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Abstract

In this paper, we consider robust source coding in closeg-kystems. In particular, we
consider a (possibly) unstable LTI system, which is to bbikt&d via a network. The network
has random delays and erasures on the data-rate limiteda{fifprward channel between
the encoder (controller) and the decoder (plant). The faekllthannel from the decoder to
the encoder is assumed noiseless. Since the forward chendgital, we need to employ
quantization. We combine two techniques to enhance thahility of the system. First, in order
to guarantee that the system remains stable during packpbdis and delays, we transmit
quantized control vectors containing current control galdor the decoder as well as future
predicted control values. Second, we utilize multiple dipsion coding based on forward error
correction codes to further aid in the robustness towardkgiaerasures. In particular, we
transmit M redundant packets, which are constructed suathvthen receiving any J packets,
the current control signal as well as J-1 future control aigrcan be reliably reconstructed
at the decoder. We prove stability subject to quantizationstraints, random dropouts, and
delays by showing that the system can be cast as a Markov jun@ar Isystem.

This research was partially supported under Australiane®e$f Council’s Discovery Projects funding scheme
(project number DP0988601).



I. INTRODUCTION

Source coding is essential in any communication system digital channels. Tra-
ditionally, one considers open-loop source coding, whbeeesource is encoded subject
to a fidelity criterion and perhaps by taking the channel @toount, i.e., joint source-
channel coding. However, there is a recent trend towardgalbng systems via wireless
networks [1]. In these cases, the source coder must alsamfearthat the overall system
remains stable. Thus, it becomes a joint source-chanmgtatiqoroblem, which defines
a very challenging problem.

In this paper, we consider the situation depicted in Fig. ToAtroller is connected to
a plant via a forward channel (from the controller to the plamd a backward channel
(from the plant to the controller). The forward channel is aadrate limited (digital)
channel, which is subject to random packet delays and pagksures. The backward
channel is assumed noiseless.

' Data-rate |
' limited |
' Network |

Quantized PP
MD Coder

Figure 1: The encoder (packetized predictive controller (PPC) and &dider) communicates with the
decoder (plant) via a data-rate limited erasure channél défays.

We will make use of quantized packetized predictive confR®#C) over the forward
channel [2]-[4]. In quantized PPC, a control vector with therent andN — 1 future
predicted quantized plant inputs are constructed at theralter side to compensate
for random delays and packet dropouts in the forward chaelwill also be using
multiple descriptions (MDs) in order to further increase tlobustness towards packet
dropouts and packet delays. MDs is traditionally used asrd gmurce-channel coding
technique, where the source is encoded into several désosyg5]. The descriptions are
individually good and are furthermore able to improve upanheother when combined.
Thus, with MDs it is possible to provide several quality lesjevhere the reconstruction
performance depends upon the channel conditions, i.epeéhermance depends upon
which packets that are received. In this work, we combine RiE MDs and thereby
obtain a joint source-channel-control framework. Our idedo construct)M packets
with control information. The packets are constructed sinet if any single packet is
received, only the control value for the current time will &eailable at the plant side.
Moreover, if any two packets out of th&/ packets are received, the current control
value and the future predicted control value for the nexetinstance will be available.
In general, when receiving anydescriptions, the current ant-1 future controls values
are available at the plant.

We will consider the case of discrete-time noisy LTI systemnd i.i.d. packet dropouts.
In a previous work, we focused on the case where the pacletdwaays received in-order



and without delays, i.e., out-of-order and/or delayed p&hre discarded [6]. The current
paper, generalizes the results of [6] and solves the caserewtackets can be delayed
and furthermore be received out-of-order. This is a muchenebiallenging situation. For
example, control information constructed for the currémiett could be applied on time
(i.e., at timet) at the plant. Then, at timée+ 1, the plant could potentially apply control
information constructed at time- 1 due to receiving packets out-of-order. The challenge
is to construct the joint PPC and MD coder so that one can gtegastability in case
of random packet dropouts, packet delays, and out-of-qudekets. Towards that end,
we show that the complete system can be cast as a Markov jumagr Isystem (MJLS),
where system stability can be addressed via linear mategualities.

