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Abstract

In this paper, we consider robust source coding in closed-loop systems. In particular, we
consider a (possibly) unstable LTI system, which is to be stabilized via a network. The network
has random delays and erasures on the data-rate limited (digital) forward channel between
the encoder (controller) and the decoder (plant). The feedback channel from the decoder to
the encoder is assumed noiseless. Since the forward channelis digital, we need to employ
quantization. We combine two techniques to enhance the reliability of the system. First, in order
to guarantee that the system remains stable during packet dropouts and delays, we transmit
quantized control vectors containing current control values for the decoder as well as future
predicted control values. Second, we utilize multiple description coding based on forward error
correction codes to further aid in the robustness towards packet erasures. In particular, we
transmit M redundant packets, which are constructed such that when receiving any J packets,
the current control signal as well as J-1 future control signals can be reliably reconstructed
at the decoder. We prove stability subject to quantization constraints, random dropouts, and
delays by showing that the system can be cast as a Markov jump linear system.

This research was partially supported under Australian Research Council’s Discovery Projects funding scheme
(project number DP0988601).



I. INTRODUCTION

Source coding is essential in any communication system withdigital channels. Tra-
ditionally, one considers open-loop source coding, where the source is encoded subject
to a fidelity criterion and perhaps by taking the channel intoaccount, i.e., joint source-
channel coding. However, there is a recent trend towards controlling systems via wireless
networks [1]. In these cases, the source coder must also guarantee that the overall system
remains stable. Thus, it becomes a joint source-channel-control problem, which defines
a very challenging problem.

In this paper, we consider the situation depicted in Fig. 1. Acontroller is connected to
a plant via a forward channel (from the controller to the plant) and a backward channel
(from the plant to the controller). The forward channel is a data-rate limited (digital)
channel, which is subject to random packet delays and packeterasures. The backward
channel is assumed noiseless.

Quantized PPC
MD Coder

Data−rate
limited
Network

Buffer
Decoder Plant

ũt ût xt

Figure 1: The encoder (packetized predictive controller (PPC) and MDcoder) communicates with the
decoder (plant) via a data-rate limited erasure channel with delays.

We will make use of quantized packetized predictive control(PPC) over the forward
channel [2]–[4]. In quantized PPC, a control vector with thecurrent andN − 1 future
predicted quantized plant inputs are constructed at the controller side to compensate
for random delays and packet dropouts in the forward channel. We will also be using
multiple descriptions (MDs) in order to further increase the robustness towards packet
dropouts and packet delays. MDs is traditionally used as a joint source-channel coding
technique, where the source is encoded into several descriptions [5]. The descriptions are
individually good and are furthermore able to improve upon each other when combined.
Thus, with MDs it is possible to provide several quality layers, where the reconstruction
performance depends upon the channel conditions, i.e., theperformance depends upon
which packets that are received. In this work, we combine PPCwith MDs and thereby
obtain a joint source-channel-control framework. Our ideais to constructM packets
with control information. The packets are constructed suchthat if any single packet is
received, only the control value for the current time will beavailable at the plant side.
Moreover, if any two packets out of theM packets are received, the current control
value and the future predicted control value for the next time instance will be available.
In general, when receiving anyJ descriptions, the current andJ−1 future controls values
are available at the plant.

We will consider the case of discrete-time noisy LTI systemsand i.i.d. packet dropouts.
In a previous work, we focused on the case where the packets are always received in-order



and without delays, i.e., out-of-order and/or delayed packets are discarded [6]. The current
paper, generalizes the results of [6] and solves the case, where packets can be delayed
and furthermore be received out-of-order. This is a much more challenging situation. For
example, control information constructed for the current time t could be applied on time
(i.e., at timet) at the plant. Then, at timet+1, the plant could potentially apply control
information constructed at timet−1 due to receiving packets out-of-order. The challenge
is to construct the joint PPC and MD coder so that one can guarantee stability in case
of random packet dropouts, packet delays, and out-of-orderpackets. Towards that end,
we show that the complete system can be cast as a Markov jump linear system (MJLS),
where system stability can be addressed via linear matrix inequalities.

The paper is organized as follows: In Section II, we provide background information
on quantized PPC. Then in Section III, we present the main idea, which is combining
MDs with PPC. Sections IV provides a system analysis for the case with out-of-order
packet reception.

II. PACKETIZED AND QUANTIZED CONTROL OVER ERASURE CHANNELS

This section contains the preliminaries regarding the system model, network, and
quantized PPC.

