
ar
X

iv
:1

30
1.

24
95

v1
  [

cs
.D

S
]  

11
 J

an
 2

01
3

A simple online competitive adaptation of
Lempel-Ziv compression with efficient random

access support

Akashnil Dutta∗ Reut Levi† Dana Ron‡ Ronitt Rubinfeld§

Abstract

We present a simple adaptation of the Lempel Ziv 78’ (LZ78) compression scheme
(IEEE Transactions on Information Theory, 1978) that supports efficient random ac-
cess to the input string. Namely, given query access to the compressed string, it is
possible to efficiently recover any symbol of the input string. The compression algo-
rithm is given as input a parameterǫ > 0, and with very high probability increases
the length of the compressed string by at most a factor of(1 + ǫ). The access time is
O(log n + 1/ǫ2) in expectation, andO(log n/ǫ2) with high probability. The scheme
relies on sparse transitive-closure spanners. Any (consecutive) substring of the input
string can be retrieved at an additional additive cost in therunning time of the length
of the substring. We also formally establish the necessity of modifying LZ78 so as to
allow efficient random access. Specifically, we construct a family of strings for which
Ω(n/ log n) queries to the LZ78-compressed string are required in orderto recover
a single symbol in the input string. The main benefit of the proposed scheme is that
it preserves the online nature and simplicity of LZ78, and that for every input string,
the length of the compressed string is only a small factor larger than that obtained by
running LZ78.

1 Introduction

As the sizes of our data sets are skyrocketing it is become important to allow a user to access
any desiredportion of the original data without decompressing the entire dataset. This
problem has been receiving quite a bit of recent attention (see e.g. [14, 2, 7, 12, 4, 8, 3]).
Compression and decompression schemes that allow fast random-access decompression
support have been proposed with the aim of achieving similarcompression rates to the
known and widely used compression schemes, such as arithmetic coding [15], LZ78 [16],
LZ77 [13] and Huffman coding [11].
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In this work, we focus on adapting the widely used LZ78 compression scheme so as
to allow fast random access support. Namely, given access tothe compressed string and a
locationℓ in the original uncompressed string, we would like to be ableto efficiently re-
cover theℓ-th symbol in the uncompressed string. More generally, the goal is to efficiently
recover a substring starting at locationℓ1 and ending at locationℓ2 in the uncompressed
string. Previously, Lempel Ziv-based schemes were designed to support fast random ac-
cess, in particular, based on LZ78 [14], LZ77 [12] and as a special case of grammar-based
compression [2].

The first basic question that one may ask is whether there is any need at all to modify the
LZ78 scheme in order to support fast random access. We formalize the intuition that this
is indeed necessary and show that without any modifications every (possibly randomized)
algorithm will need time linear in the length of the LZ78-compressed string to recover a
single symbol of the uncompressed string.

Having established that some modification is necessary, thenext question is how do we
evaluate the compression performance of a compression scheme that is a modification of
LZ78 and supports efficient random access. As different strings have very different com-
pressibility properties according to LZ78, in order to compare the quality of a new scheme
to LZ78, we consider a competitive analysis framework. In this framework, we require that
for every input string, the length of the compressed string is a most multiplicative factor of
α larger than the length of the LZ78-compressed string, whereα > 1 is a small constant.
For a randomized compression algorithm this should hold with high probability (that is,
probability1 − 1/poly(n) wheren is the length of the input string). If this bound holds
(for all strings) then we say that the scheme isα-competitive with LZ78.

One additional feature of interest is whether the modified compression algorithm pre-
serves the online nature of LZ78. The LZ78 compression algorithm works by outputting
a sequence ofcodewords, where each codeword encodes a (consecutive) substring of the
input string, referred to as aphrase. LZ78 is online in the sense that if the compression al-
gorithm is stopped at any point, then we can recover all phrases encoded by the codewords
output until that point. Our scheme preserves this propertyof LZ78 and furthermore, sup-
ports online random access. Namely, at each point in the execution of the compression
algorithm we can efficiently recover any symbol (substring)of the input string that has al-
ready been encoded. A motivating example to keep in mind is ofa powerful server that
receives a stream of data over a long period of time. All through this period of time the
server sends the compressed data to clients which can, in themeantime, retrieve portions
of the data efficiently. This scenario fits cases where the data is growing incrementally, as
in log files or user-generated content.

1.1 Our Results

We first provide a deterministic compression algorithm which is 3-competitive with LZ78
(as defined above), and a matching random access algorithm which runs in timeO(logn),
wheren is the length of the input string. This algorithm retrieves any requested single
symbol of the uncompressed string. By slightly adapting this algorithm it is possible to
retrieve a substring of lengths in timeO(logn) + s.

Thereafter, we provide a randomized compression algorithmwhich for any chosen ep-
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silon is(1+ ǫ)-competitive with LZ78. The expected running time of the matching random
access algorithm isO(logn+1/ǫ2), and with high probability is bounded by1 O(logn/ǫ2).
The probability is taken over the random coins of the randomized compression algorithm.
As before, a substring can be recovered in time that is the sumof the (single symbol) ran-
dom access time and the length of the string. Similarly to LZ78, the scheme works in an
online manner in the sense described above. The scheme is fairly simple and does not re-
quire any sophisticated data structures. For the sake of simplicity we describe them for the
case in which the alphabet of the input string is{0, 1}, but they can easily be extended to
work for any alphabetΣ.

As noted previously, we also give a lower bound that is linearin the length of the
compressed string for any random access algorithm that works with (unmodified) LZ78
compressed strings.

Experimental Results. We provide experimental results which demonstrate that ourscheme
is competitive and that random access is extremely efficientin practice. An implementation
of our randomized scheme is available online [5].

1.2 Techniques

The LZ78 compression algorithm outputs a sequence of codewords, each encoding a phrase
(substring) of the input string. Each phrase is the concatenation of a previous phrase and
one new symbol. The codewords are constructed sequentially, where each codeword con-
sists of an indexi of a previously encoded phrase (the longest phrase that matches a prefix
of the yet uncompressed part of the input string), and one newsymbol. Thus the code-
words (phrases they encode) can be seen as forming a directedtree, which is a trie, with
an edge pointing from each child to its parent. Hence, if a node v corresponds to a phrase
s1, . . . , st, then for each1 ≤ j ≤ t, there is an ancestor node ofv that corresponds to the
prefix s1, . . . , sj, and is encoded by the codeword(i, sj) (for somei), so thatsj can be
“revealed” by obtaining this codeword.

