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Abstract

Symmetric fix-free codes are prefix condition codes in whach eodeword
is required to be a palindrome. Their study is motivated by tibpic of joint
source-channel coding. Although they have been consideyea few commu-
nities they are not well understood. In earlier work we usedo#lection of
instances of Boolean satisfiability problems as a tool in gle@eration of all
optimal binary symmetric fix-free codes withcodewords and observed that
the number of different optimal codelength sequences gstevely compared
with the corresponding number for prefix condition codes.d@mmonstrate that
all optimal symmetric fix-free codes can alternatively b&aoted by sequences
of codes generated by simple manipulations starting froen marticular code.
We also discuss simplifications in the process of searclunthfs set of codes.

1. Introduction

Shannon’s pioneering work on information theory |[15] ebthles that source and
channel encoding can be separated without a loss of perfmgnassuming infinite
blocklengths are permitted. However, that result does pmyato real transmission
situations with complexity and latency constraints, anerehis therefore an interest in
joint source-channel coding and decoding techniques. Madgo, audio, and image
standards use prefix condition codes. It is therefore inteng to devise prefix condition
codes with additional constraints which result in binargadings of data with increased
immunity to noise prior to channel encoding. For exampiefreeor reversible variable
length codes (see, e.gl, [14], [7], [4],_[16]) are prefix ctiod codes in which no
codeword is the suffix of another codeword, and they are comemis of the video
standards H.264 and MPEG-4 [17]] [9], [20C], [10].

Our focus in this paper is upon a subclass of fix-free codesvkras symmetricfix-
free codesl|[16]. Here each codeword must be a palindromentgymc fix-free codes
were found [[2] to be preferable to other fix-free codes font@ource-channel coding.
They are also easier to study because a collection of palimes which satisfies the
prefix condition automatically satisfies the suffix condit{d6], [18], [12]. Nevertheless,
although they have also been studied(in [3],/ [17], [10], [B], [13] they are not well-
understood. For example, there is no exact counterpartedthaft inequality/equality
for symmetric fix-free codes, although [16], [18], [12], Jidscuss some simple nonex-
haustive necessary and sufficient conditions for the codéwengths of such codes. In
[12], [1], [13] we convert the problem of determining the seince of a symmetric fix-
free code with given codeword lengths into a Boolean saliditia problem and offer
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branch-and-bound algorithms to find the set of optimal cddeall memoryless sources,
i.e., codes which minimize the average codeword length gnahsymmetric fix-free
codes for some choice of source probabilities. For a giveincsoits optimal code can be
found by calculating the expected codeword length for edcth@ optimal codelength
sequences and choosing the corresponding optimal codd],lfilB] we show that the
number of sorted and nondecreasing optimal codelengthesegsa for binary symmetric
fix-free codes withn codewords appears to grow very slowly withcompared with the
corresponding exponential growih [6] for binary prefix citioeh codes (see the appendix).
Therefore, whem is not too large it appears to be feasible to calculate anc st
optimal codes and to choose the best among them for a givdicapmm. The paper [8]
proposes am*-based algorithm for a different way to obtain an optimal syetric fix-
free code for a given source, but this procedure does nat wifeeh mathematical insight
about optimal codes. The existing understanding aboutngpptcodes is very limited.

Although solving instances of Boolean satisfiability pexbk can be one component in
the generation of optimal codes, we propose in Section 3 glatety different derivation
of them. Our inspiration comes from a papger|[11] which shdves the space of all sorted
and non-decreasing sequences of codeword lengths of dptimery prefix condition
codes forms a lattice called thmbalancelattice. Among the length sequences which
satisfy the Kraft inequality with equalityl, 2, 3, ..., n—1, n—1) is considered to be
the most imbalanced because it corresponds to the largesbsoodeword lengths. The
authors of[11] describe a basic operation on three valuasaoideword length sequence
which when repeated enough times will transform the mostiarced codeword length
sequence into an arbitrary sorted and non-decreasing aptiodeword length sequence.

We will not work here with length sequences but instead wik binary codes
themselves. Although the optimal codes do not form a latiiee will see that they
can each be attained from the repetition of a basic operatiooh eventually transforms
the most “imbalanced” optimal code into an arbitrary oplic@de. (The basic operation
here is completely different from that of [11], and the numbiecodewords it will affect
in one application depends on several factors.) The foligwesults from[[13] show that
the most imbalanced optimal symmetric fix-free codg(s 11, 101, 1001, ...} with
length sequencél, 2, ..., n).

Proposition 1: [13, Prop. 2.2] The cod¢0, 11, 101, 1001, ...} with n > 3 code-
words is in the set of optimal symmetric fix-free codes witltodewords.

Theorem 2:[13, Thm. 2.5] The sorted and non-decreasing length seguenc
(ly, Iy, ..., l,) of an optimal binary symmetric fix-free code withcodewords satisfies
Li<nforie{l, 2, ..., n}and) ;<> " i=n(n+1)/2.

Our initial procedure to generate any optimal symmetridifee code will also generate
some suboptimal codes. Part of the contribution of Sectiagtd provide simple tests to
reduce the number of candidates for optimal codes, and otiesé tests can be viewed
as a generalization of Theordr 2.

2. Preliminaries
Given a palindromer, we define the set of itaeighboring palindromesV/ (o) by

N (o) = {palindromesw: o is the longest palindrome which is a proper prefixudy.



For example N (0) = {00, 010, 0110, ...}. For any stringw, let |w| denote the length
of w. We will be interested in the following (possibly empty) sebof A/(o)

No(o) ={w e N(o): |w| <n}.

Note that if we remove a palindromefrom a symmetric fix-free code, then we can add
to the remainder of that code any subset\6fc) to obtain another symmetric fix-free
code with possibly more codewords than the original code.

