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Abstract

Previous reference-based compression on DNA sequences do not fully exploit the intrinsic 

statistics by merely concerning the approximate matches. In this paper, an adaptive difference 

distribution-based coding framework is proposed by the fragments of nucleotides with a 

hierarchical tree structure. To keep the distribution of difference sequence from the reference and 

target sequences concentrated, the sub-fragment size and matching offset for predicting are 

flexible to the stepped size structure. The matching with approximate repeats in reference will be 

imposed with the Hamming-like weighted distance measure function in a local region closed to 

the current fragment, such that the accuracy of matching and the overhead of describing matching 

offset can be balanced. A well-designed coding scheme will make compact both the difference 

sequence and the additional parameters, e.g. sub-fragment size and matching offset. Experimental 

results show that the proposed scheme achieves 150% compression improvement in comparison 

with the best reference-based compressor GReEn.

I. Introduction

With the development of high-throughput sequencing technologies, rapid reduction of 

sequencing cost enables the research projects centered on individual genomics and 

personalized medicine. The large scale projects such as the 1000 Genomes Project (http://

www.1000genomes.org/) and The Cancer Genome Atlas (http://cancergenome.nih.gov/) 

have been contributing to the unprecedented volume of DNA sequences. As pointed out by 

Kahn [1], the exponential explosion in genomic data has presented a significant challenge to 

the disk storage and high-performance computation. It is crucial for the development of 

novel efficient compression techniques to close the reality gap.
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DNA sequences are characterized with repeated patterns of four different kinds of 

nucleotides, namely Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). General 

purpose compression algorithms such as compress, gzip and bzip2 fail to compress DNA 

sequences without taking DNA structures into sufficient consideration. Consequently, a 

series of specialized compression methods are proposed to focus on the characteristic 

structures such as approximate repeats (repeats with mutations) and complementary 

palindromes (reversed repeats). Inspired by Ziv-Lempel data compression method [2], 

Grumbach and Tachi proposed the first specific DNA sequence compressor Biocompress 

[3], to compress the exact repeats with the specifically designed Fibonacci coding. The 

compression performance was improved in successive literatures by the introduction of 

Markov model for non-repeated regions [4], extension to the approximate repeats for further 

exploitation of the structures in DNA sequences [5], [6], and utilization of dynamic 

programming for optimal detection and matching of approximate repeats [7], [8]. Although 

methods based on approximate repeats show promising results, no theoretic principles on 

approximate matching algorithm has been established for such heuristic methods. 

Consequently, statistical-based methods were introduced for the intensive prediction of the 

generation of the nucleotides. [9]–[11] proposed the normalized maximum likelihood model 

to determine the best regressor for matching and substitution of variablesize approximate 

repeats. XM [12] estimated the probability distribution of symbols by combining a panel 

of ”experts” with the repeat expert concerning the approximate repeats. Finite context 

models are also proposed and compared to rapidly capture variable-order statistical 

information along the DNA sequences [13], [14]. In spite of the evolutionary development 

of compression techniques, reference-free methods are subjected to their low compression 

rate (not greater than 6:1) and prohibitive computational cost for large DNA data sets.

Since the significant part of the genome is shared among individuals of the same species, 

reference-based compression methods are proposed to utilize such redundancy for more 

efficient compression. The idea for storing and reducing redundant genomic data was firstly 

based on additional information, e.g. single nucleotide polymorphism (SNP) databases [15] 

or insert and delete operations [16]. To eliminate the additional information, the RLZ 

algorithm proposed by Kuruppu et al. [17] performed relative Lempel-Ziv compression of 

DNA sequences with the collection of related sequences but could not handle the sequences 

with characters outside the alphabet {A, T, G, C, N}. However, resequencing techniques 

inevitably introduce additional characters into the alphabet, e.g. the lower case character {a, 

t, g, c, n}, to represent the uncertainty at a certain position in DNA sequences. Wang et al. 