The paper is organized as follows: In Section Il, we providekground information
on quantized PPC. Then in Section lll, we present the maia, iddnrich is combining
MDs with PPC. Sections IV provides a system analysis for thgecwith out-of-order
packet reception.

Il. PACKETIZED AND QUANTIZED CONTROL OVER ERASURE CHANNELS

This section contains the preliminaries regarding the esysmodel, network, and
guantized PPC.

A. System Model

As previously mentioned, we consider the plant to be disetiete and linear time
invariant (LTI). The model of the dynamical system is givendiater; € R?, z > 1
and scalar input;; € R:

Tyl = Aflft + Blut + ngt, te N, (l)

wherew, € R¥, 2/ > 1, is an unmeasured disturbance, which can be arbitrarityilolised
with finite mean and variance. We further assume that the (phi3,) is stabilizable.
Finally, the initial stater, is arbitrarily distributed with finite mean and variance.

B. Cost Function

The quantized control law should be designed so that it ma@sman appropriate
objective. In this work, we consider the case, where at eanbk tnstantt and for a
given plant stater,, the following objective is minimized:

N—-1
J(@'x) 2 |l 5+ > (121G + Aup)?), 2
=0

whereN > 1 is the horizon length anilz||3, £ z7Qx is a weighted’s norm. We consider

the design variable® > 0, @ > 0, and A > 0, which allow one to trade-off control
performance versus control effort, to be given. See [4] fareninformation about how
to choose these variables.

The objective in (2) takes into account the predicted futwalution of the dynamical
system. In particular, the objective minimizes the sum ef Weighted/, norms of the
nominal state vectar;,,,l =0,..., N. Clearly, at timet, the plant stater,; cannot be
known exactly since the external disturbanegsthe initial plant state:y, and the buffer



stateb; (which depends upon the actual realizations of the packgtuds and delays) are
not known to the controller, when forming the control signal However, the controller
may form a qualified estimate; ; of x,,; by ignoring the unknows. Specifically, the

controller can generate a sequence of control signgls: [u; ... u;+N_JT, which
represents possible current and future plant input sigiegised on the nominal plant
state evolution given by

Ty, = Axy+ Biuy, and xj = 1y, 3)

which does not take into account the buffer contents at tlovedt, the dropout proba-
bilities, or the external disturbances.

The idea in PPC is at each time instani send the whole control vectat, to the
plants buffer. If the packet is received, the first contr@nsil «;(1) is applied to the
plant input. If it is not received, but the packet witfy , has been received, then the
signal w;_,(2) is applied and so forth. At the next time slot, say- 1, the controller
uses information about the new plant state; as a basis for finding another optimizing
sequence,,, and so on.

C. Network Effects

The backward channel of the network is assumed noiselessnatahtaneous. The
forward channel is a packet erasure channel, where packetde delayed and also
be received out-of-order. In MD coding, it is common to assutine availability of
either M separate and independent channels or a single (compouadhehwhere the
M packets can be sent simultaneously and yet be subject tpendent erasures and
delays. Thus, at timg we assume that th&/ transmitted packets are subject to erasures
and delays independently of each other. Moreover, thessue® and delays are also
assumed independent over time. In particular, we modektnéssion effects via the
discrete processefsl; , }77,, Where0 <t <t andi=1,..., M, defined via:

g2 {1, if packet: generated for time is in the buffer at time’ > ¢,
Lt 0, else.

These processes are generally not independent. If a paakebden received at time
instantt’ it is still received at time instance$ + n,n > 1. However, fort’ = t, the
outcomesd; ,,i = 1,..., M,t > 0, are mutually independent.

D. Quantization Constraints

Due to the digital channel between the controller and thatpiaput, the control
signals need to be quantized. A closed form solution to thablpm was derived in
[7]. Furthermore, in [4] the problem was cast into the fraragwof entropy-constrained
(subtractively) dithered (lattice) quantization (ECD@).[For completeness, we briefly
repeat key results of [4], [7] that we will be needing in thejse:



Let Q £ diag(Q, ..., Q, P) and let®, T be defined by

By 0 ... 0 A
AB, By .0 A?

