matrices. To present this constraint on cycles, we define local girth , shortly named
g, as the number of edges in the shortest cycles passing through the root variable node on
one tree. Each variable node holds one g in Tanner Graph, which might be equal to 4, 6, 8
and etc.. Relative construction algorithms for LDPC matrices are developed to make all
variable nodes with g>4. Further we can also evaluate the orthogonality of a matrix by
counting the distribution of variable nodes with different g. The matrix with variable
nodes holding bigger g usually own stronger orthogonality in structure.

However, as the number of nonzero entries increases in matrix, all cycles passing
through the root variable node incline to be shorter, and finally g=4 is inevitable. So if we
define degree d as the average number of nonzero entries in each column of matrix,
during the construction of matrix given degree d, the principle of construction parity-
check matrix of LDPC codes is to achieve as much big g as possible. Since bigger g
denotes higher orthogonality in structure for a matrix with a given degree d, LDPC
matrices construction algorithms are also available to construct measurement matrices for
compressed sensing.

2.2 LDPC matrices for compressed sensing
As we know, LDPC matrices with same size are discriminated by different degree d. In
terms of orthogonality and sparsity, we search an approximately orthogonal LDPC matrix
with minimal d, which is optimal for compressed sensing. However, in practice the value
of optimal d is unknown, and varies for different matrix sizes. Obviously, given matrix
size, it’s unacceptable to search the optimal d by enumerating all possible values of d.
Therefore, in this paper, considering that the orthogonality of LDPC matrix is related
with the distribution of variable nodes with different g, we attempt to search and denote
the optimal matrix by the distribution of g instead of d, which is also easily obeyed for
matrix construction algorithms.

Considering RIP is impractical to measure the orthogonality of matrix, here we
calculate the distribution of the correlation values between arbitrary two columns of one
matrix. The distributions of correlation values in LDPC matrices and sparse random

 4

matrices are shown in Figures 2 and 3, respectively, where the abscissa denotes the
correlation values that arbitrary two columns might take in one matrix, and the ordinate
denotes the probability that correlation values might be taken. It’s clear that

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correlation value

pr
ob
ab
ili
ty

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correlation value

pr
ob
ab
ili
ty

(a) (b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correlation value

pr
ob
ab
ili
ty

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correlation value

pr
ob
ab
ili
ty

(c) (d)

Figure 2: The distribution of correlation values between columns of LDPC matrices (1024,2048) with
d=10 in (a), d=14 in (b), d=15 in (c) and d=20 in (d).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correlation value

pr
ob
ab
ili
ty

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correlation value

pr
ob
ab
ili
ty

(a) (b)

Figure 3: The distribution of correlation values between columns of sparse random binary matrices
(1024, 2048) with d=10 in (a) and d=14 in (b).

 5

approximately orthogonal matrix is preferred to own smaller correlation values between
arbitrary two columns. Interestingly, for LDPC matrix with all variable nodes holding g
>4, the correlations between arbitrary two columns take only two values, 0 or 1/d. Note
that all matrices are normalized for compressed sensing in this paper. E.g., for LDPC
matrix with d=10 in Figure 2a, the correlation values only take 0 and 1/10; for d=14 in
Figure 2b, they only take 0 and 1/14. Clearly, nonzero correlation values decrease as d
increases, which is preferred for orthogonality. In contrast, as Figure 3 shows, correlation
values between arbitrary columns in sparse random matrices usually take some values
bigger than 1/d. However, the dominance of LDPC matrices will be seriously deteriorated
as the variable nodes with g=4 appear due to the increasing d. As shown in Figures 2c
and 2d, the LDPC matrix with d=15 and d=20 both give some correlation values bigger
than 1/d. So as d increases, LDPC matrices can’t get stronger orthogonality all the time.
But on the condition of g>4, the nonzero correlation values decrease as d increases. So it
can be reasonably predicted that there should be a turning point for d in orthogonality. In
other words, there might be an optimal d for LDPC matrices with a given size.