[18] proposed the general Genome ReSequencing (GRS) tool for compressing and storing 

the sequencing data with the reference by considering the chromosome varied sequence 

percentage. For the efficient compressive performance and robust support for arbitrary 

alphabets, GReEn [19] applied the copy model into the matching of exact repeats in 

reference sequences and established probabilistic model for such matching. GReEn achieved 

better coding gain when compared to [17] and [18]. The recent trend of reference-based 

methods implies that matching and representing repeated patterns with the reference in a 

probabilistic manner significantly improves the performance of genome compression 

techniques. However, these methods cannot fully exploit the redundancies in the reference-
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based compression, since the variable sizes and offsets of repeats and the exception of 

insertion, deletion and substitution in matching degrade its efficiency.

In this paper, we propose a novel framework on the fragments of nucleotides with a 

hierarchical tree structure for the reference-based genome sequence compression. In each 

fragment, the sub-fragment size and matching offset for predicting are flexible to the 

stepped size structure. The matching with approximate repeats in reference would be 

imposed with the Hamming-like weighted distance measure function in a local region closed 

to the current fragment, such that the accuracy of matching and the overhead of representing 

matching offset can be balanced. Specifically, the distribution of the difference sequence 

from the reference and target sequences is kept concentrated and consequently suitable for 

compression. Finally, a well-designed coding scheme will make compact both the difference 

sequence and the additional parameters, e.g. sub-fragment size and matching offset. The 

proposed method is robust in dealing with arbitrary alphabets for the case in which the 

alphabet is not constrained to {A, T, G, C} due to a low resequencing quality. Experimental 

results show 150% compression improvement in comparison with the best reference-based 

compressor GReEn.

The rest of this paper is organized as follows. Section II presents the proposed framework, 

which includes the construction of Hamming-like distance measure function as well as the 

well-designed coding scheme. The reference-based experimental results on two assemblies 

of human genome are evaluated in Section III. Section IV draws the conclusion and makes 

the discussion.

II. The Proposed Framework

A. Adaptive Difference Distribution-based Coding Framework

This section presents the proposed framework for the adaptive compression of difference 

between reference sequence and the encoding sequence. The introduction of difference 

sequence is due to the fact that DNA sequences are characterized with approximately 

repeated patterns with exception of single insertion, deletion and substitution. The 

distribution of the obtained difference sequences is not uniform, and only several symbols 

appear in a high frequency, as witnessed in Fig. 2-4.

The generic genome compression framework based on the difference sequence is depicted in 

Fig. 1. The sequence for compression is segmented into fragments of nucleotides with size 

MAX_FRAG_SIZE, such that the sequence is predicted individually based on each 

fragment. A hierarchical tree structure with MAX_TREE_DEPTH is constructed for each 

fragment. The fragment can be divided into sub-parts by iteratively halving its size 

according to the hierarchical tree. The introduction of hierarchical structure of halving sub-

parts rather than fragments with arbitrary sizes is to maintain a compact alphabet of 

fragment sizes for coding. For example, if MAX_FRAG_SIZE is 256 and 

MAX_TREE_DEPTH is 6, the sub-fragment size SF_SIZE ∈ {256, 128, 64, 32, 16, 8}. 

Under such settings, the approximate repeats in the genome sequence can be flexibly 

predicted by adaptively switching to the proper sub-fragment size.
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The prediction of each fragment is obtained by subtracting the most similar subsequences of 

nucleotides in the reference. Differences can be obtained directly by comparing the ASCII 

values of corresponding symbols in the reference and target sequences. Fig. 2 gives an 

example, where a sub-fragment of 16 nucleotides in target sequence is predicted by 

subtracting the corresponding one in reference. It is obvious that the target sequence can be 

reconstructed from the difference sequence with the additional parameter SF_OFFSET = 0 

and SF_SIZE = 16. These two parameters are also required in the decoder.

