
This paper is a preprint (IEEE “accepted” status).

IEEE copyright notice. c© 2018 IEEE. Personal use of this material is permitted. Permis-
sion from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

ar
X

iv
:1

30
2.

28
20

v1
 [

cs
.I

T
]

 1
2

Fe
b

20
13

Linear and Geometric Mixtures – Analysis
Christopher Mattern

Technische Universität Ilmenau
Ilmenau, Germany

christopher.mattern@tu-ilmenau.de

Abstract
Linear and geometric mixtures are two methods to combine arbitrary models in data
compression. Geometric mixtures generalize the empirically well-performing PAQ7
mixture. Both mixture schemes rely on weight vectors, which heavily determine their
performance. Typically weight vectors are identified via Online Gradient Descent. In
this work we show that one can obtain strong code length bounds for such a weight
estimation scheme. These bounds hold for arbitrary input sequences. For this purpose
we introduce the class of nice mixtures and analyze how Online Gradient Descent
with a fixed step size combined with a nice mixture performs. These results translate
to linear and geometric mixtures, which are nice, as we show. The results hold for
PAQ7 mixtures as well, thus we provide the first theoretical analysis of PAQ7.

1 Introduction
Background. The combination of multiple probability distributions plays a key role in mod-
ern statistical data compression algorithms, such as Prediction by Partial Matching (PPM),
Context Tree Weighting (CTW) and “Pack” (PAQ) [6, 7, 8, 11]. Statistical compression
algorithms split compression into modeling and coding and process an input sequence symbol-
by-symbol. During modeling a model computes a model distribution p and during coding
an encoder maps the next character x, given p, to a codeword of a length close to − log p(x).
Decoding is the very reverse: Given p and the codeword the decoder restores x. Arithmetic
Coding (AC) is the de facto standard en-/decoder, it closely approximates the ideal code
length [3]. All of the aforementioned algorithms combine (or mix) multiple model distributions
into a single model distribution in each step. PAQ is able to mix arbitrary distributions. As
its superior empirical performance shows, mixing arbitrary models is a promising approach.
Previous Work. To our knowledge there exist few compression algorithms which combine
arbitrary models. Volf’s Snake- and Switching-Algorithms [10] were the first approaches to
combine just two arbitrary models. Kufleitner et al. [5] proposed Beta-Weighting, a CTW-
spin-off, which mixes arbitrary models by weighting the model distributions linearly. The
weights are posterior probabilities on the models (based on a given prior distribution). Another
linear weighting scheme was introduced by Veness [9], who transferred techniques for tracking
from the online learning literature to statistical data compression. His weighting scheme
is based on a cleverly chosen prior distribution, which enjoys good theoretical guarantees.
Starting in 2002 Mahoney introduced PAQ and its successors [7], which attracted great
attention among practitioners. PAQ7 and its follow-ups combine models for a binary alphabet
via a nonlinear ad-hoc neural network and adjust the network weights by Online Gradient
Descent (OGD) with a fixed step size [7]. Up to 2012 there was no theoretical justification
for PAQ7-mixing. In [6] we proposed geometric (a non-linear mixing scheme) and linear
mixtures as solutions to two weighted divergence minimization problems. Geometric mixtures
add a sound theoretical base to PAQ7-mixing and generalize it to non-binary alphabets.
Both mixture schemes require weights, which we estimate via OGD with a fixed step size.

In machine learning online parameter estimation via OGD and its analysis is well under-
stood [2] and has a variety of applications, which closely resemble mixture-based compression.
Hence we can adopt machine learning analysis techniques for OGD in data compression
to obtain theoretical guarantees. This work draws great inspiration from Zinkevich [12], who
introduced projection-based OGD in online learning and from Bianchi [1] and Warmuth
[4] who analyzed OGD (without projection) in various online regression settings.
Our Contribution. In this work we establish upper bounds on the code length for linear
and geometric mixtures coupled with OGD using a fixed step size for weight estimation. The
bounds show that the number of bits wasted w.r.t. a desirable competing scheme (such as
a sequence of optimal weight vectors) is small. These results directly apply to PAQ7-mixing,
since it is a geometric mixture for a binary alphabet and typically uses OGD with a fixed
step size for weight estimation. Thus we provide the first theoretical guarantees for PAQ. To
do so, in Section 3 we introduce the class of nice mixtures which we combine with OGD with
a fixed step size and establish code length bounds. It turns out that the choice of the step size
is of great importance. Next, in Section 4 we show that linear and geometric mixtures are nice
mixtures and apply the results of Section 3. Finally in Section 5 we summarize our results.
2 Preliminaries
Notation. In general, calligraphic letters denote sets, lowercase boldface letters indicate col-
umn vectors and boldface uppercase letters name matrices. The expression (ai)1≤i≤m expands
to (a1 a2 . . . am)T where “T” is the transpose operator; the i-th component of a vector a is
labeld ai and its squared euclidean norm is |a|2 = aTa. By ei we denote the i-th unit vector
and 1 is (1 1 . . . 1)T ∈ Rm. For any bounded set W ⊂ Rm let |W| := supa,b∈W|a− b|.
Further, let S := {a ∈ Rm | a ≥ 0 and 1Ta = 1} (unitm-simplex). Let X := {1, 2, . . . ,N}
be an alphabet of cardinality 1 < N <∞ and let xb