In order to support random access, we want to be able to perform two tasks. The first
task is to identify, for any given indexℓ, what is the codeword that encodes the phrase to
which theℓ-th symbol of the input string belongs. We refer to this codeword as the “target
codeword”. Letp denote starting position of the corresponding phrase (in the input string),
then the second task is to navigate (quickly) up the tree (from the node corresponding
to the target codeword) and reach the ancestor node/codeword at depthℓ − p + 1 in the
tree. This codeword reveals the symbol we are looking for. Inorder to be able to perform
these two tasks efficiently, we modify the LZ78 codewords. Tosupport the first task we
add information concerning the position of phrases in the input (uncompressed) string. To
support the second task we add additional pointers to ancestor nodes in the tree, that is,
indices of encoded phrases that correspond to such nodes. Thus we (virtually) construct a

1This bound can be improved toO((log n/ǫ + 1/ǫ2) log(logn/ǫ)), but this improvement comes at a
cost of making the algorithm somewhat more complicated, andhence we have chosen only to sketch this
improvement (see Subsection B.2).
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(very sparse) Transitive Closure (TC) spanner [1] on the tree. The spanner allow to navigate
quickly between pairs of codes.

When preprocessing is allowed, both tasks can be achieved more efficiently using auxil-
iary data structures. Specifically, the first task can be achieved using rank and select queries
in time complexityO(1) (see e.g. [10]) and the second task can be achieved in time com-
plexity O(log log n) via level-ancestor queries on the trie (see e.g. [6]). However, these
solutions are not adaptable, at least not in a straightforward way, to the online setting and
furthermore the resulting scheme is not(1 + ǫ)-competitive with LZ78 for everyǫ.

In the deterministic scheme, which is3-competitive with LZ78, we include the ad-
ditional information (of the position and one additional pointer) in every codeword, thus
making it relatively easy to perform both tasks in timeO(logn). In order to obtain the
scheme that is(1+ ǫ)-competitive with LZ78 we include the additional information only in
anO(ǫ)-fraction of the codewords, and the performance of the tasksbecomes more chal-
lenging. Nonetheless, the dependence of the running time onn remains logarithmic (and
the dependence on1/ǫ is polynomial).

The codewords which include additional information are chosen randomly in order to
spread them out evenly in the trie. It is fairly easy to obtainsimilar results if the structure of
the trie is known in advance, however, in an online setting, the straightforward deterministic
approach can blow up the size of the output by a large factor.

1.3 Related Work

Sadakane and Grossi [14] give a compression scheme that supports the retrieval of any
s-long consecutive substring of an input stringS of lengthn over alphabetΣ in O(1 +
s/(log|Σ| n)) time. In particular, for a single symbol in the input string the running time
is O(1). The number of bits in the compressed string is upper boundedby nHk(S) +

O
(

n
log|Σ| n

(k log |Σ|+ log logn)
)

, whereHk(S) is thek-th order empirical entropy ofS.

Since their compression algorithm builds on LZ78, the boundon the length of the com-
pressed string for any given input string can actually be expressed as the sum of the length
of the LZ78 compressed string plusΘ(n log log n/ logn) bits for supporting rank and se-
lect operations in constant time2. They build on the LZ78 scheme in the sense that they
store suits of data structures that encode the structure of the LZ78 trie and support fast ran-
dom access. Hence, for input strings that are compressed by LZ78 to a number of bits that
is at least on the order ofn log logn/ logn, their result is essentially the best possible as
compared to LZ78. However, their scheme is not in general competitive (as defined above)
with LZ78 because of its performance on highly compressiblestrings. We also note that
their compression algorithm does not work in an online fashion, but rather constructs all
the supporting data structures given the complete LZ78 trie.

Two alternative schemes which give the same space and time bounds as in [14] were
provided by González and Navarro [9] and Ferragina and Venturini [7], respectively. They
are simpler, where the first uses an arithmetic encoder and the second does not use any com-
pressor. (They also differ in terms of whetherk has to be fixed in advance.) By the above

2TheΘ(n log logn/ logn) space requirement can be decreased if one is willing to spendmore than con-
stant time.
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discussion the performance of these schemes is not in general competitive with LZ78.
Kreft and Navarro [12] provide a variant of LZ77 that supports retrieval of anys-long

consecutive substring ofS in O(s) time. They show that in practice their scheme achieves
close results to LZ77 (in terms of the compression ratio). However, the usage of a data
structure that supports the rank and select operations requiresΩ(n log log n/ logn) bits.

The Lempel-Ziv compression family belongs to a wider familyof schemes called grammar-
based compression schemes. In these schemes the input string is represented by a context-
free grammar (CFG), which is unambiguous, namely, it generates a unique string. Billie
et al. [2] show how to transform any grammar-based compression scheme so as to support
random access inO(logn) time. The transformation increases the compressed representa-
tion by a multiplicative factor (larger than1).

2 Preliminaries

The LZ78 compression scheme. Before we describe our adaptation of the LZ78 scheme [16],
we describe the latter in detail. The LZ78 compression algorithm receives an input string
x ∈ Σn over alphabetΣ and returns a list,Cx = Cx

LZ, of codewords of the form(i, b),
wherei ∈ N andb ∈ Σ. Henceforth, unless specified otherwise,Σ = {0, 1}. Each code-
word(i, b) encodes a phrase, namely a substring ofx, which is the concatenation of thei-th
phrase (encoded byCx[i]) andb, where we define the0-th phrase to be the empty string.
The first codeword is always of the form(0, x[1]), indicating that the first phrase consists of
a single symbolx[1]. The compression algorithm continues scanning the input stringx and
partitioning it into phrases. When determining thej-th phrase, if the algorithm has already
scannedx[1, . . . , k], then the algorithm finds the longest prefixx[k + 1, . . . , n − 1] that is
the same as a phrase with indexi < j. If this prefix isx[k + 1, . . . , t], then the algorithm
outputs the codeword(i, xt+1) (if the prefix is empty, theni = 0).

An efficient (linear inn) LZ78 compression algorithm can be implemented by main-
taining an auxiliary trie (as illustrated in Figure 2, Section C). The trie structure is implicit
in the output of the LZ78 algorithm. Namely, for an input string x ∈ {0, 1}n, the trie
T x = (V x, Ex) is defined as follows. For each codewordCx[i], 1 ≤ i ≤ m there is a node
vi in V x, and there is also a nodev0 corresponding to the root of the tree. IfCx[j] = (i, b),
then there is an edge betweenvj andvi (so thatvi is the parent ofvj). Given the cor-
respondence between codewords and nodes in the trie, we shall sometimes refer to them
interchangeably.