A. System Model

As previously mentioned, we consider the plant to be discrete-time and linear time
invariant (LTI). The model of the dynamical system is given by statext ∈ R

z, z ≥ 1
and scalar inputut ∈ R:

xt+1 = Axt +B1ut +B2wt, t ∈ N, (1)

wherewt ∈ R
z′, z′ ≥ 1, is an unmeasured disturbance, which can be arbitrarily distributed

with finite mean and variance. We further assume that the pair(A,B1) is stabilizable.
Finally, the initial statex0 is arbitrarily distributed with finite mean and variance.

B. Cost Function

The quantized control law should be designed so that it minimizes an appropriate
objective. In this work, we consider the case, where at each time instantt and for a
given plant statext, the following objective is minimized:

J(ū ′, xt) , ‖x′
N‖

2

P +
N−1
∑

ℓ=0

(

‖x′
ℓ‖

2

Q + λ(u′
ℓ)

2
)

, (2)

whereN ≥ 1 is the horizon length and‖x‖2Q , xTQx is a weightedℓ2 norm. We consider
the design variablesP � 0, Q � 0, andλ > 0, which allow one to trade-off control
performance versus control effort, to be given. See [4] for more information about how
to choose these variables.

The objective in (2) takes into account the predicted futureevolution of the dynamical
system. In particular, the objective minimizes the sum of the weightedℓ2 norms of the
nominal state vectorx′

t+l, l = 0, . . . , N . Clearly, at timet, the plant statext+1 cannot be
known exactly since the external disturbanceswt, the initial plant statex0, and the buffer



statebt (which depends upon the actual realizations of the packet droputs and delays) are
not known to the controller, when forming the control signalut. However, the controller
may form a qualified estimatex′

t+l of xt+l by ignoring the unknows. Specifically, the
controller can generate a sequence of control signalsū′

t =
[

u′
t . . . u′

t+N−1

]T
, which

represents possible current and future plant input signals, based on the nominal plant
state evolution given by

x′
ℓ+1 = Ax′

ℓ +B1u
′
ℓ, and x′

0 = xt, (3)

which does not take into account the buffer contents at the decoder, the dropout proba-
bilities, or the external disturbances.

The idea in PPC is at each time instantt to send the whole control vector̄u′
t to the

plants buffer. If the packet is received, the first control signal ū′
t(1) is applied to the

plant input. If it is not received, but the packet with̄u′
t−1 has been received, then the

signal ū′
t−1(2) is applied and so forth. At the next time slot, sayt + 1, the controller

uses information about the new plant statext+1 as a basis for finding another optimizing
sequencēu′

t+1, and so on.

C. Network Effects

The backward channel of the network is assumed noiseless andinstantaneous. The
forward channel is a packet erasure channel, where packets can be delayed and also
be received out-of-order. In MD coding, it is common to assume the availability of
eitherM separate and independent channels or a single (compound) channel where the
M packets can be sent simultaneously and yet be subject to independent erasures and
delays. Thus, at timet, we assume that theM transmitted packets are subject to erasures
and delays independently of each other. Moreover, these erasures and delays are also
assumed independent over time. In particular, we model transmission effects via the
discrete processes{dit,t′}

∞
t′=0

, where0 ≤ t ≤ t′ and i = 1, . . . ,M , defined via:

dit,t′ ,

{

1, if packet i generated for timet is in the buffer at timet′ ≥ t,
0, else.

These processes are generally not independent. If a packet has been received at time
instant t′ it is still received at time instancest′ + n, n ≥ 1. However, fort′ = t, the
outcomesdit,t, i = 1, . . . ,M, t ≥ 0, are mutually independent.

D. Quantization Constraints

Due to the digital channel between the controller and the plant input, the control
signals need to be quantized. A closed form solution to this problem was derived in
[7]. Furthermore, in [4] the problem was cast into the framework of entropy-constrained
(subtractively) dithered (lattice) quantization (ECDQ) [8]. For completeness, we briefly
repeat key results of [4], [7] that we will be needing in the sequel:



Let Q̄ , diag(Q, . . . , Q, P ) and letΦ, Υ be defined by

Φ ,











B1 0 . . . 0
AB1 B1 . . . 0
...

...
. . .