Observe that for any symmetric fix-free codg = {¢;, ¢, ..., ¢,}, we can define
a “complementary” symmetric fix-free code by reversing tite bf each codeword. For
n > 3 any symmetric fix-free code with have at most one codewordsisting of a
single bit, so we can assume without loss of generality thatC,,. We will ultimately
be concerned with the sé&k, of optimal symmetric fix-free codes,, with n codewords
for which 1 ¢ C,,. However, we begin by considering the larger Sgtof symmetric
fix-free codesC),, with n codewords for whichl ¢ C,, andmax;<;<, |¢;| < n.

We will call the symmetric fix-free cod€0, 11, 101, 1001, ...} with length sequence
(1, 2, ..., n) theroot code of lengthn and label itR,. We have the following result.

Lemma 3:Any codeword of a symmetric fix-free codé, € S, has a codeword of
R, as a prefix.

Proof: Let s;, i < n, denote the codeword of lengthn R,,. All codewords inC,,
which begin with a0 have s; as the prefix. All other codewords i@, begin with a
1, and by assumption,, ¢ C,,. Observe that any binary string beginning withl and
having length betweed andn will either haves; as a prefix for some& < i < n or it
will be in the set{10, 100, 1000, ...}. However, a binary string beginning with la
and ending with & is not a palindrome and is therefore notdh). ]

3. Relations among Optimal Symmetric Fix-Free Codes
We define two relations» and = between codes,,, S, €S, by

S, — S, if there existss € S, such thatS, C S, UN, (o) \ {o}.
For thiso we write S,, % S,,.

S, =S, if there existss € S, such thatS, consists of the shortest words of
S, UN,(0)\ {o}. For thisc we write S, 2 S,,.

We have the following result abog, .

Theorem 4:For any code’,, € S,, with codeword length$;, 5, ..., [,, there exists
an integerm < " (l; — 1) = O(n?) and a sequence of symmetric fix-free codes
sWos@ 8™ es, for which R, = S — s & g — ... & 5™ =
C, and with the property that each codeword @f has a prefix inS\’ for eachi €
{0, 1, ..., m — 1}. Furthermore, there exists a cod < S,, for which the preceding
sequence requires, = Q(n'%) codes.

Proof: Consider the following algorithm to generate the coﬂé%, S,(f), o Shm:

1) SO =R,; i=0. |
2) If there exists a codeword < C,, which has a proper prefix sS4

a) Find the subsef’, (o) of A, (o) consisting of the strings which are prefixes
of codewords of the codé€’,. If there are#(c) words inC, (o), then there



is a subsetD® < S\ {o} with #(c) — 1 strings such that no element of
D is a prefix of a word inC,,.
b) Setsi™ =38P UC,(0)\ {{o} UDD},
3) i+ i+ 1. Goto 2.

We argue inductively that this procedure generates an ppgpte sequence of codes.
For the basis step, we have seen in Leniiha 3 that every elerhént bas a prefix in
R, = S For the inductive step, assume that every elemertt,ohas a prefix ins)
for somek > 0, and assume < C,, has a proper prefix in S, SinceN,, (o) contains
the palindromes of length at mostfor which o is the longest proper prefix which is a
palindrome,w has a prefix (possibly the full string) which is an elemenf\§f(c). That
prefix will be a member oB¥ ™) and we repeat this argument for any other codeword
of C,, havingo as a prefix. For each codeword ©f, having a different prefix ins{®,
we assume that the same prefix will be an elemens6tY. ThereforeSY¥ Y has the
desired property.

For an upper bound om, each application of operation> will involve a different
choice for the stringr, and each one will be a palindrome which is a proper prefix
of at least one codeword. The result follows since each cod®wf lengthl;,, i €
{1, 2, ..., n}, hasl; — 1 < n — 1 proper prefixes.

For the last part, our codB,, will consist of n palindromes of lengtln which begin
with and end with0. For convenience we assume here thas even. Since there are
205n=1 sych palindromes, we must hawe> 8. We will describe the code in terms of
[ clusters of codewords. The first cluster is the all-zerangtriwhich has: — 1 proper
prefixes all of which are palindromes. The second clusteram@le string with left half
0101.... The new proper prefixes which are palindromes(dfe 01010, ..., and there
are(1/2)-(0.5n —2 —0O(1)) of them. The third cluster consists of the two strings with
left half 0110110110... and left half00100100. ... The new proper prefixes of the left
halves of these string which are palindromes@rg), 00100, 0110110, 00100100, ...,
and there ar¢2/3) - (0.5n — 3 — O(1)) of them. Clusterj, j € {2, 3, ..., [}, consists
of j — 1 strings. The left half of string € {1, ..., j — 1} of cluster; is a repetition
of the lengthj string beginning withk zeroes and ending with — & ones. There are
((7—1)/4)-(0.5n — j — O(1)) proper prefixes of the left halves of these strings. Since
there aren words in the combination of all clusters, we have that Q(/n), and the
number of proper prefixes of all codewords i)(n!?). O

We can characterize the set of optimal codes as follows.

Theorem 5:For any codeC,, € O, there exist an integenn = O(n?) and a sequence
of symmetric fix-free codes’”, s?, ..., si™ €S, for which R, = S¥ = s =
SP = . =8 =,

Proof: By Theoreni#4, there exist = O(n?), a sequence of codééﬁl), C,(f), .
c'™ ¢s,, and palindromesy; € C\, 0 <i <m — 1, such thatk,, = C¥' 8 oV 4
o w st ol — oy ie.,

CiHY € CDUN, (w;) \ {w;}. (1)

Let £ > 1 be the smallest integer for whiehF > ™ and letSY" denote the choice
of the shortest: strings in o1y No(wy—1) \ {wy_1} which has maximum overlap



with C{¥. Therefore, for any: € ¢ \ s,

lc| > max |s|. 2
sESr(zk)

Since by assumptioﬁ?,ﬁm) = C, € 0,, we must have: < m. We will finish the proof
by showing that regardless of the valuekgfthere is a way to effectively increase it by
one. More precisely, we establish the following result:

Lemma 6:For the codess!” and C, defined above, there is an intege m — k

and codess¥ ) S¥B g0+ s for which S — STV 5 gD L
St _
Proof: By assumptionS,(f) # C,. Fori e {k, k+1, ..., m}, define
F9 = {0eCY: 5 has a prefix in5{} (3)
andG® = {oceCY: & has no prefix ins{"}. (4)
The setsF'® and G® are clearly disjoint, and
W = pi) y G, (5)