In the course of the compression process, when constructingthe j-th codeword (af-
ter scanningx[1, . . . , k]) the compression algorithm can find the longest prefix ofx[k +
1, . . . , n− 1] that matches an existing phrasei simply by walking down the trie. Once the
longest match is found (the deepest node is reached), a new node is added to the trie. Thus
the trie structure may be an actual data structure used in thecompression process, but it
is also implicit in the compressed string (where we think of acodewordCx[j] = (i, b) as
having apointer to its parent Cx[i]). Decompression can also be implemented in linear
time by iteratively recovering the phrases that correspondto the codewords and essentially
rebuilding the trie (either explicitly or implicitly). In what follows, we refer toi as theindex
of Cx[i] and tox[j] as the bit atposition j.
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Competitive schemes with random access support.We aim to provide a scheme,A,
which compresses every input string almost as well as LZ78 and supports efficient local
decompression. Namely, given access to a string that is the output ofA on inputx and
1 ≤ ℓ1 ≤ ℓ2 ≤ n, the local decompression algorithm outputsx[ℓ1, . . . , ℓ2] efficiently. In
particular, it does so without decompressing the entire string. We first describe our scheme
for the case whereℓ1 = ℓ2, which we refer to asrandom access, and later explain how to
extend the scheme forℓ1 < ℓ2. The quality of the compression is measured with respect to
LZ78, formally, we require the scheme to becompetitive with LZ78 as defined next. We
note that here and in all that follows, when we say “with high probability” we mean with
probability at least1− 1/poly(n).

Definition 1 (Competitive schemes)Given a pair of deterministic compression algo-
rithms A : {0, 1}∗ → {0, 1}∗ and B : {0, 1}∗ → {0, 1}∗, we say that algorithm B is
α-competitive with A if for every input string x ∈ {0, 1}∗, we have |Cx

B| ≤ α|Cx
A|, where

Cx
B and Cx

A are the compressed strings output by A and B, respectively, on input x. For a
randomized algorithm B, the requirement is that |Cx

B| ≤ α|Cx
A| with high probability over

the random coins of B.

Word RAM model. We consider the RAM model with word sizelog n + 1, wheren is
the length of the input string.We note that it suffices to havean upper bound on this value
in order to have a bound on the number of bits for representingany index of a phrase. A
codeword of LZ78 is one word, i.e.,i andb appear consecutively wherei is represented by
log n bits. For the sake of clarity of the presentation, we write itas(i, b). Our algorithms
(which supports random access) use words of sizelogn + 1 as well. If one wants to
consider variants of LZ78 that apply bit optimization and/or work when an upper bound
on the length of the input string is not known in advance, thenour algorithms need to be
modified accordingly so as to remain competitive (with the same competitive ratio).

We wish to point out that if we take the word size to belogm + 1 (instead oflogn +
1), wherem is the number of phrases in the compressed string, then our results remain
effectively the same. Specifically, in the worst case the blow up in the deterministic scheme
is of factor of4 (instead of3) and in the randomized scheme is of factor(1 + 2ǫ) (instead
of (1 + ǫ)).

3 A Deterministic Scheme

In this section we describe a simple deterministic compression scheme which is based on
the LZ78 scheme.

In the deterministic compression scheme, to each codeword we add a pair of additional
entries. The first additional entry is the starting positionof the encoded phrase in the
uncompressed string. On an inputx ∈ {0, 1}n and1 ≤ ℓ ≤ n, this allows the algorithm to
efficiently find the codeword encoding the phrase that contains theℓ-th bit by performing
a binary search on the position entries. The second entry we add is an extra pointer (we
shall use the terms “pointer” and “index” interchangeably). Namely, while in LZ78 each
codeword indicates the index of the former codeword, i.e., the direct parent in the trie, (see
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Section 2), we add another index, to an ancestor node/codeword (which is not the direct
parent). In order to allow efficient random access, our goal is to guarantee that for every
pair of connected nodes,u, v there is a short path connectingu andv. Namely, if we let
dG(u, v) denote the length of the shortest path fromu to v in a directed graphG, then
the requirement is that foru, v such thatdG(u, v) < ∞ it holds thatdG(u, v) is small.
Before we describe how to achieve this property on (a super-graph of) the constructed trie
we describe how to guarantee the property on a simple directed path. Formally we are
interested in constructing a Transitive-Closure (TC) spanner, defined as follows:

Definition 2 (TC-spanner [1]) Given a directed graph G = (V,E) and an integer k ≥ 1,
a k-transitive-closure-spanner (k-TC-spanner) of G is a directed graph H = (V,EH) with
the following properties:

1. EH is a subset of the edges in the transitive closure3 of G.

2. For all vertices u, v ∈ V , if dG(u, v) < ∞, then dH(u, v) ≤ k.

3.1 TC Spanners for Paths and Trees

Let Ln = (V,E) denote the directed line (path) overn nodes (where edges are directed
“backward”). Namely,V = {0, . . . , n − 1} andE = {(i, i − 1) : 1 ≤ i ≤ n − 1}. Let

fn(i)
def
= i mod ⌊log n⌋ and letE ′ = {(i,max{i− 2fn(i) · ⌊log n⌋, 0}) : 1 ≤ i ≤ n− 1}.

Observe that each node1 ≤ i ≤ n− 1 has exactly one outgoing edge inE ′ (in addition to
the single outgoing edge inE). DefineHn = (V,E ∪ E ′).

Claim 1 Hn is a (4 logn)-TC-spanner of Ln.

Proof: For every0 ≤ r < t ≤ n − 1, consider the following algorithm to get fromt to r
(at each step of the algorithm stop ifr is reached):

1. Starting fromt and using the edges ofE, go to the first nodeu such thatfn(u) =
⌊log n⌋ − 1.

2. Fromu iteratively proceed by taking the outgoing edge inE ′ if it does not go beyond
r (i.e., if the node reached after taking the edge is not smaller thanr), and taking the
outgoing edge inE otherwise.