® 2 . : t. : ! T = : ' (4)
AN_IBl AN_231 ... B AN

Theorem 2.1 (Quantized Predictive Control [7[Consider any quantized gétC RV,
the matricesy, ¢, andY given in (4), and define:

&E2Tr, 20 71oTQT, (5)

where¥ € RV*V s obtained from the factorizatiof’” & = ®7Q® + \I, where)\ is as
in (2).
Then the constrained optimizéf = arg migj(a " x;), see (2), satisfies:
u'e

iy = UQ(&), (6)

where Q(+) is a (nearest neighbour) vector quantizer with alphaldét O

It follows from (5) and (6) that the optimal quantized cohsanal u, is obtained by
vector quantizing the signal. When the quantizer is an ECDQ, it was shown in [4] that
the quantized (and reconstructed) control variablean be modelled as

iy =V (ny + &), (7)

wheren, (the quantization noise) arggd are mutually independent aggd= I'z,. As done

in [6], we will use u; to denote the quantized (and reconstructed) control veatoich
has been found by using an ECDQ &nThus,u; denotes a vector of continuous-alphabet
variables whereag; is the vector of corresponding quantized discrete-alpihedrgables,
which is entropy coded and thereby converted into a biastréto be transmitted over
the network).

[1l. M ULTIPLE DESCRIPTIONS

MDs based on vector quantization and with many packets haea lconsidered in
e.g. [9]. Using the MD approach of [9] would provide severahqtized predicted control
vectors, which are able to refine each other. However, we ene interested in receiving
an accurate control signal for the current time instancgependently of which packet
is received. To achieve this ability, we will instead be gsMD based on forward error
correction (FEC) codes [10], [11]. The idea we first presente [6] turns out to be
applicable to present situation as well and we will brieflgc&e the key points below.
For more details, we refer the reader to [6]. Recall that thantjzed control vectoti,
containsN elements, i.e., the current control value asd- 1 future control values. Let
us now split thisV-dimensional vector in td/ = N sub sequences, each consisting of a
single (scalar) control value. The first discrete contrduegai,(1) is repeated in each of
the M packets. The second control signa(2) is split into two equal sized bit sequences.
Then, an(M, 2)-erasure code is applied and theresulting outputs are evenly distributed
to the M packets. The third contral,(3) is split into three equal sized bit sequences,
and an(M, 3)-erasure code is applied. This process continues untilMalsignals are



used. This results id/ partially redundant packets, which are constructed in sualay
that upon reception of any single packet, the first discret&rol signalu,(1) can be
reliably reconstructed. Moreover, froi(1), we can generatg; (1) simply by subtracting
the known (pseudo-random) dither signal. Upon receptioargf0 < J < M packets
the firstJ control signalsi,(1),...,u,(J), can be recovered errorlessly. To simplify the
notation, we will only consider the case wheké = N, i.e., the number of packets
equals the horizon length. It is, however, straight-fover generalize this construction
to any M < N packets. For example, if/ < N then the remainingV — M control
signals can be treated together as input to the(l&st)/)-erasure code.

IV. SYSTEM ANALYSIS WITH TIME-DELAYS AND DROPOUTS

This section considers the case where the network coulddate time-delays, packet
erasures, and where packets could be received out-of-order

A. Buffering at the Decoder and Reconstruction of Contrgh8&ls

As shown in Fig. 1, there is a receive buffer at the plant swd@ch keeps track of
the received packets. The buffer is finite, i.e., at titme contains all received packets,
which are not older thanh— N + 1. The current control signal, say, will be generated
based upon the contents of buffer.

The control signals are generated in the following way. Ledenote thel/ packets
at timet asc,i =1,..., M, and let us assume that the buffer is empty prior to time
Moreover, let us assume thaf = 3, so that three packets are generated at each time
instance. At time, we could receive any subset of the three packets (incluthi@gmpty
set). For the sake of example, assume that we receive a giagket, say?. Since the
first control signal can be obtained from any of the three pt;kthe buffer is able to
reconstruct the control signal as = w,(1). At time ¢ + 1, we could e.g., receive two
packets, say,,, andc;. The latter packet is a delayed packet. However, from theéor
packeté;, ,, we obtain the control signal,,; = @.1(1) and momentarily simply ignore
the late packet’. Finally, at timet + 2, we only receive the late packet. This means
that, at timet + 2, the buffer contains all three packets from time single packet from
time ¢ + 1, and no packets from time+ 2. We would thus construct the current control
signal asu,.» = u,(3). All the possible combinations for the case if = N = 3 are
illustrated in Table I.