Since bigger d means smaller correlation value 1/d, whether we can assert that the
optimal d should be the biggest d that holding all variable nodes with g>4? Unfortunately,
as d increases, the correlation values will take 1/d rather than 0 with higher probability,
though nonzero correlation value 1/d between two columns decreases, as shown in Figure
2. This is a conflict process for maximizing orthogonality. Therefore experiments are
designed to further verify our conjecture.

3. Experiments
First, we introduce the methodology of experiments, and construct relative matrices in
section 3.1. Then in section 3.2, we analyze the results and give the rules that search and
construct optimal LDPC matrices for compressed sensing. Finally, we discuss the whole
experiments in section 3.3.

3.1 Methodology
Experiments are designed for two goals. First, the performance of LDPC matrices for
compressed sensing should be compared with other types of matrices. Considering
Fourier matrices are worse than Gaussian matrices, and sparse random matrices are
comparable with Gaussian matrices in some cases [7], our experiments only take
Gaussian matrices and sparse random matrices in comparisons. Second, to verify whether
there exists an optimal degree d for LDPC matrices given size, the performance of LDPC
matrices with different degree d should be evaluated.

To obtain convincing results, LDPC matrices with kinds of compression ratios and
dimension levels are respectively constructed by PEG algorithms [10].Tables 1-4 show 4
types of LDPC matrices, respectively, with sizes (100, 300) , (100, 500), (1024,2048)
and (1024, 4096), and compression ratios 1/3, 1/5, 1/2 and 1/4. Moreover, for each type
of LDPC matrices with a given size, a number of LDPC matrices with different degrees
are constructed. E.g., in Table 3, 14 matrices with different d are constructed, where
10~14 corresponds to integer interval [10 14]. Note that each Table shows the biggest d
that PEG algorithms can obtain for matrices with a given size. In addition, to discriminate
their structures, the distribution of variable nodes with different values g are counted for
each matrix. E.g., LDPC matrix (1024, 2048) with d=15, includes 1127 variables with

 6

g=4, and 921variable nodes with g=6. As d increases, the number of variable nodes with
g=4 also grows. Considering the matrix with biggest d and g>4 might be the optimal

 Table 1: The distribution of variable nodes with different g in each LDPC matrix (100, 300) with
degree d

d 3 4~5 5.5 6 7~10
4 0 0 150 284 300
6 280 300 150 16 0 g
8 20 0 0 0 0

Table 2: The distribution of variable nodes with different g in each LDPC matrix (100, 500) with
degree d

d 3~4 4.5 4.65 5 6~10
4 0 98 244 431 500 g 6 500 402 256 69 0

Table 3: The distribution of variable nodes with different g in each LDPC matrix (1024, 2048) with
degree d

d 10~14 14.2 14.3 14.5 15 16 17~20
4 0 0 15 173 1127 2043 2048 g 6 2048 2048 2033 1875 921 5 0

Table 4: The distribution of variable nodes with different g in each LDPC matrix (1024, 4096) with

degree d

d 6~11 11.3 11.4 11.7 12 13 13.5
4 0 0 48 339 1929 4088 4096 g 6 4096 4096 4048 3757 2167 8 0

matrix for compressed sensing, we obtain the extreme case with decimal d by matrix
construction. Here decimal d is the average of some integers. E.g, the matrix with d=14.3
in Table 3 denotes that 70% columns take d=14 and 30% columns take d= 15.

 Likewise, Gaussian matrices and sparse random matrices with equivalent size are also
constructed. In order to reflect their performance comprehensively, they are randomly
generated in each simulation. It should be noted that, for the sparse random matrices,
there also exists the problem of selecting optimal d, which is not addressed in [7]. So in
our experiments, we first evaluate their performance with d at integer interval [4 20]. E.g.,
for the sparse random matrix with size (1024, 4096), 17 matrices with d at integer
interval [4 20] are first evaluated for compressed sensing. And then for a simple
comparison, we only mention their best performance as baselines in Figures 4-7.