Clearly, when the algorithm terminates,r is reached. Therefore, it remains to show that the
length of the path taken by the algorithm is bounded by4 logn. Let a(i) denote the node
reached by the algorithm after takingi edges inE starting fromu. Therefore,a(0) = u
andfn(a(i)) = ⌊log n⌋ − 1 − i for every0 ≤ i < ⌊log n⌋ andi ≤ s, wheres denotes the
total number of edges taken inE starting fromu. For every pair of nodesw ≥ q define
g(w, q) = ⌊(w − q)/⌊log n⌋⌋, i.e., the number of complete blocks betweenw andq. Thus,
g(a(i), r) is monotonically decreasing ini, for i ≤ s. Consider the bit representation of
g(a(i), r). If from nodea(i) the algorithm does not take the edge inE ′ it is implied that

3The transitive closure of a graphG = (V,E) is the graphH = (V ′, E′) whereV ′ = V andE′ =
{(u, v) : dG(u, v) < ∞}.
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the j-th bit in g(a(i), r) is 0 for every j ≥ fn(a(i)). On the other hand, if from node
a(i) the algorithm takes the edge inE ′ then after taking this edge thefn(a(i))-th bit turns
0. Therefore by an inductive argument, when the algorithm reachesa(i), g(a(i), r) is 0
for everyj > fn(a(i)). Thus,g(a(min{⌊log n⌋ − 1, s}), r) = 0, implying that the total
number of edges taken onE ′ is at mostlog n. Combined with the fact that the total number
of edges taken onE in Step 2 is bounded by2 logn and the fact that the total number of
edges taken onE in Step 1 is bounded bylog n, the claim follows.

From Claim 1 it follows that for everym < n, V = {0, . . . , m}, E = {(i, i − 1) :
1 ≤ i ≤ m − 1} andE ′ = {(i,max{i − 2fn(i) · ⌊log n⌋, 0}), (V,E ∪ E ′) is a (4 logn)-
TC-spanner ofLm. This implies a construction of a(4 logn)-TC-spanner for any tree on
n nodes. Specifically, we consider trees where the direction of the edges is from child to
parent (as defined implicitly by the codewords of LZ78) and let d(v) denoted the depth of
a nodev in the tree (where the depth of the root is0). If in addition to the pointer to the
parent, each node,v, points to the ancestor at distance2fn(d(v)) · ⌊log n⌋ (if such a node
exists), then for every pair of nodesu, v on a path from a leaf to the root, there is a path of
length at most4 logn connectingu andv.

We note that usingk-TC-spanners withk = o(log n) will not improve the running time
of our random access algorithms asymptotically (since theyperform an initial stage of a
binary search).

3.2 Compression and Random Access Algorithms

As stated at the start of this section, in order to support efficient random access we modify
the codewords of LZ78. Recall that in LZ78 the codewords havethe form (i, b), where
i is the index of the parent codeword (node in the trie) andb is the additional bit. In the
modified scheme, codewords are of of the formW = (p, i, k, b), wherei andb remain the
same,p is the starting position of the encoded phrase in the uncompressed string andk
is an index of an ancestor codeword (i.e., encoding a phrase that is a prefix of the phrase
encoded byW ). As in LZ78, our compression algorithm (whose pseudo-codeappears in
Algorithm 1, Subsection A.1) maintains a trieT as a data structure where the nodes of the
trie correspond to codewords encoding phrases (see Section2). Initially, T consists of a
single root node. Thereafter, the input string is scanned and a node is added to the trie for
each codeword that the algorithm outputs, giving the ability to efficiently construct the next
codewords. The data structure used is standard: for each node the algorithm maintains the
index of the phrase that corresponds to it, its depth, and pointers to its children.

Given access to a compressed string, which is a list of codewordsC[1, . . . , m], and an
index1 ≤ ℓ ≤ n, the random access algorithm (whose pseudo-code appears inAlgorithm 2,
Subsection A.1) first performs a binary search (using the position entries in the codewords)
in order to find the codeword,C[t], which encodes the phrasex[ℓ1, . . . , ℓ2] containing theℓ-
th bit of the input stringx (i.e.,ℓ1 ≤ ℓ ≤ ℓ2). The algorithm then readsO(logn) codewords
from the compressed string, using the parent and ancestor pointers in the codewords, in
order to go up the trie (implicitly defined by the codewords) to the node at distanceℓ2 − ℓ
from the node corresponding toC[t]. The final node reached corresponds to the codeword,
C[r] = (pr, ir, kr, br), which encodes the phrasex[pr, . . . , ℓ− ℓ1 + 1] = x[ℓ1 . . . , ℓ] and so

8



the algorithm returnsbr.

The next theorem follows directly from the description of the algorithms and Claim 1.

Theorem 1 Algorithm 1 (compression algorithm) is 3-competitive with LZ78, and for
every input x ∈ {0, 1}n, the running time of Algorithm 2 (random access algorithm) is
O(logn).

Recovering a substring. We next describe how to recover a consecutive substring
x[ℓ1, . . . , ℓ2], given the compressed stringC[1, . . . , m]. The idea is to recover the sub-
string in reverse order as follows. Find the codeword,C[k] encoding the substring (phrase)
x[t1, . . . , t2] such thatt1 ≤ ℓ2 ≤ t2 as in Step 1 of Algorithm 2. Then, as in Step 2 of
Algorithm 2 find the codeword,C[t], which encodesx[t1, . . . , ℓ2]. FromC[t] recover the
rest of the substring (x[t1, . . . , ℓ2 − 1]) by going up the trie. If the root is reached before
recoveringℓ2 − ℓ1 + 1 bits (i.e.,ℓ1 < t1), then continue decodingC[k − 1], C[k − 2], . . .
until reaching the encoding of the phrase within whichx[ℓ1] resides. The running time is
the sum of the running time of a single random access execution, plus the length of the
substring.

4 A Randomized Scheme

In this section we present a randomized compression scheme which builds on the determin-
istic scheme described in Section 3. In what follows we describe the randomized compres-
sion algorithm and the random access algorithm. Their detailed pseudo-codes are given in
Algorithm 3 (see Subsection A.2) and Algorithm 4 (see Subsection A.1), respectively. Re-
covering a substring is done in the same manner as described for the deterministic scheme.

We assume thatǫ = Ω(log n/
√
log n) (or else one might as well compress using LZ78

without any modifications).