...
AN−1B1 AN−2B1 . . . B1











,Υ ,











A
A2

...
AN











. (4)

Theorem 2.1 (Quantized Predictive Control [7]):Consider any quantized setU ⊂ R
N ,

the matricesQ, Φ, andΥ given in (4), and define:

ξt , Γxt, Γ , −Ψ−TΦTQΥ, (5)

whereΨ ∈ R
N×N is obtained from the factorizationΨTΨ = ΦTQΦ+ λI, whereλ is as

in (2).
Then the constrained optimizerũt = arg min

ū ′∈U
J(ū ′, xt), see (2), satisfies:

ũt = Ψ−1Q(ξt), (6)

whereQ(·) is a (nearest neighbour) vector quantizer with alphabetΨU . �

It follows from (5) and (6) that the optimal quantized control signal ũt is obtained by
vector quantizing the signalξt. When the quantizer is an ECDQ, it was shown in [4] that
the quantized (and reconstructed) control variableūt can be modelled as

ūt = Ψ−1(nt + ξt), (7)

wherent (the quantization noise) andξt are mutually independent andξt = Γxt. As done
in [6], we will use ūt to denote the quantized (and reconstructed) control vector, which
has been found by using an ECDQ onξt. Thus,ūt denotes a vector of continuous-alphabet
variables whereas̃ut is the vector of corresponding quantized discrete-alphabet variables,
which is entropy coded and thereby converted into a bit-stream (to be transmitted over
the network).

III. M ULTIPLE DESCRIPTIONS

MDs based on vector quantization and with many packets have been considered in
e.g. [9]. Using the MD approach of [9] would provide several quantized predicted control
vectors, which are able to refine each other. However, we are here interested in receiving
an accurate control signal for the current time instance, independently of which packet
is received. To achieve this ability, we will instead be using MD based on forward error
correction (FEC) codes [10], [11]. The idea we first presented in [6] turns out to be
applicable to present situation as well and we will briefly describe the key points below.
For more details, we refer the reader to [6]. Recall that the quantized control vector̃ut

containsN elements, i.e., the current control value andN − 1 future control values. Let
us now split thisN-dimensional vector in toM = N sub sequences, each consisting of a
single (scalar) control value. The first discrete control value ũt(1) is repeated in each of
theM packets. The second control signalũt(2) is split into two equal sized bit sequences.
Then, an(M, 2)-erasure code is applied and theM resulting outputs are evenly distributed
to theM packets. The third control̃ut(3) is split into three equal sized bit sequences,
and an(M, 3)-erasure code is applied. This process continues until allM signals are



used. This results inM partially redundant packets, which are constructed in sucha way
that upon reception of any single packet, the first discrete control signalũt(1) can be
reliably reconstructed. Moreover, from̃ut(1), we can generatēut(1) simply by subtracting
the known (pseudo-random) dither signal. Upon reception ofany 0 < J ≤ M packets
the firstJ control signals̄ut(1), . . . , ūt(J), can be recovered errorlessly. To simplify the
notation, we will only consider the case whereM = N , i.e., the number of packets
equals the horizon length. It is, however, straight-forward to generalize this construction
to anyM < N packets. For example, ifM < N then the remainingN − M control
signals can be treated together as input to the last(M,M)-erasure code.

IV. SYSTEM ANALYSIS WITH TIME-DELAYS AND DROPOUTS

This section considers the case where the network could introduce time-delays, packet
erasures, and where packets could be received out-of-order.

A. Buffering at the Decoder and Reconstruction of Control Signals

As shown in Fig. 1, there is a receive buffer at the plant side,which keeps track of
the received packets. The buffer is finite, i.e., at timet it contains all received packets,
which are not older thant−N +1. The current control signal, saŷut, will be generated
based upon the contents of buffer.

The control signals are generated in the following way. Let us denote theM packets
at time t as c̄it, i = 1, . . . ,M, and let us assume that the buffer is empty prior to timet.
Moreover, let us assume thatM = 3, so that three packets are generated at each time
instance. At timet, we could receive any subset of the three packets (includingthe empty
set). For the sake of example, assume that we receive a singlepacket, saȳc2t . Since the
first control signal can be obtained from any of the three packets, the buffer is able to
reconstruct the control signal aŝut = ūt(1). At time t + 1, we could e.g., receive two
packets, saȳc1t+1 and c̄3t . The latter packet is a delayed packet. However, from the former
packetc̄1t+1, we obtain the control signal̂ut+1 = ūt+1(1) and momentarily simply ignore
the late packet̄c3t . Finally, at timet+ 2, we only receive the late packetc̄1t . This means
that, at timet+2, the buffer contains all three packets from timet, a single packet from
time t+ 1, and no packets from timet+ 2. We would thus construct the current control
signal asût+2 = ūt(3). All the possible combinations for the case ofM = N = 3 are
illustrated in Table I.