a := xaxa+1 . . . xb be a sequence over
X where xn abbreviates xn

1 . The set of all probability distributions over X with non-zero
probabilities on all letters is P+ and with probability at least ε > 0 on all letters is Pε. For
p1, p2, . . . , pm ∈ P ⊆ P+ let p(x) = (pi(x))1≤i≤m be the vector of probabilities of x, the
matrix P := (p(1) . . . p(N)) is called a probability matrix over P. Furthermore we set
pmax(x; P) := max1≤i≤m pi(x) and pmax(P) := maxx∈X pmax(x; P); pmin(x; P) and pmin(P)
are defined analogously. We omit the dependence on P , whenever clear from the context.
The natural logarithm is “ln”, whereas “log” is the base-two logarithm. For a vector a with
positive entries we define log a := (log ai)1≤i≤m. For x ∈ X and p ∈ P+ we denote the (ideal)
code length of x w.r.t. p as `(x, p) := − log p(x). The expression ∇wf := (∂f/∂wi)1≤i≤m

denotes the gradient of a function f , when unambigous we write ∇f in place of ∇wf .
The Setting. Recall the process of statistical data compression for a sequence xn over X
(see Section 1), which we now formally refine to our setting of interest. Fix an arbitrary step
1 ≤ k ≤ n. First, we represent the m > 1 model distributions p1, . . . , pm ∈ P+ (which may
depend on xk−1 and typically vary from step to step) in a probability matrix P k. One can
think of xn and the sequence P n := P 1, . . . ,P n of probability matrices over P+ as fixed. On
the basis of P k we determine a mixture distribution (for short mixture) mix(w,P k) for coding
the k-th character xk in `(xk,mix(w,P k)) bits. The mixture depends on a parameter vector
or weight vector w = wk which is typically constrained to a domainW (a non-empty, compact,
convex subset of Rm). Based on an initial weight vector w1 (chosen by the user) we generate
a sequence of weight vectors w2,w3, . . . via OGD: In step k we adjust wk by a step towards
d := −α∇w`(xk,mix(w,P k)) where α > 0 is the step size. The resulting vector v = wk +d
might not lie inW, the operation proj(v;W) := arg minw∈W|v−w|2 maps a vector v ∈ Rm

back to the feasible setW and we obtain wk+1 = proj(v;W). Algorithm 1 summarizes this
process. Next we define the general term mixture as well as linear and geometric mixtures.

Algorithm 1: mix-ogd(w1, α, x
n,P n)

Input : a weight estimation w1 ∈ W, a step size α > 0, a sequence xn over X ,
and a sequence P n of probability matrices over P+

Output : a codeword for xn of length `(xn,mix-ogd(w1, α, x
n,P n))

1 for k← 1 to n do
2 compute p← mix(wk,P k) and emit a codeword for xk sized `(xk, p) bits;
3 wk+1 ← proj(wk − α∇w`(xk,mix(w,P k))|w=wk

;W);

Definition 2.1. A mixture mix : (w,P) 7→ p maps a probability matrix P over P+, given
a parameter vector w drawn from the parameter spaceW, to a mixture distribution p ∈ P+.
The shorthand mix(x; w,P) is for p(x) where p = mix(w,P).
Definition 2.2. For weight (parameter) vector w ∈ S and probability matrix P over P+
the linear mixture lin is defined by lin(x; w,P) := wTp(x).
Definition 2.3. For weight (parameter) vector w ∈ Rm and probability matrix P over P+
the geometric mixture geo is defined by geo(x; w,P) := ∏m

i=1 pi(x)wi/
∑

y∈X
∏m

i=1 pi(y)wi.

Observation 2.4. If l(x) := − log p(x), then geo(x; w,P) = 2−wTl(x)/
∑

y∈X 2−wTl(y).

In the following we will draw heavily on the alternate expression for geo(x; w,P) given in Ob-
servation 2.4. This expression simplifies some of the upcoming calculations. Furthermore, let

`(xn,mix-ogd(w1, α, x
n,P n)) :=

n∑
k=1

`(xk,mix(wk,P k)) (for wk see Algorithm 1),

`(xn,P n,w,mix):=
n∑

k=1
`(xk,mix(w,P k)) and `∗(xn,P n,mix):=min

w∈W
`(xn,P n,w,mix).