The combination of sub-fragments in reference sequence that differ from the current 

fragment in shortest distance are sought in prediction. Fig. 3 shows an example for selecting 

two sub-fragments of 8 nucleotides as the reference for the fragments of 16 nucleotides. 

Commonly, such searching is constrained in the local region around the position of current 

sub-fragment, since emerging long offset will consume large amount of bits in coding even 

though it might obtain better matching. When given the MAX_OFFSET for searching, the 

matching offset SF_OFFSET could be {0, ±1, ··· , ±MAX_OFFSET}. Denote Fn the current 

sub-fragment for predicting and  the one matching Fn in the reference sequence, the 

coding cost J (Fn) can be formulated as

(1)

where PARAM = {SF_SIZE(Fn), SF_OFFSET(Fn)} is the parameter set indicating current 

sub-fragment size and matching offset. Consequently, the reference-based prediction is to 

find the best matching of current sub-fragment that achieves

(2)

The best matching can be found by traversing all possible settings of the parameter set 

PARAM. Theoretically, the cost function indicating the empirical entropy, J (·) = −log2 P 

(·), is expected to achieve the least code length. However, under such cost function, it is hard 

to find the concurrent optimized solution for all the sub-fragments in iterative hierarchical 

tree structure. For the efficient estimate of coding cost, the Hamming-like distance 

measurement is introduced.

B. Distance Measurement

In this subsection, the Hamming-like distance measurement is introduced. As mentioned 

above, since the main part of the genome is shared among individuals of the same species, 

the difference between the encoding sequence and reference sequence tends to be long 

uniform string with the emergence of unexpected symbols. These unexpected symbols are 

hard to be predicted accurately because of their low probabilities of appearance. 

Consequently, it needs much more bits to represent these unexpected symbols in the 

compressed files, which may be greater than their raw lengths. As a result, the Hamming-

like distance can approximately estimate the coding cost for the obtained difference 

sequence.
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Denote  and  the sub-fragment for encoding and its corresponding 

reference respectively. When xi equals its corresponding nucleotide  in reference, the 

Hamming distance Hamm ( ) is set to zero. If xi does not equal , the Hamming 

distance is increased to represent the difference. However, the difference in cases of the 

nucleotides (e.g. ’a’ and ’A’, ’g’ and ’G’, and etc.) contributes to the majority of obtained 

differences. As shown in Fig. 2, the difference between 16 nucleotides is 10 ’00’ and 6 ’E0’ 

(0xE0 indicates the difference between lower case and upper case of the same character in 

ASCII). The results in Fig. 4 demonstrate the fact that zero difference and the difference 

between the upper and the lower case of same nucleotides commit almost all the distribution 

of difference symbols. Thus, a set of weights of Hamming distance are assigned to the 

various difference by approximately comparing their frequencies shown in Fig. 4.

(3)

The weight for all the other difference is large enough such that it will not affect the 

detection of exact match and difference in cases. Eq. 3 implies that the difference sequence 

is formulated as the long uniform string of 0 or 0xE0 with the others appearing as the 

unexpected symbols. Consequently, the Hamming distance between two sub-fragment is 

defined as

C. Coding of Difference Sequence

The distribution of difference sequence is suitable for the high-efficiency compression, as 

shown in the histograms in Fig. 4(a) and (b). A switching structure is proposed for the 

coding of difference sequence. The switching coding structure proposes run length coding 

for the fragments with same values and the textual compressor PPM [20] as the routine 

encoder. To be concrete, the general purpose textual compression tool PPMDj is adopted for 

the common coding of difference sequence, which is consistent in coding by making the 

code length independent of the appearance order of the context symbols. The concentrated 

distribution of difference sequence is suitable for the symbol-based compressor. In addition, 

run length coding is developed for the fragments of difference with unique values, e.g. 0 or 

0xE0. Such fragments are indicated with symbol ”00FF” and ”E0FF” for the brief 

representation in the coding scheme. The switching structure will decrease the coding cost 

by fitting the statistics of various regions in the difference sequence.