The high-level idea of the compression scheme.Recall that the deterministic compres-
sion algorithm (Algorithm 1), which was3-competitive, adds to each LZ78 codeword two
additional information entries: the starting position of the corresponding phrase, and an
additional index (pointer) for navigating up the trie. The high level idea of the randomized
compression algorithm, which is(1 + ǫ)-competitive, is to “spread” this information more
sparsely. That is, rather than maintaining the starting position of every phrase, it maintains
the position only for aΘ(ǫ)-fraction of the phrases, and similarly onlyΘ(ǫ)-fraction of
the nodes in the trie have additional pointers for “long jumps”. While spreading out the
position information is done deterministically (by simplyadding this information once in
everyΘ(1/ǫ) codewords), the additional pointers are added randomly (and independently).
Since the trie structure is not known in advance, this ensures (with high probability) that
the number of additional pointer entries isO(ǫ) times the number of nodes (phrases), as
well as ensuring that the additional pointers are fairly evenly distributed in each path in the
trie. We leave it as an open question whether there exists a deterministic (online) algorithm
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that always achieves such a guarantee4.
Because of the sparsity of the position and extra-pointer entries, finding the exact phrase

to which an input bit belongs and navigating up the trie in order to determine this bit, is
not as self-evident as it was in the deterministic scheme. Inparticular, since the posi-
tion information is added only once everyΘ(1/ǫ) phrases, a binary search (similar to the
one performed by the deterministic algorithm) for a location ℓ in the input string does not
uniquely determine the phrase to which theℓ-th bit belongs. In order to facilitate finding
this phrase (among theO(1/ǫ) potential candidates), the compression algorithm adds one
more type of entry to anO(ǫ)-fraction of the nodes in the trie: their depth (which equalsthe
length of the phrase to which they correspond). This information also aids the navigation
up the trie, as will be explained subsequently.

A more detailed description of the compression algorithm. Similarly to the determin-
istic compression algorithm, the randomized compression algorithm scans the input string
and outputs codewords containing information regarding the corresponding phrases (where
the phrases are the same as defined by LZ78). However, rather than having just one type of
codeword, it has three types:

• A simple codeword of the form(i, b), which is similar to the codeword LZ78 outputs.
Namely,i is a a pointer to a former codeword (which encodes the previously encoun-
tered phrase that is the longest prefix of the current one), and b is a bit. Here, since
the length of the codewords is not fixed, the pointeri indicates the starting position
of the former codeword in the compressed string rather than its index. We refer toi
as theparent entry, and tob as thevalue entry.

• A special codeword, which encodes additional information regardingthe correspond-
ing node in the trie. Specifically, in addition to the entriesi andb as in a simple code-
word, there are three additional entries. One is thedepth of the corresponding node,
v, in the tree, and the other two are pointers (starting positions in the compressed
string) to special codewords that correspond to ancestors of v. We refer to one of
these entries as thespecial parent and the other as thespecial ancestor. Details of
how they are selected are given subsequently.

• A position codeword, which contains the starting position of the next encoded phrase
in the uncompressed string.

In what follows we use the termword (as opposed tocodeword) to refer to the RAM words
of which the codewords are built. Since codewords have different types and lengths (in
terms of the number of words they consist of), the compression algorithm adds a special

4The simple idea of adding an extra pointer to all the nodes whose depth is divisible byk = Θ(1/ǫ),
excluding nodes with height smaller thank, will indeed ensure the even distribution on each path. However,
since we do not know the height of each node in advance, if we remove this exclusion we might cause the
number of additional pointers to be too large, e.g., if the trie is a complete binary tree with height divisible by
k, then every leaf gets an additional pointer.
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delimiter word before each special codeword and (a different one) before each position
codeword.5

The algorithm includes a position codeword everyc/ǫ words (wherec is a fixed con-
stant). More precisely, since such a word might be in the middle of a codeword, the position
codeword is actually added right before the start of the nextcodeword (that is, at most a
constant number of words away). As stated above, the position is the starting position of
the phrase encoded by the next codeword.

Turning to the special codewords, each codeword that encodes a phrase is selected to be
a special codewords independently at random with probability ǫ/c. We refer to the nodes
in the trie that correspond to special codewords asspecial nodes. Let u be a special node
(where this information is maintained using a Boolean-valued field named ‘special’). In
addition to a pointeri to its parent node in the trie, it is given a pointerq to its closest
ancestor that is a special node (itsspecial parent) and a pointera to aspecial ancestor. The
latter is determined based on thespecial depth of u, that is, the number of special ancestors
of u plus 1, similarly to the way it is determined by the deterministic algorithm. Thus, the
special nodes are connected among themselves by a TC-spanner (with out-degree 2).

A more detailed description of the random access algorithm. The random access al-
gorithm Algorithm 4, is given access to a stringS, which was created by the randomized
compression algorithm, Algorithm 3. This string consists of codewordsC[1], . . . , C[m]
(of varying lengths, so that eachC[j] equalsS[r, . . . , r + h] for h ∈ {0, 1, 4}). Similarly
to Algorithm 2 for random access when the string is compressed using the deterministic
compression algorithm, Algorithm 4, the algorithm for random access when the string is
compressed using the randomized compression algorithm, consists of two stages. Given an
index1 ≤ ℓ ≤ n, in the first stage the algorithm finds the codeword that encodes the phrase
x[ℓ1, . . . , ℓ2] to which theℓ-th bit of the input stringx belongs (so thatℓ1 ≤ ℓ ≤ ℓ2). In
the second stage it finds the codeword that encodes the phrasex[ℓ1, . . . , ℓ] (which appeared
earlier in the string), and returns its value entry (i.e., the bit b).

Recall that on inputℓ andC[1, . . . , m], Algorithm 2 (in Step 1) first finds the codeword
that encodes the phrase to which theℓ-th bit of the input string belongs by performing a
binary search. This is done using the position entries, where each codeword has such an
entry. However, in the output string of the randomized compression scheme it is no longer
the case that each codeword has a position entry. Still, the random access algorithm can
perform a binary search over the position codewords. Recallthat the randomized compres-
sion algorithm places these codewords at almost fixed positions in the compresses string
(namely, at positions that are at most a constant number of words away from the fixed posi-
tions), and these codewords are marked by a delimiter. Hence, the algorithm can find two
position codewords,C[k] andC[q], such thatq − ℓ = O(1/ǫ) and such thatℓ is between
the positions corresponding to these codewords. This implies that the requested bitx[ℓ]
belongs to one of the phrases associated with the codewordsC[k + 1], . . . , C[q − 1].

In order to find the desired codewordC[t] wherek < t < q, the algorithm calculates
the length of the phrase each of the codewordsC[k+1], . . . , C[q−1] encodes. This length

5In particular, these can be the all-1 word and the word that isall-1 with the exception of the last bit,
which is 0. This is possible because the number of words in thecompressed string isO(n/ logn).
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equals the depth of codeword (corresponding node) in the trie. If a codeword is a special
codeword, then this information is contained in the codeword. Otherwise (the codeword is
a simple codeword), the algorithm computes the depth of the corresponding node by going
up the trie until it reaches a special node (corresponding toa special codeword). Recall
that a walk up the tree can be performed using the basic parentpointers (contained in both
simple and special codewords), and that each special codeword is marked by a delimiter, so
that it can be easily recognized as special. (For the pseudo-code see Procedure Find-Depth
in Subsection A.2.)