3 Nice Mixtures and Code Length Bounds
Nice mixtures. We now introduce a class of especially interesting mixtures. We call such
mixtures nice. A nice mixture satisfies a couple of properties that allow us to derive bounds
on the code length of combining such a mixture with OGD for parameter estimation (e.g.
weight estimation). These properties have been chosen carefully, s.t. linear and geometric
mixtures fall into the class of nice mixtures (see Section 4).
Definition 3.1. A mixture mix is called nice if
1. the parameter spaceW is a non-empty, compact and convex subset of Rm,
2. `(x,mix(w,P)) is convex in w ∈ W for all P over P+ and all x ∈ X ,
3. `(x,mix(w,P)) is differentiable by w for all P over P+ and all x ∈ X and
4. there exists a constant a > 0 s.t. |∇w`(x,mix(w,P))|2 ≤ a · `(x,mix(w,P)) for all

w ∈ W, P over P+ and x ∈ X .
Remark 3.2. Properties 1 to 3 are similar to the assumptions made in [12], Property 4 differs.
This allows us to obtain meaningful bounds on `(xn,mix-ogd(w1, α, x

n,P n)) when α is
independent of n, as [1, 4] show.
Bounds on the Code Length for OGD. Algorithm 1 illustrates an online algorithm for
mixture-based statistical data compression which employs a mixture mix. We want to analyze
the algorithm in terms of the number of bits required to encode a sequence when mix is nice.
We strive to show that in some sense the code length produced by Algorithm 1 is not much
worse than a desirable competing scheme. At first we choose the code length produced by
the best static weight vector w∗ = arg minw∈W `(xn,P n,w,mix) as the competing scheme.

Proposition 3.3. Algorithm 1 run with a nice mixture mix, initial weight vector w1 ∈ W
and step size α = 2(1− b−1)/a for b > 1 (the constant a is due to Definition 3.1, Property
4) satisfies

`(xn,mix-ogd(w1, α, x
n,P n)) ≤ b · `∗(xn,P n,mix) + a

4
b2

b− 1 · |w1 −w∗|2, (1)

where w∗ minimizes `(xn,P n,w,mix), for all xn over X and all P n over P+.
Proof. For brevity we set `k(w) := `(xk,mix(w,P k)). As in [4], for arbitrary w ∈ W, we
first establish a lower bound on

|wk −w|2 − |wk+1 −w|2 = |wk −w|2 − |proj(wk − α∇`k(wk);W)−w|2.

For v ∈ Rm and w ∈ W it is well-known [12], that |proj(v;W)−w| ≤ |v−w|, i.e.

|wk −w|2 − |wk+1 −w|2 ≥ |wk −w|2 − |(wk −w)− α∇`k(wk)|2

= 2α∇`k(wk)T(wk −w)− α2|∇`k(wk)|2.

Since mix is nice, `k(w) is convex (due to Definition 3.1, Property 2) and we have
`k(v)− `k(w) ≤ ∇`k(v)T(v−w) for any w,v ∈ W. We deduce

|wk −w|2 − |wk+1 −w|2 ≥ 2α(`k(wk)− `k(w))− α2|∇`k(wk)|2

≥ 2α(`k(wk)− `k(w))− aα2`k(wk), (2)
the last inequality follows from Definition 3.1, Property 4. Next, we sum the previous
inequality over k to obtain (the sum telescopes)

α(2− aα)
n∑

k=1
(`k(wk))− 2α

n∑
k=1

`k(w) ≤
n∑

k=1
|wk −w|2 − |wk+1 −w|2 ≤ |w1 −w|2,

which we solve for the first sum:
n∑

k=1
`k(wk) ≤ 2

2− aα

n∑
k=1

(`k(w)) + |w1 −w|2

α(2− aα) .

Since this holds for any w, it must hold for w = w∗, too. By the definition of `k(w) we
have ∑n

k=1 `k(wk) = `(xn,mix-ogd(w1, α, x
n,P n)) and ∑n

k=1 `k(w) = `(xn,P n,w,mix).
Our choice of α gives (1).
Remark 3.4. The technique of using a progress invariant (c.f. (2)) in the previous proof is
adopted from the machine learning community, see [1, 4]. These two papers assume that
the domain of the parameter (weight) vector w is unbounded. Techniques of [12] allow us
to overcome this limitation. Proposition 3.3 generalizes the analysis of online regression of
[1] to prediction functions f(w,z) (z is the input vector for a prediction) instead of f(wTz)
when the domain of w is restricted.