Fori > k, eachw; defined by[(ll) satisfies; € F® or w; € G, but not both. Consider
the case where; € G, w; ¢ F®. By () and [[(),

FUD € FOU((GUN {wi}) UN; (w). (6)

By the argument used in the proof of TheorEm 4, every elemenit® has a prefix in
O™ Therefore the definition of:® implies that each of its elements, including, has
a prefix inC”\ S Hence every element of the set (w;) and (GO \ {w;}) UN, (w;)
has a prefix iC”\ 5. To arrive at a contradiction, suppose (G \ {w;}) UN, (w;)
has a prefix NSy, says. Let ¢ be the prefix ofv in c® \ 5% Since boths andc are
prefixes ofv, eithers is a prefix ofc or ¢ is a prefix ofs. Observe that, ¢ € cHush,
and soC P USY does not satisfy the prefix condition. Howevef us™ is a symmetric
fix-free code because the rules for construcﬁh@é) and St imply that

O U S C (ORI {wi-1}) U N (w-a),

and the right-hand side of the preceding relation describegmmetric fix-free code.
This contradiction implies that no element @ \ {w;}) UN, (w;) has a prefix inS{.
Therefore, we find from[(6) that

FOY A (GUN {wi}) UN; (wy) = 0. (7
Therefore [(6) and (7) imply that far> k,
FHY C FOif , ¢ FO (8)

In the derivation of [(I7) we argued that’® U s is a symmetric fix-free code and
hence satisfies the prefix condition. Observe th&t U 5v = (CF \ %) u P,
Therefore no element af” \ S% has a prefix ins, or equivalently,

CH\ sP c a®. 9)



Since every element af”) N S% has a prefix inS{, it follows that
ck sk ¢ pk), (10)

By (B), we haveF® U G® = ¢ = (¢ n sy u (€ \ ). Therefore, [[9) and
@) imply thatF® = ¢ 1 5% and so

F® c gk (11)
To continue our argument, we will next show that
F™ =, andG™ = 0. (12)

To arrive at a contradiction, assumes G(™). Then there is a string € S which is
not the prefix of any codeword @,,. By Theoreni #p has a prefix inc, sayc. Since
v € G™ it follows thatc € ¢\ S, By (@) we havelv| > |¢| > |s|. There are two
cases to consider:

1) |v| > |s|: Sinces is a palindrome which is not the prefix of any codewordip,
we have thatC,, \ {v})U{s} is a symmetric fix-free code with codewords which
is better than”,, for any probabilistic source. Henc€,, ¢ O,,, which contradicts
our assumption.

2) |v| = |s|: Thenv = ¢ and sov € ciFn U N (w—1) \ {wi—1} andv ¢ St
Therefore(S,(f) \ {s}) U {v} has the same length sequence 48 and greater
overlap withC,,, which contradicts our assumption about the choicé’f&.

We next show thaty; € F® for somei € {k, k+1, ...,m — 1}. Suppose that
w; ¢ FO for all i > k. Then by [8) and[(11),
Fim) C..-C ) C Sg“). (13)

By (12), (13), and the fact that,,, S e's,, we obtainC,, = S, which contradicts
our assumption.

Define the sel{zk, e zk+d_1} C{k, ...,m—1} to be the collection of indices for
whichw,, € F®@ 1€ {k, ..., k+d—1} andw; € GY, i & {iy, ..., ixra1}. Then
by (8) and [(111), We obtaln

FUx) C c F c gk (14)
Fln) C CFO) Telk, ..., k+d—2}
Fm C C Flika- 1+1) (15)

Since ¢t = @t g Gt C (F@)\ {w;,}) UN,(wy;)) UG and w;, € F
implies that every element of/, (w”) has a prefix ins{* ), we find that

FOtD € (PO {w, }) UN(wy,), L€ {k, ..., k+d—2}. (16)
From (12), we obtainy;, € F(x) C S, By (14) and [(16), we can verify that
FOHY (SN {wi, }) U N (w;,).
Therefore, there exists a symmetric fix-free catett) e S,, such that
FOFD C SID C (ST {wi, }) U N (ws,), (17)



and sos _3 SUD. Similarly, we can construct a sequence of symmetric fie-fredes
S 8 e s, for which

~

Fath ¢ gD < (SON Ly, VWU N, (wy,), e {k+1, ..., k+d—1}.  (18)
Hence,S") — S 5 ... gl

By (12), (I5), aqd[IIS), we can show th@t = F(™ C S Because?,, I e
S,, we haveC, = S¥*9 Thus,

Sy U _y g2y Ly Gl _ o

with &+ d < m. O
To reiterate the result, if — 1 # m we can alter the generation of codg from

R,=C"V=...=0Fb 5 c®_...50Mm=C,
o R, =CV = ..ol = W 55k,

n

for somek + d < m. By repeatedly applying this argument we obtain the result.
Comment:There is some evidence that for codeslin the numbern of = operations
needed i (nlog, n). In [13, Prop. 2.6] we showed that the average number of Igits p
symbol of the optimal symmetric fix-free code is at mdst + 1, where? is the binary
entropy of the source. Suppose the source probabilitiepare p, > --- > p,. Then

m <3 (i =1) < 30 pilli = 1) /pn < 2H /pn.
4. Simplifying the Search for Optimal Symmetric Fix-Free Codes

The sequence of symmetric fix-free codes from the root d@gleéo an optimal code
C, € 0, as defined in Theoreml 5 is often not unique. The following ltekuther
specifies such codes.