Let the phrase encoded byC[t] bex[ℓ1, . . . , ℓ2] (whereℓ1 ≤ ℓ ≤ ℓ2). In the second
stage, the random access algorithm finds the codeword,C[r], which encodes the phrase
x[ℓ1, . . . , ℓ] (and returns its value entry,b, which equalsx[ℓ]). This is done in three steps.
First the algorithm uses parent pointers to reach the special node,v, which is closest to
the node corresponding toC[t]. Then the algorithm uses the specialparent pointers and
specialancestor pointers (i.e., TC-spanner edges) to reach the special node,v′, which is
closest to the node corresponding toC[r] (and is a descendent of it). This step uses the
depth information that is provided in all special nodes in order to avoid “over-shooting”
C[r]. (Note that the depth of the node corresponding toC[r] is known.) Since the special
nodesv andv′ are connected by anO(logn)-TC-spanner, we know (by Claim 1) that there
is a path of lengthO(logn) from v to v′. While the algorithm does not know what is the
depth ofv′, it can use the depth of the node corresponding toC[r] instead to decide what
edges to take. In the last step, the node corresponding toC[r] is reached by taking (basic)
parent pointers fromv′.

Theorem 2 Algorithm 3 is (1+ ǫ)-competitive with LZ78 and for every input x ∈ {0, 1}n,
the expected running time of Algorithm 4 is O(logn+1/ǫ2). With high probability over the
random coins of Algorithm 3 the running time of Algorithm 4 is bounded by O(logn/ǫ2).

Proof: For an input stringx ∈ {0, 1}n, let w(x) be the number of codewords (and hence
words) in the LZ78 compression ofx, and letw′(x) be the number of words obtained
when compressing with Algorithm 3 (so thatw′(x) is a random variable). Letm′

1(x) be
the number of simple codewords in the compressed string, letm′

2(x) be the number of
special codewords, and letm′

3(x) be the number of position codewords. Therefore,w′(x) =
m′

1(x) + 5m′
2(x) + 2m′

3(x). By construction,m′
1(x) + m′

2(x) = w(x), and sow′(x) =
w(x) + 4m′

2(x) + 2m′
3(x). Also by construction we have thatm′

3(x) = ǫw′(x)/40, so that
w′(x) =

w(x)+4m′
2
(x)

1−ǫ/20
. Since each phrase is selected to be encoded by a special codeword

independently with probabilityǫ/40, by a multiplicative Chernoff bound, the probability
that more than an(ǫ/20)-fraction of the phrases will be selected, i.e.,m′

2(x) > (ǫ/20)w(x)
is bounded byexp(−Ω(ǫw(x))) < exp(−Ω(ǫ

√
n)) (sincew(x) ≥ √

n). Therefore, with
high probability (recall that we may assume thatǫ ≥ c log(n)/

√
n for a sufficiently large

constantc) we get thatw′(x) ≤ 1+ǫ/5
1−ǫ/20

· w(x) ≤ (1 + ǫ)w(x). Since the analysis of the
running time is easier to follow by referring to specific steps in the pseudo-code of the
algorithm (see Subsection A.2) we refer the reader to Subsection B.1 for the rest of the
proof.
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5 A Lower Bound for Random Access in LZ78

In what follows we describe a family of strings,x ∈ {0, 1}n, for which random access
to x from the LZ78 compressed string,Cx = Cx

LZ, requiresΩ(|Cx|) queries, where|Cx|
denotes the number of codewords inCx. We construct the lower bound for strings,x, such
that |Cx| = Ω(n/ log n) (Theorem 3) and afterwards extend (Theorem 4) the construction
for generaln andm, wheren denotes the length of the uncompressed string andm denotes
the number of codewords in the corresponding compressed string. Note thatm is lower
bounded byΩ(

√
n) and upper bounded byO(n/ logn). Consider the two extreme cases,

the case where the trie,T x, has a topology of a line, for example whenx = 0 01 012 . . . 01j.
In this case|Cx| = Ω(

√
n); the case where the trie is a complete tree, corresponding for

example to the string that is a concatenation of all the strings up to a certain length, ordered
by their length. In the latter case, from the fact thatT x is a complete binary tree onm+ 1
nodes it follows thatx is of lengthΘ(m logm), thus|Cx| = O(n/ logn).

The idea behind the construction is as follows. Assumem = 2k − 1 for somek ∈ Z
+

and consider the stringS = 0 1 00 01 10 11 000 . . . 1k−1, namely, the string that contains
all strings of length at mostk − 1 ordered by their length and then by their lexicographical
order. LetSℓ denote the string that is identical toS except for theℓ-th order string,s,
amongst strings with prefix01 and lengthk − 1. We modify the prefix ofs from 01 to 00
and add an arbitrary bit to the end ofs. The key observation is that the encoding ofS and
Sℓ differs in a single location, i.e. a single codeword. Moreover, this location is disjoint for
different values ofℓ and therefore implies a lower bound ofΩ(m) as formalized in the next
theorem.

Theorem 3 For every m = 2k − 2 where k ∈ Z
+, there exist n = Θ(m logm), an index

0 ≤ i ≤ n and a distribution, D, over {0, 1}n ∪ {0, 1}n+1 such that

1. |Cx| = m for every x ∈ D.

2. Every algorithm A for which it holds that Prx∈D [A(Cx) = xi] ≥ 2/3 must read
Ω(2k) codewords from Cx.

Proof: Let x ◦ y denotex concatenated toy and©t
i=1si denotes1 ◦ s2 . . . ◦ st. Define

S = ©k−1
i=1

(

©2i

j=1s(i, j)
)

wheres(i, j) is thej-th string, according to the lexicographical

order, amongst strings of lengthi over alphabet{0, 1}. For every1 ≤ ℓ ≤ q
def
= 2k−1/4

defineSℓ = ©k−1
i=1

(

©2i

j=1s
ℓ(i, j)

)

wheresℓ(i, j) = s(k − 1, 1) ◦ 0 for i = k − 1 and

j = q + ℓ andsℓ(i, j) = s(i, j) otherwise. DefineCx
i,j

def
= Cx[2i − 1 + j]. Therefore,CS

i,j

corresponds to thej-th node in thei-th level of theT S, i.e. CS
i,j = s(i, j) (see Figure 3,