The previous proposition is good news. The number of bits required to code any sequence
will be within a multiplicative constant b of the code length generated by weighting with an
optimal fixed weight vector, `∗(xn,P n,mix), plus an O(1) term. At the expense of increasing
the O(1) term we can set the multiplicative constant b arbitrarily close to 1. Note that the
O(1)-term originates in the inaccuracy of the initial weight estimation |w1 −w∗| (see (1))
and as b approaches 1, the step size α approaches zero. Hence the O(1) term in (1) penalizes
a slow movement away from w1. A high proximity of w1 to the optimal weight vector w∗

damps this penalization. We now make two key observations, which allow us to greatly
strengthen the result of Proposition 3.3.
Observation 3.5. From the previous discussion we know that the significance of the O(1)
term vanishes as `∗(xn,P n,mix) grows. We can allow small values of b for large values of
n, i.e., b may depend on n. Thus we choose b = 1 + f(n) where, f(n) decreases, and obtain

`(xn,mix-ogd(w1, α, x
n,P n))

≤ `∗(xn,P n,mix) + `∗(xn,P n,mix) · f(n) + a(1 + f(1))2|w1 −w∗|2

4 · 1
f(n).

If `∗(xn,P n,mix) is O(n) (i.e., mix(x; w,P) is bounded below by a constant, which is a
natural assumption) then the rightmost two terms on the previous line areO(n·f(n)+f(n)−1)
(since by Definition 3.1, Property 1, |w1−w∗| isO(1)) and represent the number of bits wasted
by mix-ogd w.r.t. `∗(xn,P n,mix). Clearly the rate of growth is minimized in the O-sense
if we choose f(n) = n−1/2, i.e. `(xn,mix-ogd(w1, α, x

n,P n)) ≤ `∗(xn,P n,mix) +O(n1/2).
The average code length excess of mix-ogd over `∗(xn,P n,mix) vanishes asymptotically.
Observation 3.6. The state of mix-ogd right after step k is captured completely by the
single weight vector wk+1. Hence we can view running mix-ogd(w1, α, x

n,P n) as first
executing mix-ogd(w1, α, x

k,P k) and running mix-ogd(wk+1, α, x
n
k+1,P

n
k+1) afterwards.

The code lengths for these procedures match for all 1 ≤ k < n:

`(xn,mix-ogd(w1, α, x
n,P n))

= `(xk,mix-ogd(w1, α, x
k,P k)) + `(xn

k+1,mix-ogd(wk+1, α, x
n
k+1P

n
k+1)).

Given the previous observations as tools of trade we now enhance Proposition 3.3.
Theorem 3.7. We consider sequences t1 = 1 < t2 < · · · < ts < ts+1 = n+ 1 of integers
for 1 ≤ s ≤ n. Let `∗(i, j,mix) := `∗(xj

i ,P
j
i ,mix). For all xn ∈ Xn, all P n over P+, any

nice mixture mix and any w1 ∈ W Algorithm 1 satisfies:
1. If α = 2(1− b−1)/a, where b > 1, then

`(xn,mix-ogd(w1, α, x
n,P n)) ≤ min

s, t2,...,ts

[
ab2|W|2

4(b− 1)s+ b
s∑

i=1
`∗(ti, ti+1−1,mix)

]
. (3)

2. If α = 2/a · (1 + n1/2)−1 (i.e., b = 1 + n−1/2) and `∗(xn,P n,mix) ≤ c · n holds for a
constant c > 0, all xn over X and all P n over P+ then

`(xn,mix-ogd(w1, α, x
n,P n)) ≤ min

s, t2,...,ts

[(
as|W |2+ c

)√
n+

s∑
i=1

`∗(ti, ti+1−1,mix)
]
.(4)

Proof. We start proving (3). First, we define `k(w) := `(xk,mix(w,P k)). By Observation
3.6 for any 1 ≤ s ≤ n and t1 = 1 < t2 < · · · < ts < ts+1 = n+ 1 we may write

`(xn,mix-ogd(w1, α, x
n,P n)) =

s∑
i=1

`(xti+1−1
ti

,mix-ogd(wti
, α, x

ti+1−1
ti

,P
ti+1−1
ti

))

≤ a|W|2

4
b2

b− 1 · s+ b
s∑

i=1
`∗(ti, ti+1 − 1,mix). (5)

For the last step we used Proposition 3.3, the definition of `∗(ti, ti+1−1,mix) and Definition 3.1,
Property 1 which implies that |v−w| ≤ |W| for any v,w ∈ W. Since this holds for arbitrary
s and t2, . . . , ts we can take the minimum over the corresponding entities, which gives (3).

Now we turn to (4). The choice b = 1 + n−1/2 follows from Observation 3.5. We combine
b2/(b−1) ≤ 4n1/2 (by the choice of b) with `∗(xn,P n,mix) ≤ c·n, i.e. `∗(i, j, xn) ≤ c·(j−i+1)
for j ≥ i in the r.h.s. of (5) to yield

`(xn,mix-ogd(w1, α, x
n,P n)) ≤ a|W|2s · n1/2 + (1 + n−1/2)

s∑
i=1

`∗(ti, ti+1 − 1,mix)

≤
(
a|W|2s+ c

)
· n1/2 +

s∑
i=1

`∗(ti, ti+1 − 1,mix).