Lemma 7:For any codeC, € O,, supposeR, = SV &2 gV 22 ¢@ =& Tm
S — ¢,. Then this is a shortest sequence of symmetric fix-free codesforming
R, to C, via repeated uses of the- operation if and only ifr; is a prefix of at least

one codeword irC,, for eachi € {1, ..., m}.
Proof: Let us first consider the case where the condition is notfeatisLet €
{1, ..., m} denote the maximum index for which is not a prefix of any codeword

in C,,. Observe that it is impossible to have- m because”, = S has a nonempty
intersection with\V,, (., ) sinceC,, and S " both haven codewords. Thereforé,< m.
Fori: > 1+ 1, m; is a prefix of at least one codeword ),, sow; cannot be a prefix of
m;. Thus, by the definition of thes operation we can write

SO\ No(m) € (SED\No(m)) UNa(m) \ {m}, i € {L4+1, ..., mp. (19)

Sincem; is not a prefix ofr;, i € {{+1, ..., m}, it follows from (19) that fori > [+ 1,

T € STV N, (m). (20)

We will use induction to establish the existence of coﬁ’éé‘l), e C,(Lm) =C, €S,
satisfying

SONN,(m) CCY e {l+1, ..., m}, (21)

and SU—V T o) T2 ) T oim) — ¢ (22)



For the basis step, the definition of the operation implies

SP\Nu(m) € SEYN {m}. (23)
Furthermore, we have seen thatis not a prefix ofr,, ;. By (20) and [(Z2B) we have
T € SV, (24)

It follows from (19) that
ST\ N (m) € (SP\ N (m)) UNG(miga) \ {ma} € SO UN, (mi) \ {miga}. (25)

Observe thatS!™ \ A, (m) contains at most words andSY U N, (m1) \ {m1}
contains at least words. Therefore, by (24) anf (25), there exists™ € S, such that
SRy \ N,y (m) C C+D gnd 54D T o+,

For the inductive step, suppose that for sdmel < k£ < m we have found symmetric
fix-free codesC™, ..., ¥ € S, which satisfy [2L) ands{ ™" &' o{+h "2
DT o) e next generat€ "V, By (20), [Z1), and[{T9) we have

7Tk+1€S(k \N( )CC'“ and
ST\ N (m) C (SE\ N (m) UN; (1) \ {miga} € CF U NG (mia) \ {miga ).

Like the argument for the basis step, there exigfs™" € S, for which SS "\ N, () C
O and g7 T oD T o T oD At E + 1 = m we haveC, =
Sim \ N,.(m), and therefore”,, = Sim) C,(Lm .

We have established a sequence of symmetric fix-free cﬁ’éﬂes ...Sff_l),
oy, ™ for which R, — SO % S0 22 g I | Tt gl-) T (1) T

“—”& C(m = C,. By the argument used in the proof of TheorEm 5, these rekation
|mply the existence a sequence of symmetric fix-free cati®s Dﬁl , D,(f), ...DY =
C, €S, with j < m — 1 for which R, = S = DV = D? = ... = DY = O,
which demonstrates thdt, = S,(LO), Sﬁl), Sff), ...Sﬁm) =(C,isnota shortest sequence
of codes transformingz, to C,, via repeated uses of the operation.

For the converse, given an arbitrary cadg € S,, let CP€X pe the set of palindromes
(not including 1) which are proper prefixes of at least oneewantd inC,,. Suppose we
are given a set of code?zn sos® . si™ s, and palindromegm, ..., T}
defined byR, = S” 2 SV I g® T T gm o \we will show thatCPrefix ¢
{m, ..., Tm} .

For eachw € C,, define CP"X(4) to be the set of palindromes (not including 1)
which are proper prefixes of. Then CP'efix — . CP'WX(y)) If w € R,, then
CPrefiX(y) = (). Otherwise, there is an ordering of th@ > 1 strings inCPe™X(y), say

o, .., o™ so thatol) e R,, ou™ € N(ci?) for i € {1, ..., n, — 1}, and

w e Nn( ) Observe thatv € C,, implies thatm(u € {m, ....,mn} foralw¢ R,
andi € {1, ..., 1w} ThereforeCprEf'x( ) C{m, ..., mn} forall w e C,, and so

CpI'EfIX g {7T17 tee 77Tm}' (26)

BecauseCPefX js determined only by’,, in order forsy’, &, s, ...s{™ €,

to be a shortest sequence of codes transformiipdo C,, via uses of the=- operation,
it suffices to show that
CPreiX — (o ). (27)



The assumptiodn, ..., m,} C CPreiX together with [26) results in (27). O
Given Lemmdl7 and_(27), we next show
Theorem 8:For any codeC, € ©,, supposeR, = SV Z gV &2 ¢¥ &
S(m = C, Is a shortest sequence of codesSin transformingR,, to C,, via uses of

the = operation. DefingCP™e™ — {7, . 7,.}. Then any orderingr, o, ..., om
of the elements of PreiX with i < wheneveraZ is a prefix ofo; corresponds to a
sequence of symmetrlc fix-free code§™”, c>Y, ¢ .. o™ €S, satisfying

R, =050 2 oY 2 o ";%...:“ﬁczm ¢,

Proof: There are two main parts to the proof. In the first we show thetet is a set
of transformations starting frofw, ..., m,} and ending in{o4, ..., o, } which at each
step involves a transposition of an adjacent pair of strimgge maintaining the invariant
that any palindrome (not including 1) which is a proper prefiva palindrome in the list
always precedes it. In the second part we consider the effexcvalid) transposition of
an adjacent pair of strings in devising shortest transftongdrom R,, to C,, € Q,, via
uses of the= operation.

For the first part of the proof, for a sequence (of numbers rimgst)

A= (a1, ag, ..., ap), defined;, i € {1, ..., m—1}, as the permutation of obtained
by transposing:; anda,,. For example, ifA = (1,2,3,4), thenA; = (2,1,3,4), Ay =
(1,3,2,4), A3 =(1,2,4,3). We have the following result.

Lemma 9:For (m, ...,m,) and (oy, ...,0,) defined in Theorem]8, defin@’
(71, ...,mn). Then there is a numbetr < m?, a sequence of indices,, ..., a
{1, ..., m — 1}, and a sequence of pairwise permutations starting f@mvith °
(Qi-1),, and Q¥ = (o1, ...,0,,) such that for alli, Q' satisfies the constraint that the
proper prefixes in the Ilst of each palindrome precede it endrdering.