For the case wherd/ = N > 1, we use the idea first presented in [6] and define

I, € {0,1} as an indicator function, which is “1” if at leagtout of M packets of time
stampt are in the buffer at time’ and “0” otherwise. In particular,

M

7, =] d, +Zl—d§t H d,
=1 1=1,i#7]
M-1

+) Z (1—dl,)(1—d,) H di,
j=1 = g+1 i=1,i#7,1
M

= Z d, T[] a-di,)

i=1,i#7]



| @ [ & dlad 66,0,
w(l) |1 X XX X X |[X X X
w(l) |x 1 xX|x X X |X X X
w(l) |Xx x 1|x X X |[X X X
w-1(2)]0 0 01 1 x |X X X
w-1(2)|0 0 0|1 x 1 |x X X
w-1(2)|0 0 O|x 1 1 |x X X
w230 0 Ojx 0O O (1 1 1
u-2(3)0 0 0|0 x O (1 1 1
u-2(3)0 0 0|0 0 x (1 1 1

Table I: Control valuei,; at timet from available buffer contents. “1” indicates that the petcis in the
buffer and “0” indicates that it is not. “x” indicates thatetftontrol value does not depend on the given
packet. In all other cases, we ggt= 0.

M
Itz—l,t:Hd 1t+21_di 1t H dt 1t

1=1,i#]
M—-1
l
+Zzl—d§u dtquHt
J=1l=j+1 1=1,i#j,l
M—-1
l
+szt1tdt1t H di_14
j=1l=j+1 o=1,i#j,l

M N+1t Hdt N+1,t

Recall that with FEC based MD, the vector, (1), u,(2),...,u(k)) is available at the
buffer at time¢’ if and only if It’ft, = 1. With this, the control signal; to be used at
time t is given by:

Uy = ﬂt(l)ztl,t + (1 - Itlt)[zt 1,6 Ut— 1(2) + (1 - It2—1,t)
X [T g tie2(3) + -+
+(1— It]VINizt)I%NH,tﬂt—NH(N)] e (8)

where it follows thati, = 0 in the event thafZ}, =77 | , = --- =T, , = 0, which
is the case if no packets have arrivedNh= M consecutive time instances.

B. Markov Jump Linear System with Delay and Packet Dropouts

At this point, we defin&t’?i to be the indicator function, which is one if of the
M = N packets constructed at tinteare in the receive buffer at timebut less thark



of these packets are in the buffer at times priot.t&pecifically,

7t 2 )b if Zj ,=1and 7}, ,=0,Vj >0, ©)
vt 0, else

where it follows thatzt’ft = It’ft,Vt,k:. Finally, let Z, denote the indicator matrix given
by:

i, if i =3,
AR | e A R (10)
0, if 7> 7.

Note that each row of the indicator mattix is either the all zero vector or it contains a
single one and\/ — 1 zeros. The position of such a one is always in the upper titang
region wherej > i. For example, if all\M/ packets generated at timieare also received
at timet thenZ, is the identity matrix. To further clarify, consider the lfaling scenario.
Assume thatV = M = 3 and that at time — 2, the only packets received are two out
of the three packets constructed at titme2. The third missing packet generated at time
t —2 is not received until at time. In addition, at time — 1, a single packet constructed
at timet —1 is received. Finally, at time, no additional packets are received. This yields
the following sequence of indicator matrices:

i 10 0] too0]  foo1
Iio=10 1 0, Z,_y=1{0 0 0, Z,=10 0 O 11y
0 00 000 000
Lemma 4.1:The numberK of distinct indicator matriceg, is
M
K:€(5+M2)+1. (12)
Proof: See Appendix A. [ ]

Before we present the main result of this paper, we introdiuee [f;(1), ..., f:(N)]%,
which is anN-length vector representing the buffer at the plant inpade $iolding present
and future control values. In particulgf,(1) is the control value to be applied at current
time ¢, and f;(¢) is to be applied at time + 4, unless the buffer is changed in the mean
time.