The performances of matrices are measured by the mean square error (MSE) between
recovered signal and input sparse signal. To verify robustness of optimal LDPC matrices,
LDPC matrices are tested by sparse signals with diverse sparsity levels and numerical
levels. For sparsity levels, considering the precisions of error levels in a finite number of
times by simulation, k=300 and 400 are selected for LDPC matrices (1024, 2048), and k
= 200 and 300 for LDPC matrices (1024, 4096). Six integers [20 30 40 50 60] are

 7

(a) (b)

Figure 4: The MSE of LDPC matrices (100, 300) with degree d for sparse signals with sparsity k=20 in (a)
and k=30 in (b). As references, the performances of Gaussian matrices and sparse random
matrices are displayed as two baselines.

(a) (b)

Figure 5: The MSE of LDPC matrices (100, 500) with degree d for sparse signals with parsity k=30 in (a)
and k=40 in (b). As references, the performances of Gaussian matrices and sparse random
matrices are displayed as two baselines.

assigned to k for LDPC matrices (100, 300) and (100, 500). For numerical levels of
nonzero entries, ‘big’ level integers at interval [-255 255] are applied for aforementioned
two types of bigger matrices, and ‘small’ level values sampled from normal Gaussian
distribution are adopted for two types of smaller matrices. Of course, optimal LDPC
matrices should be robust for sparse signals with diverse sparsity levels and numerical
levels. As for the solution algorithms, we use practical OMP algorithms [15] with known
sparsity k. All error performances are averaged by 10000 times of simulations.

3.2 Results
The performances of four types of LDPC matrices versus the scope of degrees are
respectively shown in Figures 4-7. In contrast, the performances of Gaussian matrices as
well as selected optimal performance of random sparse matrices are also displayed as two

3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

er
ro

r

m=100, n=300, k=30

 LDPC matrices
Sparse random matrices
Gaussian matrices

3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

d

er
ro

r
m=100, n=300, k=20

LDPC matrices
Sparse random Matrices
Gaussian matrices

3 4 5 6 7 8 9 10
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

d

er
ro

r

m=100, n=500, k=30

LDPC matrices
Sparse random matrices
Gaussian matrices

3 4 5 6 7 8 9 10
3.6

3.8

4

4.2

4.4

4.6

4.8

5

d

er
ro

r

m=100, n=500, k=40

 LDPC matrices
Sparse random matrices
Gaussian matrices

 8

10 11 12 13 14 15 16 17 18 19 20
3

4

5

6

7

8

9

10

11

12

d

er
ro
r

m=1024, n=2048, k=300

LDPC matrices
Sparse random matrices
Gaussian matrices

10 11 12 13 14 15 16 17 18 19 20
50

100

150

200

250

300

350

400

d

er
ro
r

m=1024, n=2048, k=400

LDPC matrices
Sparse random matrices
Gaussian matrices

(a) (b)

Figure 6: The MSE of LDPC matrices (1024, 2048) with degree d for sparse signals with sparsity k=300
in (a) and k=400 in (b). As references, the performances of Gaussian matrices and sparse
random matrices are displayed as two baselines.

6 7 8 9 10 11 12 13 14
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

d

er
ro
r

m=1024, n=4096, k=200

LDPC matrices
Sparse random matrices
Gaussian matrices

6 7 8 9 10 11 12 13 14
20

30

40

50

60

70

80

90

100

110

d

er
ro
r

m=1024, n=4096, k=300

LDPC matrices
Sparse random matrices
Gaussian matrices

 (a) (b)

Figure 7: The MSE of LDPC matrices (1024, 4096) with degree d for sparse signals with sparsity k=200
in (a) and k=300 in (b). As references, the performances of Gaussian matrices and sparse
random matrices are displayed as two baselines.

baselines in each Figure. It’s clear that LDPC matrices significantly outperform other two
types of matrices, verified by sparse signals with two sparsity levels and two numerical
levels.