Proof: Suppose we know’, , Q= (wi, ..., w'), and we wish to construct
QL. Let h; be the maximum |ndex for whlchﬂ # o, Then there is somé < h, for
which wj, = o5,,. We claim that we can choosge+! — (Q);,; i.e., w] is not a prefix of
wzl+1 This is clearly true ifoy,, is not a prefix ofo;, j # h;. If oy, = w;’i IS a proper
prefix of somer; = wy. ,,, then by assumptiop > h;, and henceé; is not the maximum
index for whichw; # o,.

Given this choice of)'*!, let us consider the ordered pa&if ., hi1). If [; +1 < hy,
th (li+17 hi—i—l) - (lz + 1, hz), and |f li + 1 — hia then hi-i—l < hz S|nce (lza hz) 7é
(I;, hj) for i # j, eventually the sequence of pairwise permutations wilnteate in
QF (01, ey Om). O

For the second part of the proof of TheorEm 8, we are givenfthat®, i, = SO I
s @ @ T g — ¢ is a shortest sequence of codesSin transforming
R, to C, via uses of the=- operation. Next suppose that for some> 0, there is
a sequence of symmetric fix-free codééQ 9ol N NN o LR O W

satisfying R, — C(20 U o@D 1 o0l v C(Q ™ — .. By Lemmal®,
to complete the proof of Theorefd 8 it sufflces to show thatethera sequence of

symmetric fix-free codeg"" ), ¢ ol o™ e s, satisfying

i+1 . i+1 i+1

Rn _ CT(lQi+1’O) wgl C7(LQZ+171) u;%> C7'(7/Qz+172) u;é> wé"} C?'(],QZ+17 m) _ Cn.

Im



From the proof of Lemmal9, we have the following relationshigtweenQ+! =

(wit, ... wi) and Q' = (wi, ..., wl):
4 wi,  § & Al lin}
i+l _ 7 e
w; wiy, J=1

In the proof of Lemmdl9 we argued thaj; is not a preflx ofw; ., (or V|ce versa)

Therefore, forj < I; we will chooseC'™® ™) — {29 _f there existsC®) ¢ s,
for which _

C(Qi,li—l) w:> C(Q“rl li) :> C (Q4,1; +1) (28)
then forj > I; +1 we can choos€ ") = ¢*7) We next establish the existence of
Cl ) 1o satisfy [28). To S|mpI|fy notation, define

S" = CT(LQZ7ZZ_1)7 [n = Cn 71 ) Sn = Cr(LQ 7l2+1 , W1 = wlia Wy = wli-i-l
so that
S, 21,28 . (29)

Let C,(w;) be the subset of words ify,, which havew, as a prefix. By Lemmal7,
Cy(w1) # 0. Since C,, and S, both haven strings, there exists, (w;) C S, with
|Sp(w1)| = |Cnwi)], w1 € Sp(wr), andw € S, (wy) is not a prefix of any codeword in
C, if w # wy. Observe thatC,, \ C,(w1)) U S,(wy1) € S,,. To arrive at a contradiction,
SUPPOSEMin e, (w) [0| > max,es, [o|. Then min,cc, W) |0] > max,cg, .,) o] and
Minyec, (w) |o] > |wi| + 1. Therefore the codéC,, \ C\,(w1)) U S, (ws) is a strictly better
symmetric fix-free code thaf¥, for any choice of source probabilities, contradicting the
assumption that’, € O,. Hence,

min |o| < max|o]|. (30)
€N, (w1) c€Sy
We likewise have
min |o| < max|o]. (31)
€N (w2) c€l,

Sincew; € S, is a prefix of at least one codeword @,, it must also be a prefix of at
least one codeword i¥,. Furthermore, because ,w, € S, and are distinctw; is not
a prefix of any string inV,, (w). Hence,

N, ()N S, # 0. (32)

In order to continue our discussion of the transposition o$uacessive pair o
operations, we introduce the following notation:

I, = I(w)US(w)

51(001) C Sp\{wi}
I(wi)) € N, (w)
S = S(wy,ws) UJ(wr) U J(ws)
g(wljf@) C ?(Wl)\{wﬂ C S\ {wr, wa}
/ wi) € I(wi) SN, (w1)
J(w2) C N, (wo)



We have the following result. . .
Proposition 10: There exists/,, € S,, such thatS(wy,ws) U {w1} U J(w2) C J, and
Sp = .
Proof: By (29), I, = S, and it follows that\,, (w,) # 0. Therefore there is at
least one choice foj‘,'1 e S,, for which
S, 21 (33)
We will next show thatv, € I,. To arrive at a contradiction, suppose ¢ I,. Then by
the definition of the=- operation
|wi| > max o] . (34)

oel,

Define setsS*(ws) and J*(ws) by

I = S*(CUQ) U J*(CUQ)

) S Su\{we}
T (ws) € N, (wn)

Since S*(w,) C I, (34) implies

> ) 35
jwi| = dnax o] (35)
The relationS,, = I, implies thatl,, contains all elements of, with length at most
|wi|, and combined with[(35) we obtaifi*(w,) C I,, \ {w2} . Thus,

L, = §*(w2) U J*(w3) € (In \ {wa}) UN;, (wn) .
The previous relation and _(R9) imply
I, 31 andl, 2 S, (36)
Thus, the difference between the and = operations,[(34)[(36), and_(32) imply

wi| > max|o| > max|o| > min |of > |wi],

o€l oc oC/Nn W1

n n

which is impossible. Hence the assumption thatZ I, was false. Therefore
S, 2 I impliesw, € I. (37)