As in the proof of (3) we take the minimum over s and t2, . . . , ts, which gives (4).
The previous theorem gives much stronger bounds than Proposition 3.3, since the com-

peting scheme is a sequence of weight vectors with a total code length of `∗(t1, t2− 1,mix) +
· · ·+ `∗(ts, ts+1 − 1,mix), where the i-th weight vector minimizes the code length of the
i-th subsequence xti

. . . xti+1−1 of xn. By (3) the performance of Algorithm 1 is within a
multiplicative constant b > 1 of the performance of any competing scheme (since in (3) we
take the minimum over all competing schemes) plus an O(s)-term, when α is independent
of n. The O(s) term penalizes the complexity of a competing predictor (the number s of
subsequences). When α depends on n (c.f. (4)) we can reduce the multiplicative constant to 1
at the expense of increasing the penalty term to O(s

√
n), i.e. Algorithm 1 will asymptotically

perform not much worse than any such competing scheme with s = o(
√
n) subsequences.

4 Bounds for Geometric and Linear Mixtures
Geometric and Linear Mixtures are Nice. We can only apply the machinery of the
previous section to geometric and linear mixtures if they fall into the class of nice mixtures.
Since the necessary conditions have been chosen carefully, this is the case:
Lemma 4.1. The geometric mixture geo(w,P) is nice for w ∈ W, ifW is a compact and
convex subset of Rm. Property 4 of Definition 3.1 is satisfied for a ≥ m

log(e) log2 (pmax/pmin).
Lemma 4.2. The linear mixture lin(w,P) is nice. Property 4 of Definition 3.1 is satisfied
for a ≥m log2(e) p2

max
p2

min log(1/pmin).
Before we prove these two lemmas we give two technical results. The proofs of the lemmas
below use standard calculus, we omit them for reasons of space.
Lemma 4.3. For 0 < z < 1 the function f(z) := − ln z

1−z
satisfies f(z) ≥ 1.

Lemma 4.4. For 0 < a ≤ z ≤ 1− a the function f(z) := −z2 ln z satisfies f(z) ≥ f(a).
Now we are ready to prove Lemma 4.1 and Lemma 4.2.
Proof of Lemma 4.1. Let p(x; w) := geo(x; w,P) and `(w) := `(x,geo(w,P)). To show
the claim we must make sure that properties 1-4 of Definition 3.1 are met. By the constraint
onW Property 1 is satisfied. Property 2 was shown in [6, Section 3.2]. To see that Property
3 holds, we set c := ∑

y∈X 2−wTl(y) and compute

∇`(w) = ∇w

(
wTl(x) + log c

)
= l(x)−

∑
y∈X

2−wTl(y)

c
· l(y),

which is (by the definition of geo)

∇`(w) = ∇w`(x,geo(w,P)) =
∑
y 6=x

geo(y; w,P) · (l(x)− l(y)) . (6)

Clearly (6) is well-defined for the given range of w and P . For Property 4 we bound
|∇`(w)|2/`(w) from above by a constant; a takes at least the value of this constant. We obtain

|∇`(w)|2 ≤
∑
y 6=x

p(y; w)|l(x)− l(y)|2 =
∑
y 6=x

p(y; w)
m∑

i=1
log2 pi(y)

pi(x)

≤
∑
y 6=x

p(y; w)m log2 pmax

pmin
= (1− p(x; w))m log2 pmax

pmin
and

|∇`(w)|2
`(w) ≤

(1− p(x; w))m log2
(

pmax
pmin

)
− log p(x; w) ≤

m log2
(

pmax
pmin

)
log(e) ·

[
inf

0<z<1
− ln z

1− z

]−1

.

By Lemma 4.3 the infimum is at least 1. This yields the claimed lower bound on a.
Remark 4.5. It is interesting to note that we can express∇w`(x,geo(w,P)) (see (6)) in terms
of information theoretic quantities (for the basic notation see, e.g. [3]). The i-th component is

− log pi(x)−
∑
y∈X

geo(y; w,P)(− log pi(y))

= − log pi(x)−
∑
y∈X

geo(y; w,P)
[
log

(
1

geo(y; w,P)

)
+ log geo(y; w,P)

pi(y)

]
= − log pi(x)− (H(geo(w,P)) +D(geo(w,P) ‖ pi)).