Furthermore, concavity performance lines in Figures 4-7 indicate that LDPC matrices
really own the optimal d for compressed sensing. For example, LDPC matrices achieve
their lowest MSE at d=15 in Figure 6, and at d=12 in Figure 7. But more simulation
results in Tables 5 and 6 disclose that the optimal d for LDPC matrices with a given size
is not very stable for sparse signals with variable sparsity k. E.g., for LDPC matrices (100,
500) in Table 6, the optimal d can take values 4.5, 4.65 and 5 for different sparsity k. But
their differences are tiny, no more than 1. And their performances are also very close. So
in practice we are allowed to select a representative degree d for a LDPC matrix given
size, at little cost of performance.

 9

Table 5: The MSE of LDPC matrices (100, 300) with degree d for sparse signals with sparsity k.

Table 6: The MSE of LDPC matrices (100, 500) with degree d for sparse signals with sparsity k

d 3 4 4.5 4.65 5 6 7 8 9 10
20 0.3726 0.0476 0.0264 0.0202 0.0208 0.0207 0.0206 0.0236 0.0275 0.0279
30 2.2805 0.9685 0.6877 0.6707 0.5905 0.6040 0.6413 0.6848 0.7251 0.7745
40 4.8944 4.0271 3.6757 3.6924 3.6380 3.7156 3.7809 3.8586 3.9814 4.0392
50 6.7974 6.5649 6.4684 6.4386 6.4428 6.5225 6.5920 6.6390 6.6933 6.7500

k

60 8.2902 8.2592 8.2100 8.2293 8.2500 8.3069 8.4016 8.4364 8.4974 8.5051

Now of interest is to find whether the optimal d is the biggest d holding g>4. Turn to
Tables 1-4, where the optimal values of d are in bold, interestingly, for four types of
LDPC matrices, the optimal d all focused on the margin of the biggest d holding g>4.
Further, optimal d generally doesn’t surpass the bound that all variable nodes begin to
hold g=4. Precisely, the matrices with optimal d all hold partial variable nodes with g=4
in our experiments. For example, LDPC matrices (1024, 2048) in Table 3, the optimal
matrix with d=15 holds 1127 variable nodes with g=4 and 921 variable nodes g=6. As
Tables 1-4 show, this characteristic confines optimal d in a small interval, which is close
to the biggest d with g>4. Empirically, the difference between optimal d for compressed
sensing and biggest d with g>4 is usually less than 1. In words, during matrix
construction, we can easily determine the possible region of optimal d by searching the
biggest d with g>4. In addition, if the sparsity of sparse signal can also be estimated
before hand, we can derive one more precise d.

3.3 Discussion
RIP [1] essentially requires that arbitrary set of t columns in one matrix approximately
behaves like an orthogonal system [4], where variable t is less than some constant S. And
S is hoped to be as big as possible for compressed sensing. But for a given matrix, the
solution to the biggest S is a NP hard problem. So there is still no practical tools to
measure the orthogonality as RIP requires. In this paper, we roughly estimate the
orthogonality in terms of their correlations between two columns. But obviously it can’t
reflect the variation of real biggest S. So we need experiments to search the optimal
LDPC matrices. Luckily, experiments show that the optimal LDPC matrices own some
intrinsic relations with its distribution of cycles in Tanner graph, which is favorable for
their construction in practice. For example, the optimal LDPC matrices constructed by
PEG algorithms [10] usually contain partial variable nodes with g=4, and this strictly
constrain degree d at a small interval less than 1. So they can be easily determined during
the construction. In addition, optimal d is usually slightly bigger than the biggest d with
g>4 in our experiments, and it can be regarded that the probability that correlations
between columns take values bigger than 1/d is still tiny in this case. Moreover,