D. Corporative Coding of Parameter Sets

The parameter sets are required for the reconstruction of the encoding DNA sequence from 

the difference sequence. Its parameters include the size and matching offset for each 

predicted sub-fragment. They are stored in the unit of sub-fragment with 

MIN_FRAG_SIZE. Compression of these two sets of parameters is not isolated. Each set of 
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parameters can be taken as the context for encoding the other. Denote {S1, S2, ··· , Sn} and 

{O1, O2, ··· , On} the predicted sub-fragment size and matching offset. The contexts for 

predicting current size S and offset O are constructed in Table I, where n is the maximum 

context order. Based on above context models, the parameter sets are compressed with the 

arithmetic coder.

III. Experimental Results

In this section, the proposed method is evaluated by comparing with the benchmark 

reference-based compressor GReEn [19] and GRS [18], among which GReEn is the best 

reference-based compressor for FASTA format genomic data. Two assemblies of human 

genome, YH and KOREF_20090224 were compressed based on the reference sequences for 

validation. All experimental results were obtained using an Intel Core i7-3620QM CPU 

laptop computer at 2.2 GHz with 8 GB of memory and VC++ 9.0 compiler.

The implementation of the proposed method can be referred to Algorithm 1. In this 

implementation, MAX_FRAG_SIZE and MIN_FRAG_SIZE were set to 256 and 8 

respectively. The maximum depth for hierarchical tree was 6 and the maximum matching 

offset for approximate repeats was 32. These settings can be further tuned for optimal 

performance, although they are already qualified to validate our method in this paper. The 

proposed method was implemented iteratively, where at each depth of hierarchical tree, the 

sub-fragments were divided into NUM_PART = 2 subparts. The hierarchical tree can be 

stored in memory as the proposed method is based on fragment of nucleotides with 

constrained size MAX_FRAG_SIZE. Consequently, the difference sequence was obtained 

by subtracting the combination of variable size sub-fragments based on the optimal 

matching in reference sequence within the constrained local region.

Table II shows the compression results for the KOREF_20090224 human genome using the 

KOREF_20090131 as reference. In Table II, the proposed method gives consistently better 

results compared to GReEn and GRS. The proposed method achieves a 480 folds 

compression ratio in average, which is 1.5 times better than what GReEn achieves. Since 

KOREF_20090224 and KOREF_20090131 are the various versions of the same ethnic 

group, there are massive similar repeats between the two sequences which leads to the high 

efficiency compression.

Besides that, an additional investigate for compression human genome assemblies is made. 

Table III displays the compression results for the YH human genome using 

KOREF_20090224 as reference. YH and KOREF_20090224 are both the individual genome 

based on resequencing data from massively parallel sequencing technologies. However, they 

are different in some extent as they are from different ethnic groups. Table III shows that 

GRS fails to compress most of the sequences because of the excessive difference between 

the reference and target sequences. The proposed method outperforms GReEn with the 

exception of chromosome ChrM. An average 150% improvement in compression ratio is 

witnessed. The reason for the less effective performance of the proposed method in ChrM is 

probably because ChrM is relatively small and the overhead led by the size and mode offset 

of sub-fragment outrides the gain in compression.
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The experiments on the assemblies of human genome demonstrate that the proposed method 

provides the efficient and robust support for the genome compression (with reference) at the 

presence of large gaps and arbitrary alphabets.

IV. Conclusion and Discussion

Recognizing the insufficient exploitation of statistics of DNA sequences in the reference-

based compressor, an adaptive difference distribution-based coding framework for DNA 

sequence is proposed. Exploiting the characteristic structures of approximate repeats in 

DNA sequences, difference sequences obtained from the reference and target sequences 

commit a more concentrated probabilistic distribution of symbols for coding. The weighted 

Hamming-like distance measurement in a local region is imposed is imposed to match the 

approximate repeats and formulate the difference sequences. The size and matching offset of 

the sub-fragments for prediction are determined by a hierarchical tree structure in the 

fragment of nucleotides. A well-designed coding scheme compresses both the difference 

sequence and the additional parameters, e.g. sub-fragment size and matching offset. 