If we now ignore possible constraints on the weight vector w then for some character x a min-
imizer of minw `(x,geo(w,P)) satisfies H(geo(w,P))+D(geo(w,P) ‖ pi) = − log pi(x)
for all 1 ≤ i ≤m. In effect the weight vector w is chosen s.t. there is an equilibrium: The
code length − log pi(x) matches the average code length of coding a symbol drawn from
the source distribution geo(w,P) with the model distribution pi.
Proof of Lemma 4.2. Again we set p(x; w) := lin(x; w,P) and `(w) := `(x,lin(w,P))
and proceed analogously to the proof of Lemma 4.1. By Definition 2.2 we have w ∈ S, Prop-
erty 1 is met, and in [6, Section 4.2] we showed that Property 2 is met, as well. The gradient

∇`(w) = ∇w`(x,lin(w,P)) = −∇w log wTp(x) = − log(e) p(x)
p(x; w)

is well-defined for the given range of w and P , so Property 3 is fulfilled. We observe that

|∇`(w)|2
`(w) ≤ m log2(e)p2

max
p(x; w)2(− log p(x; w)) ≤m log(e)p2

max ·
[

inf
c≤z≤d

−z2 ln z
]−1

(7)

where c = pmin ≤ p(x; w) ≤ pmax ≤ d = 1− pmin. We used pmax ≤ 1− pmin, since

pmax = max
1≤i≤m

max
x∈X

pi(x) ≤ max
1≤i≤m

(
1−min

x∈X
pi(x)

)
= 1− min

1≤i≤m
min
x∈X

pi(x) = 1− pmin,

to apply Lemma 4.4 to bound the rightmost factor in (7) from above by [−p2
min lnpmin]−1.

The resulting constant on the r.h.s. of (7) is a lower bound on a. The proof is done.
Upper bounds on the Code Length. At this point we can combine Theorem 3.7 with
Lemmas 4.1 and 4.2 to obtain code length bounds on Algorithm 1 for lin and geo. The dis-
cussion in Section 3 on nice mixtures coupled with Algorithm 1 applies to lin and geo as well.
Theorem 4.6. Let xn ∈ Xn, let P n be a sequence of probability matrices over Pε where
ε = 2−B for 1 ≤ B <∞ and let `∗(k, l,best) := min1≤i≤m `(xl

k,lin(ei,P
l
k)) be the code

length of the best single model for xl
k. We consider sequences t1 = 1 < t2 < · · · < ts <

ts+1 = n+ 1 of integers where 1 ≤ s ≤ n. For mix = lin and mix = geo where W = S
Algorithm 1 satisfies the bounds in Table 1 for the given step sizes for all w1 ∈ S.
Proof. For the sake of simplicity we set lin-ogd(α) := lin-ogd(w1, α, x

n,P n). We start
by proving row 1 in Table 1. By Lemma 4.2 we can use Theorem 3.7, Equation (3) with
mix = lin, b = 2 andW = S where |S|2 ≤ 2 which gives

α = 1
a

and `(xn,lin-ogd(α)) ≤ 2as+ 2
s∑

i=1
`∗(ti, ti+1 − 1,lin) (8)

for any s, t2, . . . , ts. Observe that

`∗(k, l,lin) = min
w∈S

`(xl
k,lin(w,P l

k)) ≤ min
1≤i≤m

`(xl
k,lin(ei,P

l
k)) = `∗(k, l,best) (9)

and by Lemma 4.2 we can choose

a = 17m4B

8B · f(n) ≥ 17m
8

1
ε2 log(1/ε) ≥m log2(e) p2

max
p2

min log(1/pmin). (10)

for some f(n) ≥ 1. We set f(n) = 1 and combine (9) and (10) with (8) to yield

α = 8B
17m4B

and `(xn,lin-ogd(α)) ≤ 17ms4B

4B + 2
s∑

i=1
`∗(ti, ti+1 − 1,best).

Finally we can take the minimum over s, t2, . . . , ts, since these were arbitrary, which gives
the claim. Now we advance to Table 1, row 2. Again, by Lemma 4.2 we use Theorem 3.7,
Equation (4) with mix = lin, c = − log ε = B andW = S which gives

α = 2/a
1 +
√
n

and `(xn,lin-ogd(α)) ≤ (2as+B)
√
n+

s∑
i=1

`∗(ti, ti+1 − 1,lin) (11)

for any s, t2, . . . , ts. We now choose a as in (10) with 1 ≤ f(n) = 2
√

n
1+
√

n
≤ 2, to get

(2as+B) = 17ms4B

4B f(n) +B ≤ (17ms+ 1) 4B

2B ≤
35ms4B

4B (12)

for the constant on the r.h.s. of (11).We combine (9) and (12) with (11) to yield

α = 8B/
√
n

17m4B
and `(xn,lin-ogd(α)) ≤ 35ms4B

4B
√
n+

s∑
i=1

`∗(ti, ti+1 − 1,best).