For the case whereM = N ≥ 1, we use the idea first presented in [6] and define
Ik
t,t′ ∈ {0, 1} as an indicator function, which is “1” if at leastk out ofM packets of time

stampt are in the buffer at timet′ and “0” otherwise. In particular,

I1

t,t =

M
∏

i=1

dit,t +

M
∑

j=1

(1− djt,t)

M
∏

i=1,i 6=j

dit,t

+

M−1
∑

j=1

M
∑

l=j+1

(1− djt,t)(1− dlt,t)

M
∏

i=1,i 6=j,l

dit,t

+ · · ·+

M
∑

j=1

djt,t

M
∏

i=1,i 6=j

(1− dit,t)



ût c̄1t c̄2t c̄3t c̄1t−1 c̄
2
t−1 c̄

3
t−1 c̄1t−2 c̄

2
t−2 c̄

3
t−2

ūt(1) 1 x x x x x x x x
ūt(1) x 1 x x x x x x x
ūt(1) x x 1 x x x x x x
ūt−1(2) 0 0 0 1 1 x x x x
ūt−1(2) 0 0 0 1 x 1 x x x
ūt−1(2) 0 0 0 x 1 1 x x x
ūt−2(3) 0 0 0 x 0 0 1 1 1
ūt−2(3) 0 0 0 0 x 0 1 1 1
ūt−2(3) 0 0 0 0 0 x 1 1 1

Table I: Control valueût at time t from available buffer contents. “1” indicates that the packet is in the
buffer and “0” indicates that it is not. “x” indicates that the control value does not depend on the given
packet. In all other cases, we setût = 0.

I2

t−1,t =
M
∏

i=1

dit−1,t +
M
∑

j=1

(1− djt−1,t)
M
∏

i=1,i 6=j

dit−1,t

+

M−1
∑

j=1

M
∑

l=j+1

(1− djt−1,t)(1− dlt−1,t)

M
∏

i=1,i 6=j,l

dit−1,t

+ · · ·+

M−1
∑

j=1

M
∑

l=j+1

djt−1,td
l
t−1,t

M
∏

o=1,i 6=j,l

dot−1,t

...

IM
t−N+1,t =

M
∏

i=1

dit−N+1,t.

Recall that with FEC based MD, the vector(ūt(1), ūt(2), . . . , ūt(k)) is available at the
buffer at timet′ if and only if Ik

t,t′ = 1. With this, the control signal̂ut to be used at
time t is given by:

ût = ūt(1)I
1

t,t + (1− I1

t,t)[I
2

t−1,tūt−1(2) + (1− I2

t−1,t)

× [I3

t−3,tūt−2(3) + · · ·

+ (1− IM−1

t−N+2,t)I
M
t−N+1,tūt−N+1(N)] · · · ], (8)

where it follows thatût = 0 in the event thatI1
t,t = I2

t−1,t = · · · = IM
t−N+1,t = 0, which

is the case if no packets have arrived inN = M consecutive time instances.

B. Markov Jump Linear System with Delay and Packet Dropouts

At this point, we defineĨk
t′,t to be the indicator function, which is one ifk of the

M = N packets constructed at timet′ are in the receive buffer at timet but less thank



of these packets are in the buffer at times prior tot. Specifically,

Ĩk
t′,t ,

{

1, if Ik
t′,t = 1 and Ik

t′,t−j = 0, ∀j > 0,

0, else,
(9)

where it follows thatĨk
t,t = Ik

t,t, ∀t, k. Finally, let Īt denote the indicator matrix given
by:

Īt(i, j) ,











Ĩi
t,t, if i = j,

Ĩj
t+i−j,t

∏j−1

ℓ=i (1− Ĩℓ
t+i−ℓ,t), if j > i,

0, if i > j.

(10)

Note that each row of the indicator matrix̄It is either the all zero vector or it contains a
single one andM −1 zeros. The position of such a one is always in the upper triangluar
region wherej ≥ i. For example, if allM packets generated at timet are also received
at timet thenĪt is the identity matrix. To further clarify, consider the following scenario.
Assume thatN = M = 3 and that at timet − 2, the only packets received are two out
of the three packets constructed at timet−2. The third missing packet generated at time
t−2 is not received until at timet. In addition, at timet−1, a single packet constructed
at timet−1 is received. Finally, at timet, no additional packets are received. This yields
the following sequence of indicator matrices:

Īt−2 =





1 0 0
0 1 0
0 0 0



 , Īt−1 =





1 0 0
0 0 0
0 0 0



 , Īt =





0 0 1
0 0 0
0 0 0



 . (11)

Lemma 4.1:The numberK of distinct indicator matrices̄It is

K =
M

6
(5 +M2) + 1. (12)

Proof: See Appendix A.

Before we present the main result of this paper, we introducef̄t = [ft(1), . . . , ft(N)]T ,
which is anN-length vector representing the buffer at the plant input side holding present
and future control values. In particular,ft(1) is the control value to be applied at current
time t, andft(i) is to be applied at timet+ i, unless the buffer is changed in the mean
time.