Experimental results shows that the proposed scheme achieve 150% compression 

improvement in comparison with the benchmark compressor GReEn and GRS.

The introduction of difference distribution-based coding framework in DNA sequence 

compression is meaningful, since it could be an alternative way to exploit the specific DNA 

structures. Distinguished from explicit methods that find and encipher optimal matching for 

approximate repeats, the proposed framework implicitly extracts difference sequences from 

reference and target sequences for a more concentrated probabilistic distribution of symbols 

for coding. This framework reduces the excess overhead led by exception of insertion, 

deletion and substitution in matching repeats. Such adaptive hierarchical coding framework 

can be further improved with sophisticated coding of difference sequences and efficient 

prediction of size and matching offset of the sub-fragments, e.g. sliding window with 

dynamic decision of size for obtaining difference sequences, suffix tree for maintaining the 

hierarchical coding structure, and etc.
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Fig. 1. 
The flowing diagram for the proposed framework
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Fig. 2. 
An example for the proposed framework. The fragment of 16 nucleotides is predicted based 

on the reference. The difference fragment is obtained by subtracting the selected reference 

from the target.
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Fig. 3. 
An example for the proposed framework. The fragment of 16 nucleotides is predicted based 

on two sub-fragment of 8 nucleotides in reference. The difference fragment is obtained by 

subtracting the selected reference from the target.
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Fig. 4. 
Distribution of difference in YH human genome with reference KOREF_20090224
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TABLE I

Context construction based on predicted sub-fragment size and mode offset

S1 = S2 S = P({S1, S2, · · · , Sn}) O = P ({O1, · · · , On})

S1 ≠ S2, O1 ≠ O2 S = S1 O = P({O2, · · · , On})

S1 ≠ S2, O1 = O2 S = S1 O = P ({O3, · · · , On})
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TABLE II

Performance of the proposed method in compressing the sequence KOREF_20090224 using 

KOREF_20090131 as the reference

Chr Raw file (byte)
Proposed scheme GReEn GRS

Byte Ratio Byte Ratio Byte Ratio

1 247249719 450642 548.7 1225767 201.7 1336626 185.0

2 242951149 448789 541.3 1272105 191.0 1354059 179.4

3 199501827 346616 575.6 971527 205.3 1011124 197.3

4 191273063 378619 505.2 1074357 178.0 1139225 167.9

5 180857866 328193 551.1 947378 190.9 988070 183.0

6 170899992 308719 553.6 865448 197.5 906116 188.6

7 158821424 345454 459.7 998482 159.1 1096646 144.8

8 146274826 261982 558.3 729362 200.6 764313 191.4

9 140273252 286168 490.2 773716 181.3 864222 162.3

10 135374737 257389 526.0 717305 188.7 768364 176.2

11 134452384 252522 532.4 716301 187.7 755708 177.9

12 132349534 239887 551.7 668455 198.0 702040 188.5

13 114142980 183914 620.6 490888 232.5 520598 219.3

14 106368585 171257 621.1 451018 235.8 484791 219.4

15 100338915 168867 594.2 453301 221.4 496215 202.2

16 88827254 182593 486.5 510254 174.1 567989 156.4

17 78774742 162958 483.4 464324 169.7 505979 155.7

18 76117153 137162 554.9 378420 201.1 408529 186.3

19 63811651 134458 474.6 369388 172.7 399807 159.6

20 62435964 101199 617.0 266562 234.2 282628 220.9

21 46944323 78570 597.5 203036 231.2 226549 207.2

22 49691432 88596 560.9 230049 216.0 262443 189.3

M 16571 67 247.3 127 130.5 183 90.6

X 154913754 935464 165.6 2712153 57.1 3231776 47.9

Y 57772954 165553 349.0 481037 120.0 592791 97.5

Total 3080436051 6415638 480.1 17971030 171.4 19666791 156.6

The size of compressed file (in bytes) and compression ratio of the proposed scheme, GReEn and GRS are shown respectively. The compression 
ratio is obtained by raw_fiie_size/compressed_file_size.
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TABLE III