d 3 4 5 5.5 6 7 8 9 10
20 0.1211 0.0108 0.0034 0.0020 0.0028 0.0048 0.0060 0.0069 0.0077
30 0.9139 0.2425 0.0835 0.0805 0.0756 0.1055 0.1294 0.1737 0.1921
40 3.1600 1.9678 1.3520 1.2231 1.2666 1.4667 1.6030 1.7965 1.8820
50 5.4480 4.9827 4.5860 4.4986 4.5322 4.7121 4.8719 4.9804 5.0717

k

60 7.2106 7.0510 6.9563 6.9268 6.9410 7.0493 7.0963 7.2074 7.2274

 10

considering the structure of LDPC matrices largely depends on their construction
algorithms, the bounds for optimal d might vary for different construction algorithms.

4. Conclusions
In this paper, we have explored the application of parity-check matrix of LDPC codes in
compressed sensing. Experiments verify that this type of sparse binary matrix
significantly outperform current other matrices. Furthermore, for LDPC matrices with a
given size, the optimal matrix for compressed sensing can also be approximately
constructed by constraining the short cycles in Tanner graph. In addition, in terms of
computation load, their cyclic or quasi-cyclic [11] structures are more competitive for
hardware implementation. In sum, LDPC matrices expose significant dominance on the
application of compressed sensing.

References
[1] E. Candes and T. Tao, “Decoding by Linear Programming”, IEEE Trans. on Information Theory,

51(12), pp. 4203 - 4215, Dec. 2005.
[2] E. Candes, J. Romberg and T. Tao, “Robust Uncertainty Principles: Exact Signal Reconstruction

from Highly Incomplete Frequency Information”, IEEE Transactions on Information Theory,
52(2) pp. 489 - 509, Feb. 2006.

[3] D. Donoho, “Compressed Sensing”, IEEE Trans. Inf. Theory, 52(4), pp. 1289 -1306, April 2006.
[4] E. Candes, J. Romberg, and T. Tao, “Stable Signal Recovery from Incomplete and Inaccurate

Measurements”, Communications on Pure and Applied Mathematics, 59(8), pp. 1207-1223, Aug.
2006.

[5] T. Tao. Open question: deterministic uup matrices. Weblog at:
http://terrytao.wordpress.com/2007/07/02/open-question-deterministic-uup-matrices/

[6] V. Chandar. “A negative result concerning explicit matrices with the restricted isometry property”,
Tech. Rep., 2008.

[7] R. Berinde and P. Indyk, “Sparse recovery using sparse random matrices”, MIT-CSAIL Technical
Report, 2008.

[8] M. Sipser and D. Spielman, “Expander codes”, IEEE Trans. Inf. Theory, 42(6), pp. 1710-1722,
1996.

[9] R. G. Gallager, “Low density parity check codes”, IRE Trans. Inf. Theory, vol. IT-8, pp. 21–28,
Jan. 1962.

[10] X.Y. Hu, E. Eleftheriou, and D. M. Arnold, “Progressive Edge-Growth Tanner Graphs”, IEEE
Global Telecommunications Conference 2001, vol. 2, pp. 995-1001, Nov., 2001

[11] Z. Li and B. V. K. V. Kumar, “A class of good quasi-cyclic low-density parity check codes based
on progressive edge growth graph”, in Proc. 38th Asilomar Conf. Signals, Syst. Comput., pp.
1990-1994, 2004.

[12] R. M. Tanner, “ A recursive approach to low complex codes”, IEEE Trans. Inf. Theory, vol. IT-27,
pp. 533-547, Sept. 1981.

[13] S.S. Chen, D.L. Donoho, M.A. Saunders, “Atomic Decomposition by Basis Pursuit”, SIAM
Journal on Scientific Computing, 20 (1), 33-61, 1998.

[14] B. Efron, T. Hastie, and R. Tibshirani, “Least angle regression”, Annals of Statistics, 32, pp. 407–
499, 2004.

[15] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal
matching pursuit”, IEEE Trans. Inf. Theory, 53, pp. 4655–4666, 2007.