Section C). ThusCS
i,j 6= CSℓ

i,j for 〈i, j〉 = 〈k − 1, q + ℓ〉 andCS
i,j = CSℓ

i,j otherwise. We
defineD to be the distribution of the random variable that takes the valueS with probability
1/2 and the valueSℓ with probability1/(2ℓ) for every1 ≤ ℓ ≤ q. We first argue that for
some absolute constantη < 0, for every algorithm,A, which for an inputCx takesη|Cx|
queries fromCx, it holds thatPrR∈D

[

A(CS) 6= A(CR)
]

≤ 1/6. This follows from the
combination of the fact thatq = Ω(|CS|) and the fact thatA must query the compressed
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string on theℓ-th location in order to distinguishSℓ from S. To complete the proof we
show that there exists0 ≤ i ≤ n such thatPrR∈D

[

CS
i = CR

i

]

= 1/2, namely, show that
CS

i 6= CSℓ

i for every1 ≤ ℓ ≤ q. Since the position of the phrases of lengthk − 1 with
prefix 1 is shifted by one inSℓ with respect toS we get that the above is true forΩ(|CS|)
bits. In particular,CS

i 6= CSℓ

i holds for every bit,xi, that is encoded in the second to last
position of a phrase of lengthk − 1 with prefix 1 and suffix01.
Theorem 3 can be extended as follows:

Theorem 4 For every m̃ and ñ such that m̃ log m̃ < ñ < m̃2 there exist:

1. m = Θ(m̃) and n = Θ(ñ)

2. a distribution, D, over {0, 1}n ∪ {0, 1}n+1

3. an index 0 ≤ i ≤ n

such that Conditions 1 and 2 in Theorem 3 hold.

Proof: Set k = ⌈log m̃⌉, t = ⌈
√
ñ⌉ and let m = 2k − 1 + t. Define S =

©k−1
i=1

(

©2i

j=1(0 ◦ s(i, j))
)

©t
i=1 1

i andSℓ = ©k−1
i=1

(

©2i

j=1(0 ◦ sℓ(i, j))
)

©t
i=1 1

i. There-

foren = Θ(k2k + t2) = Θ(ñ). The rest of the proof follows the same lines as in the proof
of Theorem 3.

6 Experimental Results

Our experiments show that on selected example files our scheme is competitive in practice
(see Figure 1). Our results are given below in terms of the fraction of special codewords,α,
which is directly related toǫ (see Theorem 2). We ran the scheme withα = 1/4, 1/8, 1/16.
The data points corresponding toα = 0 plot the file size resulting from standard LZ78.

With respect to the random access efficiency, we found that onaverage the time re-
quired for random access is less than1 millisecond while decompressing the entire file
takes around300 milliseconds.
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and two anonymous referees for their constructive comments.
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A Pseudo-code

A.1 Deterministic Scheme Pseudo-code

Algorithm 1: Deterministic Compression Algorithm
Input : x ∈ {0, 1}n
Initialize T to a single root node;p := 1, j := 1.
While (p ≤ n)

1. Find a path inT from the root to the deepest node,v, which corresponds to a prefix
of x[p, . . . , n− 1], where0 corresponds to the left child and1 corresponds to the
right child.

2. Create a new nodeu and setu.index := j, u.depth := v.depth + 1.

3. If x[p + v.depth] = 0 setv.left := u and otherwise setv.right := u.

4. Leta be the ancestor ofu in T at depthmax{u.depth− 2fn(u.depth) · ⌊log n⌋, 0}.

5. Output(p, v.index, a.index, x[p+ u.depth]).

6. p := p + u.depth + 1.

7. j := j + 1.

Algorithm 2: Random Access Algorithm for Deterministic Scheme
Input : C[1] = (p1, i1, k1, b1), . . . C[m] = (pm, im, km, bm), which represents a string

compressed by Algorithm 1, and an index1 ≤ ℓ ≤ n

1. Perform a binary search onp1, . . . , pm and findpt such that
pt = max1≤i≤m{pi ≤ ℓ}.

2. Find the codeword,C[r] = (pr, ir, kr, br), which correspond to the ancestor of
C[t] = (pt, it, kt, bt) at depthℓ− pt + 1 in the trie. This is done as described in the
proof of Claim 1 using the pointer information in the codewords/nodes (observe that
the depth ofC[t] is pt+1 − pt).

3. Outputbr.
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A.2 Randomized Scheme Pseudo-code

Algorithm 3: Randomized Compression Algorithm
Input : x ∈ {0, 1}n, ǫ
Initialize T to a root node,p := 1, j := 1
While (p ≤ n)

1. Find a path inT from the root to a leaf,v, which corresponds to a prefix of
x[p, . . . , n], where0 corresponds to left child and1 corresponds to right child.

2. Create a new nodeu and set:

• u.index := j

• u.depth := v.depth + 1

• u.special := 0

3. If x[p + v.depth] = 0 setv.left := u and otherwise setv.right := u.

4. h := j mod 40/ǫ.

5. Toss a coinc, with success probabilityǫ/40.

6. If c = 1 output a special codeword as follows:

(a) u.special := 1

(b) LetP denote the path inT from u to the root and letq be the first node inP
such thatq.special = 1 (if such exists, otherwiseq = 0).

(c) If q 6= 0 setu.special depth := q.special depth + 1, otherwise
u.special depth := 0.

(d) Letd := u.special depth. If d 6= 0, let a be the special node onP for which
a.special depth = max

{

d− 2fn(d) · ⌊log n⌋, 0
}

.

(e) j := j + 4

(f) Output(△, u.depth, v.index, q.index, a.index, x[p + u.depth]), (△ is a
delimiter symbol)

Else, output a simple codeword, namelyi, x[p + u.depth].

7. p := p + u.depth + 1.

8. j := j + 1.

9. If h > (j mod 40/ǫ), output▽, p (▽ is a delimiter symbol)
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Algorithm 4: Random Access Algorithm for Randomized Scheme
Input : a string,S, which is the output Algorithm 3, and an index1 ≤ ℓ ≤ n. S

consists of varying length codewordsC[1], . . . , C[m]

1. Perform a binary search on the position codewords inS to find a position codeword
C[k] such thatC[k].position ≤ ℓ andC[q].position > ℓ whereC[q] is the next
position codeword inS.