Performance of the proposed method in compressing the sequence YH using KOREF_20090224 as the 

reference

Chr Raw file (byte)
Proposed scheme GReEn GRS

Byte Ratio Byte Ratio Byte Ratio

1 247249719 965165 256.2 2349124 105.3 - -

2 242951149 956853 253.9 2420007 100.4 - -

3 199501827 781239 255.4 1730477 115.3 17410946 11.5

4 191273063 824032 232.1 1877056 101.9 - -

5 180857866 727139 248.7 1792278 100.9 - -

6 170899992 720526 237.2 1588739 107.6 25815446 6.6

7 158821424 714796 222.2 1820425 87.2 - -

8 146274826 594668 246.0 1358770 107.7 - -

9 140273252 572769 244.9 1476495 95.0 - -

10 135374737 562035 240.9 1353193 100.0 - -

11 134452384 564596 238.1 1274433 105.5 - -

12 132349534 538248 245.9 1174966 112.6 16136610 8.2

13 114142980 396867 287.6 866266 131.8 11227954 10.2

14 106368585 382754 277.9 826672 128.7 - -

15 100338915 355867 282.0 892429 112.4 - -

16 88827254 378642 234.6 1015246 87.5 - -

17 78774742 323710 243.3 864710 91.1 - -

18 76117153 316497 240.5 713787 106.6 13187892 5.8

19 63811651 272346 234.3 589422 108.3 - -

20 62435964 246879 252.9 493404 126.5 8409776 7.4

21 46944323 181559 258.6 374383 125.4 726269 64.6

22 49691432 191302 260.0 444932 111.7 - -

M 16571 139 119.2 127 130.5 321 51.6

X 154913754 863394 179.4 3258188 47.5 - -

Y 57772954 180713 319.7 859688 67.2 - -

Total 3080436051 12612735 244.2 31415217 98.1 - -

The size of compressed file (in bytes) and compression ratio of the proposed scheme, GReEn and GRS are shown respectively. The compression 
ratio is obtained by raw_file_size/compressed_file_size.
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Algorithm 1

Proposed scheme for adaptive difference-based compression framework

1: Segment the input chromosome file into fragments with MAX_FRAG_SIZE = 256 and MAX_DEPTH = 6.

2: for All fragments do

3:     Initialize Depth = MAX_DEPTH and SF_SIZE = MAX_FRAG_SIZE.

4:     while Depth > 1 do

5:         NUM_PART = 2.

6:         for All possible matching offset SF_OFFSET do

7:             Compare current (sub)fragment with the reference with SF_OFFSET and SF_SIZE.

8:             Compute the Hamming-like distance as defined in II.B and store the minimal one.

9:                 end for

10:         if Current distance is minimal then

11:             Subtract reference from current (sub)fragment with corresponding SF_OFFSET and SF_SIZE.

12:             Store current difference sequence, current distance, SF_OFFSET and SF_SIZE.

13:                 end if

14:         Divide current (sub)fragment into NUM_PART sub-parts.

15:         for All NUM_PART sub-parts do

16:             Compare current sub-part with the reference.

17:             Compute the Hamming-like distance as defined in II.B and store the minimal one.

18:             Obtain the corresponding optimal difference sequence, SF_OFFSET and SF_SIZE.

19:                 end for

20:         Obtain the total distance for the NUM_PART sub-parts.

21:         Compare two distances and decided the optimal difference sequence, SF_OFFSET and SF_SIZE.

22:         end while

23:     Encode difference fragment, matching offset and fragment size

24: end for
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