Below we present the main theorem. Since the proof is quitgthe it has been omitted

due space considerations and will instead appear in a forting journal version of this
paper.

Theorem 4.1:Let 7; = [z4,...,v01-n]|T, @andiy = [0y, ..., ne1n|T, be theN past
and present system state vectors and quantization noiserserespectively. Moreover,
let =; be the augmented state variable given by

=, 2 {ﬁ_l} . (13)

Then, in the presence of i.i.d. packet dropouts (and randelayd), (13) satifies the



MJLS given by

(14)

ol
X
I
=
N
it
+
el
N
J ok

where A(Z;) and B(Z;) are the system’s switching matrices havidg(5 + M?) + 1
different realizations (or jump states), which are indekgdZ,. A

From a stability assessment point of view, it is very congahthat the system can be
cast as a finite state MJLS, since this allows one to use égarl matrix inequalities
to obtain some sufficient and necessary conditions for lgialdn particular, we include
the following well-known results:

Corollary 4.1 (Sufficient Condition for MSSYhe system (14) is mean square stable
(MSS) if there existd” = 0 such that

I'— Zﬁ(ft)flT(j't)l"flT(Z) =0, (15)
I
wherep(Z;) denotes the probability associated with the jump statexiedidy Z;.

_ Proof: Follows immediately from [12, Corollary 3.26] since the jpratate sequence
{Z;} is ergodic and the number of jump-states is finite. [

Corollary 4.2 (Necessary Condition for Stability)-et \; denote theth eigenvalue of
the matrix A(Z;). Then, a necessary condition for MSS is that

max{|\|} < /1/p(Z;), for all Z,. (16)

Proof: Follows immediately from [13]. [ |

APPENDIX A
PROOF OFLEMMA 4.1

The first row ofZ, can be any of\/ + 1 distinct patterns, where at most one of the
elements is one and the others are zero. In generalithth®w can take onV/ + 2 — ¢
distinct patterns. The maximum number of possible distyatterns is therefore\/ +1)!.
Notice, however, that these rows are not independent, sigcalways use the newest
control information available. Thus, if we at timéhave two packets from time— 1 and
three packets from time—2, we will use the control value,_;(2) from time¢—1. From
this we deduce that if elemefi, j) is one, then no elemetit—', j +j'),i > 0,5 > 0,
can be one, since otherwise an older control signal is used;fo— ') than the one
used forf,(i), which is not allowed. It therefore also follows that thewoh sum is at
most one.

Consider anM'’ x M’ diagonal matrix with ones on the firgtentries on its main
diagonal. It is possible to up-shift this matrix at mest1 times and end up with distinct
non-zero matrices. Indeed, after- 1 up shifts, there is a single one at position ).
Summing over alf’s from one to)M’ yields0+1+---+M’'—1 = 1 M'(M’'+1) possible
shifts, which results in distinct non-zero matrices. Weodiave the original\/ distinct
diagonal matrices having= 1,..., M, ones on main the diagonal, and in addition we
have the all zero matrix. Thus, in total we have+ 1+ ;M’(M’ + 1) distinct matrices.



Having ones on thgth diagonal and zero elsewhere, corresponds to packetsrectes!
at the same time— j. Thus, the above up-shifting operations account for allpbesible
combinations of receiving subsets of packets that are ngistl at the same time.

It is also possible to receive packets constructed at @iftetimes. For example, at time
t one may receive packets constructed at ttme as well as packets constructed at time
t—j,i#j,0<i,57 < N—1.To take all the admissible mixing possibilities into acegu
we split the M x M indicator matrix into a sequence @ff — 1 nested submatrices.
Specifically, we form the first submatrix as tfig#/ — 1) x (M — 1) matrix, which do
not include the first row or first column of the original matrikhe jth submatrix is the
(M — 7) x (M — j) matrix, which do not include the first rows orj columns of the
original matrix. For each of the submatrices, we form all giole up-shifts that lead
to non-zero matrices. Combining all this results in the ltotamber, sayk’, of distinct
admissible indicator matrices, i.e.,

| M
K=M+1)+ > S(M'(M' +1) = E(5+M?) +1. (17)

M'=1
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