Recall thatS,, = S(wi,w2) U J(w:) U J(ws). By (32) we haveJ(w) # 0. Since S,
hasn codewords, it follows that (w;, ws) U {w;} U J(wy) has at most: elements. To
arrive at a contradiction, suppose there is.fothat simultaneously satisfies, =
and S(wy,ws) U {wi1} U J(ws2) € J,. Then choose some sdf, for which S, 2 ..
Since S(wy,wz) U {wi1} U J(we) € J,, the relationt, C S, UN, (w2) \ {w>} and the
definition of the=- operation imply the existence afe J, \ (S(wy,w2) U{wi} UJ(ws))
andy € S(wi,wz) U {wi} U J(w2) \ J, with |y| > |z|. By @7) we knoww, € J,,
Sor # w; andy # w;. Therefore,y € S(wi,wy) U J(wo); i.€., y € S’ . Similarly,
€ J, €S UN, (w2)\ {we} andz ¢ (S(wy,ws) U {w} U J(wy)) implies thatz ¢ S,,.
Sincex € J, andz # w; we consider two exhaustive cases for the membershig of



e z € S(w)UN, (ws)\ {ws} : SinceS(w;) C I,, we haver € I, UN,, (ws) \ {w:} .
Thus, there exist§, € S, such thatr € S, and I, =3 S,. Recall that/, £ 5.
We saw earlier that ¢ S, andy € S,,. Therefore,|z| > max, ¢ || > |y|, which
violates our earlier argument that| > |z|. '

e € Sy \ {S(w)U{w}}:Sincex € S, \ {w1} € S, UN, (w1)\ {w:}, there
exists | € S, such thatz € I, and S, = I'. Since S, NN, (w;) = 0, we
havex ¢ N, (w;). We also assume & S (w;). It follows thatz ¢ I,,. Recall that
S, = I,. Therefore,|z| > max,e;, |o|. By @), max,e;, |0 > minyen;, (w,) o] -
S! consists of the smallest elements bf U A, (ws) \ {ws}, S0 max,ez, |0 >
max, ¢ |o|. We have already seen thate S,. Combining these observations we
obtain |z > max,c;, |o| > max,c¢ |o| > [y|, which violates our earlier argument

that|y| > |z].
Therefore, our assumption was false, and this establisteeproposition. O
Proposition 11: For the symmetric fix-free codé, described by Propositidn 10,

J, 38
Proof: Recall thatS!, = S(wy, we)UJ (wy)UJ (ws) and S (wy, wa)U{wi YUJ (ws) C .
Thus, S, C J, UN, (w1) \ {wi}. Therefore,J, 2 S, . To arrive at a contradiction,
supposeJ,, % S,. Then choose som§, to satisfy.J, = S,. There existsc € S,, \ S,
andy € S, \ S, such that|z| < |y|. Observe that: € J, UN, (w;) \ {w} C S, U
N, (w1) UN, (we) \ {wr,ws} . There are two exhaustive cases for the membership of

e & € I, UN, (wy)\ {ws} : There existsS, € S, with z € S, \ S, and I, 3 5.

By (29), I, £ S,. Sincey € S, it follows that |z| > max, g |o| > |y|, which
contradicts our assumption that| < |y|. '

e 2 € S, UN, (w1)\ (I, U{wi}) : Sincex € S, UN,, (w1) \ {w:1}, there exists
I' € S,suchthatr € I, \ I, and S, =3 I.. By 29), S, £ I,. Sincez ¢ I,
we can conclude that:| > max,c;, |o| and repeat the end of the argument for
Propositior 1D to obtain a contradiction.

Since our assumption that, # S/, was false, we have established the propositior

To complete the proof of Theorem 8 we choc&@z“’li) = Jy. O
Remark:LemmalT and Theoref 8 are important to reduce the compushtomplexity

of the search for optimal codes because by allowing a natrddring to be imposed
on the strings inCP"€X one can potentially have a large reduction in the number of
sequences of transformations that need to be considered.

Thus far we have provided a way to generate any cod@,inbut the procedure will
also generate some codesSp\ O,,. Therefore, it is desirable to provide simple tests to
reduce the number of candidate for codesOin We begin by describing a previously
known property of optimal sorted and nondecreasing seasent codeword lengths
corresponding to symmetric fix-free codes. We then offerpsifilmations of this result,
including a generalization of Theordm 2.

Lemma 12:[13, Lemma 2.1] Le{l;, Is, ..., l,) be the sorted and non-decreasing se-
quence of codeword lengths corresponding to a symmetricdixcode andiy, I, . .., 1)
be a non-decreasing sequence of natural numbers for which

Sl > 3l foreachie {1, ..., n}.

i=1



’

Then(ly, I, ..., I) need not be considered as the potential codeword lengtha of a
optimal symmetric fix-free code.

In the previous result we say length sequefigel,, ..., [,,) dominateghe sequence
(13,1, ...,1). LetD, C S, be the set of symmetric fix-free codes with sorted and non-
decreasing codeword lengths sequences each of which inondted by the sorted and
non-decreasing codeword length sequence of any other odgle We haveO,, C D,,,
but it is unknown ifQ,, = D,, for all n.

For symmetric fix-free codes related by taeoperation, the: inequalities of Lemma 12
can be reduced to one. We begin with a special case of thi.resu

Proposition 13: Suppose that the cod®, is a candidate for membership @,, and
let S, € S, be a code in a shortest transformation fréip to S, through a sequence of
= operations. Letly, Iy, ..., I,) and(l;, I, ..., [) be the sorted and non-decreasing

’'n

sequences of codeword lengths $f and S, respectively. Suppose th@;‘zl l;. >

;1 1;. If the portion of the shortest transformation frofp to S satisfies either

¢ S, 2 S or
« there is a sequence of symmetric fix-free coﬂélé, S,(f), e S ¢ S,, for some
h > 2 with

S, =S50 I g) 12 g(2) Iy . T g(h) — o

and withm; being a prefix ofr; for i > 2,
thenS, ¢ O,,.
Proof: We begin by considering the first case and later show how tenexthe
argument to the second case.
We are given that’ C S, UN,, (m) \ {m}. For integers\ let S? denote the subset

of S, with string lengths greater thakh By the definition of the= operator, there is
some\ for which

Sp € Sp UNA (m) \ {{m} U S} (38)
Let
D = S\S,

m = |D|=I[D'].