2. p := C[k].position

3. Starting fromC[k + 1], scanS and find the codeword,C[t], which encodes the
phrase that contains the bit at positionℓ as follows:

(a) t := k + 1

(b) d := Find-Depth(C[t])

(c) While (p+ d < ℓ)

i. p := p+ d

ii. Read the next codeword,C[t].

iii. d := Find-Depth(C[t])

4. C[r] := Find-Node-by-Depth(C[t], ℓ− p + 1)

5. OutputC[r].value
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ProcedureFind-Node-by-Depth(u, d)
Input : the source node,u, and the depth

of the target node,d

1. s := Find-Depth(u)− d

2. While (u is not a special node ands > 0)

(a) u := u.parent

(b) s := s− 1

3. v := u.special parent

4. Whilev.special ancestor.depth <
u.special ancestor.depth

(a) If (v.special parent.depth < d)
then break loop

(b) Else,u := v

5. While (u.special parent.depth ≥ d)

(a) If (u.special ancestor.depth ≥ d)
thenu := u.special ancestor

(b) Else,u := u.special parent

6. s := u.depth− d

7. While (s > 0)

(a) u := u.parent

(b) s := s− 1

8. Outputu

ProcedureFind-Depth(u)
Input : source nodeu
If u is a special node, returnu.depth.
i := 1
While(u.parent is a simple node)

1. u := u.parent

2. i := i+ 1

Returni+ u.depth
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B Running Time Analysis and Improvement

B.1 Bounding the Running Time of Algorithm 4

In Step 1, Algorithm 4 performs a binary search, therefore itterminates after at mostlog n
iterations. In each iteration of the binary search the algorithm scans a constant number
of words as guaranteed by Step 9 in Algorithm 3. Hence, the running time of Step 1 is
bounded byO(logn).

In order to analyze the remaining steps in the algorithm, consider any nodev in T .
Since each node is picked to be special with probabilityǫ/40, the expected distance of
any node to the closest special node isO(1/ǫ). Since the choice of special nodes is done
independently, the probability that the closest special ancestor is at distance greater than
40c logn/ǫ is (1 − ǫ/40)40c logn/ǫ < 1/nc. By taking a union bound over allO(n) nodes,
with high probability, for every nodev the closest special ancestor is at distanceO(logn/ǫ).

The first implication of the above is that the running time of Procedure Find-Depth
is O(1/ǫ) in expectation, and with high probability every call to Procedure Find-Depth
takes timeO(logn/ǫ). Hence Step 3 in Algorithm 4 takes timeO(1/ǫ2) in expectation and
O(logn/ǫ2) with high probability. It remains to upper bound the runningtime of Proce-
dure Find-Node-by-Depth (see Subsection A.2), which is called in Step 4 of Algorithm 4.

With high probability, the running time of Steps 1, 2 and 7 in Proce-
dure Find-Node-by-Depth isO(1/ǫ) in expectation, andO(logn/ǫ) with high probability.
The running time of Step 4 isO(logn) be the definition of the TC-spanner over the spe-
cial nodes. Finally, by the explanation following the description of the algorithm regarding
the relation between Step 5 in Procedure Find-Node-by-Depth and the path constructed
in the proof of Claim 1, the running time of Step 5 isO(logn) as well. Summing up all
contribution to the running time we get the bounds stated in the lemma.

B.2 Improving the Running Time from O(logn/ǫ2) to Õ(logn/ǫ +
1/ǫ2)

As can be seen from the proof of Theorem 2, the dominant contribution to the running time
of the random access algorithm (Algorithm 4) in the worst case (which holds with high
probability) comes from Step 3 of the algorithm. We bounded the running time of this step
by O(logn/ǫ2) while the running time of the others steps is bounded byO(logn/ǫ). In
this step the algorithm computes the length ofO(1/ǫ) phrases by determining the depth in
the trie of their corresponding nodes. This is done by walking up the trie until a special
node is reached. Since we bounded (with high probability) the distance of every node to
the closest special node byO(logn/ǫ), we gotO(logn/ǫ2). However, by modifying the
algorithm and the analysis, we can decrease this bound toÕ(logn/ǫ + 1/ǫ2). Since this
modification makes the algorithm a bit more complicated, we only sketch it below.

Let v1, . . . , vk, wherek = O(1/ǫ) be the nodes whose depth we are interested in find-
ing. LetT ′ be the tree that contains all these nodes and their ancestorsin the trie. Recall
that the structure of the trie is determined by the LZ78 parsing rule, which is used by
our compression algorithm, and that the randomization of the algorithm is only over the
choices of the special nodes. To gain intuition, consider two extreme cases. In one case
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T ′ consists of a long path, at the bottom of which is a complete binary tree, whose nodes
arev1, . . . , vk. In the other extreme, the least common ancestor of any two nodesvi and
vj amongv1, . . . , vk, is very far away from bothvi andvj . Consider the second case first,
and letX1, . . . , Xk be random variables whose value is determined by the choice of the
special nodes inT ′, whereXi is the distance fromvi to its closest ancestor that is a special
node. In this (second) caseX1, . . . , Xk are almost independent. Assuming they were truly
independent, it is not hard to show that with high probability (i.e.,1−1/poly(n)), not only
is eachXi upper bounded byO(logn/ǫ), but so is there sum. Such a bound on the sum of
theXi’s directly gives a bound on the running time of Step 3.

In general, these random variables may be very dependent. Inparticular this is true in
the first aforementioned case. However, in this (first) case,even if none of the nodes in the
small complete tree are special, and the distance from the root of this tree to the closest
special node isΘ(log n/ǫ), we can find the depth of all nodesv1, . . . , vk in timeO(logn/ǫ)
(even though the sum of their distances to the closest special node isO(logn/ǫ2). This is
true because once we find the depth of one node by walking up to the closest special node,
if we maintain the information regarding the nodes passed onthe way, we do not have to
take the same path upT ′ more than once. Maintaining this information can be done using
standard data structures at a cost ofO(log(log n/ǫ)) per operation. As for the analysis,
suppose we redefineXi to be the number of steps taken up the trie until either a special
node is reached, or another node whose depth was already computed is reached. We are
interested in upper bounding

∑k
i=1Xi. Since these random variables are not independent,

we define a set of i.i.d. random variables,Y1, . . . , Yk, where eachYi is the number of coins
flipped until a ‘HEADS’ is obtained, where each coin has biasǫ/c. It can be verified that by
showing that with high probability

∑k
i=1 Yi = O(logn/ǫ) we can get the same bound for

∑k
i=1Xi, and such a bound can be obtained by applying a multiplicative Chernoff bound.

C Figures
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Figure 2: The trie, T x, implicitly defined by the LZ78 scheme on the
string x = 0 00 1 01 11 001 010 110 111 000 0000; On in-
put string x, the LZ78 scheme outputs a list of codewords,Cx =
{(0, 0), (1, 0), (0, 1), (1, 1), (3, 1), (2, 1), (4, 0), (5, 0), (5, 1), (2, 0), (10, 0)}.
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