Again, taking the minimum over s, t2, . . . , ts finishes the proof. The bounds of Table 1 rows
3 and 4 follow analogously by the choice of f(n) = 1 (row 3) and f(n) = 2

√
n

1+
√

n
(row 4) and

a = 7mB2

10 · f(n) ≥ 7m
10 log2 1

ε
≥ m log2(pmax/pmin)

log e and by

`∗(k, l,geo) = min
w∈S

`(xl
k,geo(w,P l

k)) ≤ min
1≤i≤m

`(xl
k,geo(ei,P

l
k)) = l∗(k, l,best)

and using `∗(xn,geo(P n)) ≤ B · n (a premise of Theorem 3.7, Item 2), since for all w ∈ S

geo(x; w,P) =
∏m

i=1 pi(x)wi∑
y∈X

∏m
i=1 pi(y)wi

≥
m∏

i=1
pi(x)wi ≥ pmin(x; P) = ε = 2−B (13)

and consequently `(x,geo(w,P)) ≤ B.

Table 1: Code length bounds of Algorithm 1 for mix = lin and mix = geo whereW = S.

mix α `(xn,mix-ogd(w1, α, x
n,P n)) ≤ mins, t2, . . . , ts of . . .

1 lin 8B
17m4B

2
s∑

i=1
`∗(ti, ti+1 − 1,best) + 17ms4B

4B

2 8B/
√
n

17m4B

s∑
i=1

`∗(ti, ti+1 − 1,best) + 35ms4B

4B
√
n

3 geo 10
7mB2 2

s∑
i=1

`∗(ti, ti+1 − 1,best) + 7msB2

5

4 10/
√
n

7mB2

s∑
i=1

`∗(ti, ti+1 − 1,best) + 19msB2

10
√
n

Remark 4.7. In the previous proof (13) shows that geo(x; w,P) ≥ pmin(x; P) when w ∈ S,
just as lin. Subsequently geo cannot use more bits than lin to encode a single symbol
in the worst case. In the best case geo(x; w,P) uses at most as much bits as lin, since

max
w∈S

geo(x; w,P)) ≥ max
1≤i≤m

geo(x; ei,P) = pmax(x; P) = max
w∈S

lin(x; w,P).

There exist situations where max
w∈S

geo(x; w,P) > max
w∈S

lin(x; w,P), see Example 4.8.

Example 4.8. For an alphabet X = {1,2, . . . ,N},N > 2, we consider geo(w,P) where
w = (1/2 1/2)T and P T = (p1(x) p2(x))x∈X s.t. for 0 < ε, q < 1 we have

p1(x) :=


q , x = 1
(1− q) · (1− ε) , x = 2
(1−q)·ε
N−2 ,otherwise

, p1(x) :=


q , x = 1
(1− q) · (1− ε) , x = 3
(1−q)·ε
N−2 ,otherwise

,

The mixture probability geo(1; w, P) of the letter 1 is

p1(1)1/2 · p2(1)1/2∑
y∈X p1(y)1/2 · p2(y)1/2 = q/

[
q + (1− q)

2
√
ε(1− ε)
N − 2 + N − 3

N − 2ε


︸ ︷︷ ︸
=:f(ε,N)

]
,

We now show, that for any q there exists an ε, such that geo(1; w,P) > pmax(1; P) = q.
Clearly, if geo(1; w,P) > q we must have f(ε,N) < 1. To observe this we bound f(ε,N)
from above and give a possible choice for ε.

f(ε,N) = 2
√
ε(1− ε)
N − 2 + N − 3

N − 2ε ≤ 2
√

ε

N − 2 + (N − 3)
√

ε

N − 2 = N − 1√
N − 2

·
√
ε

If we choose 0 < ε < (N − 2)/(N − 1)2 it follows that f(ε,N) < 1 and geo(1; w,P) > q.

Note that the bounds in Table 1, rows 3 and 4 only translate to PAQ7 if W = S. To
obtain bounds for other weight spacesW we only need to substitute the approrpiate values
for |W| and/or c > 0 where `(x,geo(w,P)) ≤ c in the previous proof. E.g., if we have
−r · 1 ≤ w ≤ r · 1 for r > 0 then the penalization term of the bound in row 3 increases
by a factor of |W|2/|S|2 = mr2.