Let (dy,...,d») and (dj,...,d,,) respectively denote the sorted and non-decreasing
sequences of codeword lengths@fand D’. Then

Iml=d <A+1<dy<...<dp, (39)
di+1<d,<d,<...<d, <\ (40)

The conditiony ", I’ > 37 | [; is equivalent to
Ay —dy > (dy—dy) + ...+ (dp —d.), (41)
and [39) and[(40) imply that
dj>d;+1,j€{2, ..., m}. (42)



We would like to show thaz e Z 11, ke{l, 2 ..., n}. Leti be the largest
index for whichl; = d;. Then "the precedlng inequality is an equality foK £ <i— 1.
Let . be the index for which, < d| <[,.y. Thenfori <k <.—-1,

k i—1 k k
PREDBEDMTED W
j=1 j=1 j=i j=1
For . < k < n, suppose that, [}, ... [} incorporates they, shortest new codeword
lengthsd), d,,....d, . If g, =1, then @) |mpI|es2j (U =1;) =dy —dy > 1. For
2 < g, < m, @) and [(4R) |mply

9k

k

Y U—h)=di—di =) (d—d;) =0,

j=1 Jj=2
as desired.

For the second case, we l&f* (o) denotes the set of all palindromes of length at most
n with o as a proper prefix. The only change needed to the previoussdien is to
replace [(3B) with .
S © S UNZ () \ {{m} U3}

for some)\* and to replace\ with \* in (39) and [(4D). The rest of the proof remains the
same as in the first case. O

We next extend Propositidn 13 and simultaneously generdlieoreni 2.

Theorem 14:Consider a cod(S,'1 € 0, and supposé,, € S,, is one of the codes in a
shortest transformation from,, to S|, through a sequence e$ operations. Suppose the
portion of this shortest transformation frofiy to S, involves the sequence of symmetric
fix-free codesSél), Séz), ce S e S,, for someh > 1 and satisfies

S, =80 ZR s R A gh_ g

n n

Let (Iy, Iy, ..., 1,) and (I}, Iy, ..., I,) be the sorted and non-decreasing sequences
of codeword lengths of,, and Sn, respectively. Leiéf),z' e {0, 1, oy h}~, denote the
maximum codeword length o§”. Thenl, = [V <[V < ... <V <Y =1, and
Dl < il

Proof: Let S (0;) be the subset of words i/, which haveo; as a prefix. By
Lemmal7,S., (o) # 0. SinceS, and S5 both haven strings, there exists\ " (s;) C
SV with |S(2 Do) = [S,(0:)], oi € SV (0:), ando € Sy (0,) is not a prefix
of any codeword inS, if o # o;. Observe thats, \ S (0:)) USS " (0;) € S,.. Observe
that if min,en, (» |0| > max__ i |of, thenmin, g, |0 > Max o1, |o| and
min, g . lo] > \al\—i—l. Therefore under the previous condition the c¢8g\ S, (o;))U
Sﬁf‘l)(ai) would be a strictly better symmetric fix-free code thgjn for any choice of
source probabilities, contradicting the assumption #ja€ O,,. Hence,

min |o| < max \a| (43)
€N (03) UGS(L

S consists of the smallest n elements " UN, (0:) \ {az} so [43) implies that

7Y = max y o] > max__ =Y. Hence,l, = <=,

O’ESSi



To begin our argument for the remainder of Theoierh 14, remallassumption that
S, =80 Z& sz R A gh_ g

n

is a shortest sequence of codesSjntransformings,, to S;L via uses of the=- operation.

Suppos€{m 1, 21, ..., 1} ={01, 09, ..., op} N S, and the elements of
{01, 02, ..., op}\ S, each have a proper prefix in the det, ;, 721, ..., m1}. Then
each stringr,, « € {1, ..., h}, can alternatively be labeled, ;, where

e if o, €S5,,thenj=1andg = {01, 09, ..., 0,

. if 0, ¢5,, thenj is one more than the number of strings amdng, s, ..., o0,}

that haver,, as a proper prefix.
Let v, be the number of strings, including, ;, among{o;, o2, ..., o} which have
my1 as a prefix.

Letp;, i € {1, ..., k}, be an arbitrary permutation g¢fi, ..., £}. Then Theoreml8

implies that if S, € @,, we can study the transformation froffj, to S, through any
ordering of{oy, o9, ..., o,} of the form

{Tor 1, -1, Tprmpys Tpads - s Tpapys -5 Tppls oo ﬂpk%k}. (44)

We will use induction onk to show that the conditio)) 7, l, > > 51 l; implies
that S, ¢ O,. For the basis step, Propositibnl 13 treats the éasel. For the inductive
step, we assume the result is true whier x and show that it is consequently true at
k=r+1.

We will consider the possible transformations frafp to S/, using a permutation of
{01, 09, ..., oy} of the form [44). If S|, € O,,, then by Theoreril8 we can define for
ie{l, ..., k+1} a sequence of symmetric fix-free codg§", C{"?, ..., C%™) =

1) € 5, for which |
S, B oin e | W ol — 1)
For1 <i<rk+1,let(l ( LD ) denote the sorted and non-decreasing sequence of
()
codeword lengths ofy,”. If for any i, 2 >0 % then the conditior 7, I; >
Z;‘ . l; implies thatzj > Z;‘Zl ;- By the inductive hypothesis it follows from
the transformation from” to S thatS! ¢ Q,.