Below we present the main theorem. Since the proof is quite lengthy it has been omitted
due space considerations and will instead appear in a forthcoming journal version of this
paper.

Theorem 4.1:Let x̄t = [xt, . . . , xt+1−N ]
T , and n̄t = [nt, . . . , nt+1−N ]

T , be theN past
and present system state vectors and quantization noise vectors, respectively. Moreover,
let Ξt be the augmented state variable given by

Ξt ,

[

x̄t

f̄t−1

]

. (13)

Then, in the presence of i.i.d. packet dropouts (and random delays), (13) satifies the



MJLS given by

Ξt+1 = Ā(Īt)Ξt + B̄(Īt)





wt

0

n̄t



 , (14)

where Ā(Īt) and B̄(Īt) are the system’s switching matrices havingM
6
(5 + M2) + 1

different realizations (or jump states), which are indexedby Īt. △

From a stability assessment point of view, it is very convenient that the system can be
cast as a finite state MJLS, since this allows one to use e.g., linear matrix inequalities
to obtain some sufficient and necessary conditions for stability. In particular, we include
the following well-known results:

Corollary 4.1 (Sufficient Condition for MSS):The system (14) is mean square stable
(MSS) if there existsΓ ≻ 0 such that

Γ−
∑

Īt

p̃(Īt)Ā
T (Īt)ΓĀ

T (Īt) ≻ 0, (15)

wherep̃(Īt) denotes the probability associated with the jump state indexed by Īt.

Proof: Follows immediately from [12, Corollary 3.26] since the jump-state sequence
{Īt} is ergodic and the number of jump-states is finite.

Corollary 4.2 (Necessary Condition for Stability):Let λi
t denote theith eigenvalue of

the matrixĀ(Īt). Then, a necessary condition for MSS is that

max
i

{|λi
t|} <

√

1/p̃(Īt), for all Īt. (16)

Proof: Follows immediately from [13].

APPENDIX A
PROOF OFLEMMA 4.1

The first row ofĪt can be any ofM +1 distinct patterns, where at most one of theM
elements is one and the others are zero. In general, theith row can take onM + 2 − i
distinct patterns. The maximum number of possible distinctpatterns is therefore(M+1)!.
Notice, however, that these rows are not independent, sincewe always use the newest
control information available. Thus, if we at timet have two packets from timet−1 and
three packets from timet−2, we will use the control valuēut−1(2) from timet−1. From
this we deduce that if element(i, j) is one, then no element(i− i′, j+ j′), i′ > 0, j′ ≥ 0,
can be one, since otherwise an older control signal is used for ft(i − i′) than the one
used forft(i), which is not allowed. It therefore also follows that the column sum is at
most one.

Consider anM ′ × M ′ diagonal matrix with ones on the firsti entries on its main
diagonal. It is possible to up-shift this matrix at mosti−1 times and end up with distinct
non-zero matrices. Indeed, afteri − 1 up shifts, there is a single one at position(1, i).
Summing over alli’s from one toM ′ yields0+1+ · · ·+M ′−1 = 1

2
M ′(M ′+1) possible

shifts, which results in distinct non-zero matrices. We also have the originalM distinct
diagonal matrices havingi = 1, . . . ,M, ones on main the diagonal, and in addition we
have the all zero matrix. Thus, in total we haveM +1+ 1

2
M ′(M ′ +1) distinct matrices.



Having ones on thejth diagonal and zero elsewhere, corresponds to packets constructed
at the same timet−j. Thus, the above up-shifting operations account for all thepossible
combinations of receiving subsets of packets that are constructed at the same time.

It is also possible to receive packets constructed at different times. For example, at time
t one may receive packets constructed at timet− i as well as packets constructed at time
t−j, i 6= j, 0 ≤ i, j ≤ N−1. To take all the admissible mixing possibilities into account,
we split theM × M indicator matrix into a sequence ofM − 1 nested submatrices.
Specifically, we form the first submatrix as the(M − 1) × (M − 1) matrix, which do
not include the first row or first column of the original matrix. The jth submatrix is the
(M − j) × (M − j) matrix, which do not include the firstj rows or j columns of the
original matrix. For each of the submatrices, we form all possible up-shifts that lead
to non-zero matrices. Combining all this results in the total number, sayK, of distinct
admissible indicator matrices, i.e.,

K = (M + 1) +

M−1
∑

M ′=1

1

2
(M ′(M ′ + 1) =

M

6
(5 +M2) + 1. (17)
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