Veness [9] gave a bound for linear mixtures using a non-OGD weight estimation scheme
which is identical to Table 1 row 2 except the penalty term, which is O(s logn) in place
of O(s

√
n). However our analysis is based on Theorem 3.7 which applies to the strictly

larger class of nice mixtures with a generic scheme for weight estimation. Clearly, more
restrictions can pay off in tighter bounds, consequently we might obtain better bounds by
taking advantage of the peculiarities of lin and geo.
5 Conclusion
In this work we obtained code length guarantees for a particular mixture-based adaptive
statistical data compression algorithm. The algorithm of interest combines multiple model
distributions via a mixture and employs OGD to adjust the mixture parameters (typically
model weights). As a cornerstone we introduced the class of nice mixtures and gave bounds on
their code length in the aforementioned algorithm. Since, as we showed, linear and geometric
mixtures are nice mixtures we were able to deduce code length guarantees for these two
mixtures in the above data compression algorithm. Our results on geometric mixtures directly
apply to PAQ7, a special case of geometric mixtures, and provide the first analysis of PAQ7.
We defer an exhaustive experimental study on linear and geometric mixtures to future

research. A straightforward extension to Theorem 3.7, Item 2 is to remove the dependence
of the step size on the sequence length (which is typically not known in advance). This can
be accomplished by using the “doubling-trick” [2] or a decreasing step size [12]. Another
interesting topic is whether geometric and/or linear mixtures have disjoint properties, which
we can use to yield stronger bounds. This opposes our current approach, which we built
on the (common) properties of a nice mixture.
Acknowledgement. The author would like to thank Martin Dietzfelbinger, Michael Rink,
Sascha Grau and the anonymous reviewers for valuable improvements to this work.
References
[1] Nicolò Cesa-Bianchi. Analysis of two gradient-based algorithms for on-line regression. Journal

of Computer and System Sciences, 59:392–411, 1999.
[2] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. 1st edition.
[3] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience,

2nd edition, 2006.
[4] David P. Helmbold, Jyrki Kivinen, and Manfred K. Warmuth. Relative loss bounds for single

neurons. Proc. IEEE Transactions on Neural Networks, 10:1291–1304, 1999.
[5] Manfred Kufleitner, Edgar Binder, and Alexander Fries. Combining Models in Data

Compression. In Proc. Symposium on Information Theory in the Benelux, volume 30, pages
135–142, 2009.

[6] Christopher Mattern. Mixing Strategies in Data Compression. In Proc. Data Compression
Conference, volume 22, pages 337–346, 2012.

[7] David Salomon and Giovanni Motta. Handbook of Data Compression. Springer, 1st edition,
2010.

[8] Dimitry Shkarin. PPM: one step to practicality. In Proc. Data Compression Conference,
volume 12, pages 202–211, 2002.

[9] Joel Veness, Kee Siong Ng, Marcus Hutter, and Michael H. Bowling. Context Tree Switching.
In Proc. Data Compression Conference, pages 327–336, 2012.

[10] Paulus Adrianus Jozef Volf. Weighting Techniques in Data Compression: Theory and
Algorithms. PhD thesis, University of Eindhoven, 2002.

[11] F. Willems, Yuri M. Shtarkov, and T. J. Tjalkens. The context-tree weighting method: basic
properties. IEEE Transactions on Information Theory, 41:653–664, 1995.

[12] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In ICML, pages 928–936, 2003.

A Proof of Lemma 4.3 and Lemma 4.4

Lemma 4.3. For 0 < z < 1 the function f(z) := − ln z
1−z

satisfies f(z) ≥ 1.
Proof. By the basic inequality − ln(z) ≥ 1− z the claim follows.
Lemma 4.4. For 0 < a ≤ z ≤ 1− a the function f(z) := −z2 ln z satisfies f(z) ≥ f(a).
Proof. First, we examine the derivative f ′(z) = −z(1 + 2 ln z) of f . Clearly, f ′(z) ≥ 0 for
0 < z < z0 := 1/

√
e and f ′(z) ≤ 0 for z0 ≤ z ≤ 1. From a ≤ 1− a we conclude that

a ≤ 1
2 . We have f(z) ≥ min{f(a), f(1− a)} (by monotonicity) and it remains to show that

f(a) ≤ f(1− a). Let g(a) := f(a)/f(1− a) and observe that g(a) increases monotonically
for 0 < a ≤ 1

2, i.e.
f(a)

f(1−a) = g(a) ≤ g(1
2) = 1. Finally we argue that g′(a) ≥ 0 where

g′(a) = a ln(a) ln(1− a)
(a− 1)3 ln2(1− a)

·
[
− a

ln(1− a) −
1− a
lna − 2

]
.

Clearly, the left factor is negative for 0 < a ≤ 1
2. The rightmost factor is at most 0, since

by Lemma 4.3 we have − a
ln(1−a) ≤ 1/ inf0<z<1 − ln z

1−z
≤ 1 (we substituted z = 1− a) and

−1−a
ln a
≤ 1/ inf0<z<1 − ln z

1−z
≤ 1, which concludes the proof.

	1 Introduction
	2 Preliminaries
	3 Nice Mixtures and Code Length Bounds
	4 Bounds for Geometric and Linear Mixtures
	5 Conclusion
	A Proof of Lemma 4.3 and Lemma 4.4