Therefore, assume for all< x +1 that) " ] ) > > -1 l;. Define \; as the smallest
integer for which

I C Sy UNG, (i) \ {{mia} U 522'}-

Let
D; = S\ I
Di = LD\ S,
m; = |Dy|=|Djl.
Let (diy, ..., dim,) and (d,,....d], ) be the sorted and non-decreasing sequences of
codeword lengths oD; and D, respectively. Then by (41) and (42) we have
Zd >de, 1<t <m, (45)

7j=1



and we also have

M| =din <N +1<dis<...<dim, (46)
dip+1<dj, <dj, <...<dj,, <\ 47)
Define ;1 as the smallest integer for which
k+1 k+1 ~
S, Csuu N (m)] \ [U {mis}U s;;] .
=1 =1
Observe that

pw<min{A, ..., Aey1}- (48)

Let m = |S,\S,|, and let(d,...,d,,) and (&},...,d/ ) be the sorted and non-
decreasing sequences of codeword lengths,of S’ and S’ \ S,,, respectively. IfS), is
a candidate for membership @, and we are studying part of a shortest transformation
from R, to S, then becausé, ..., d,.., are the ordered lengths afi ,... T, it
follows that

61§62§§65+1<M+1§65+2§§6m (49)
HH1<H <o <... <0 <u (50)

As in the proof of Proposition 13, we can argue ti$at¢ O, if >0, &/ > S 6
for all + < m. The condition>_"_ I, > >""  I; here implies thad """ 0/ > >"" 6;. To
establish the remaining: — 1 inequalities we consider three cases:

1) t =1: We know thato] > d; + 1.

2) 2 <t<k+41: Starting fromt = 1 we will sequentially map each< x + 1 into

a different ordered paifi(¢), j(t)) satisfyingd; = d;,, ,,, as follows. If there are
multiple unchosen pairsi(t), j(t)) which satisfy the equality then we select the
one with minimumj(¢) and then, if necessary, minimuitr). Let

I, ={i:7— (i,j) for somer <t}
Ji (i) = |{j: 7 — (i,5) for somer < t}|
Then
Je(4)

t 5t (9) “ 5t (i)
25;:ZZCZ;J(Z)ZZCZ¢J(§Z di,1+Z()\i+1)
a=1 J=2

i€l j=1 i€y j=1 1€Lt
(c Je ()
> | di+ ) n
1€1¢ j=2
(d) <
Sy
a=1

Here (a) follows from[(45), (b) follows fron (46), (c) follesvfrom [48) and (d)
follows from (49) and the assumption thak « + 1.



3) k2 <t <m—1:Wearegiverd." & > > 4 or, equivalentlyy = (5) — &;) >
S s (6 —0)) . @39) and [BD) imply that foi > « + 2,
6; >0+ 1.

Hence fort > x + 2,
t

D (6 —d) > i (6; — 1) > 0.

i=1 i=t+41

Thus the conditiory_, I; > """ | I; here implies thats!, ¢ O,. O
Theoreni_ 14 shows conditions for which thénequalities of LemmBa_12 can be reduced
to one. We next show that if by an application of Proposifiéhat Theorenl 14 we
determine thatS, ¢ ©,,, then we can automatically conclude that certain relateteso
also are not members @,,. We have the following result.
Theorem 15:Suppose that the codes,, S;L, C, € S,, that S,, is in a shortest
transformation fromR,, to S, through a sequence of operations, and tha$), is
in a shortest transformation from,, to C,, through a sequence e# operations. Let
(L, ly, ..., l,) and (I}, I,, ..., I,) be the sorted and non-decreasing sequences of
codeword lengths of,, and S, respectively. Suppose that_, l;. > >0 1. If the
portion of the shortest transformation frof) to S;L satisfies either

¢ S, 2 S or
« there is a sequence of symmetric fix-free coﬂéﬁ, Sff), o S ¢ S,, for some
h > 2 with

S, =8I s g . .. 2 gh =g

and withm; being a prefix ofr; for i > 2,

and the portion of the shortest transformation erﬁpto C,, can be described for some
n>1by
SAcHRCO R Zow_c,
with 7; not being a prefix ob; for 1 < < n, thenC, £ Q,,.
Proof: Following the notation introduced in the proof of Propasitil3, let

D — Sn\S;L — {51, ey §m},

D' = S\S, = {3/1, o s;n},

m = |D|=|D'],
and let(dy,...,d,) and(d;,...,d,,) respectively denote the sorted and non-decreasing

sequences of codeword lengthsiofand D’. To arrive at a contradiction, suppoég €
0,.. Then by Lemmal77; must be a prefix of some element @f,, and therefore

D'NC, #0.

Supposd D' N C,,| = k. By the definition of the=- operation,D'NC, = {s], ..., s,}.
From the proof of Proposition 13 we saw that the condifigfi, I, > >"" | I; implies
that Z;:l d; > Z;:l d; for all 1 < ¢t < m. Therefore, the sequence of sorted and
non-decreasing lengths of the stringsGny U {51, ..., &} \ {s}, ..., s,} dominates
the sequence of sorted and non-decreasing codeword leafiths. To complete the



proof it suffices to show that, U {5,, ..., 5} \{s}, ..., 5.} € S,. By the definition
of the = operation, we have thab N C,, = (). Furthermore, forl < i < n, o; &
D because eithes; € S, or o; € N(o;) for somej < i with o; € S,. Hence
CnU{El,...,Ek}\{sll,...,s;g}GSn. U]

Recall thatR, = {s1, s3, ..., s,}. We have the following result.

Corollary 16: Let CP'¢fiX be the set of palindromes (not including 1) which are proper
prefixes of at least one codeword @), € Q,,. Fori > n/2, s; ¢ cprefix

Proof: Fori > (n +2)/2, minyen(s;) |o] = 20 —1 > n + 1, so the=t operation
would not produce a code i§,. If n is odd, then the shortest two palindromes which
haves(,11)/2) as a proper prefix have lengthsandn + 1. If n is even, then the shortest
two palindromes which have,, , as a proper prefix have lengths- 1 andn. In either
of these cases it is better to kegp/y Or s(,+1)/2) @S a codeword than to turn it into a
proper prefix of one. O

Observe that for a string and its bitwise complemeri, the lengths of strings in
N..(o) will match those of their bitwise complements.M, (7). Therefore, the previous
result implies that ifo € CP™®IX then fori > n/2, 5; ¢ CP"™X More generally if a
code S, containss and @, then one can impose an ordering on them 8¢ and
thereby reduce the number of strings to be considered fdacement at the next step.
Furthermore, we immediately obtain the following extensio Theoreni_I5.

Corollary 17: Suppose that the codes,, S; € S, and thats,, is in a shortest
transformation fromR,, to S;L through a sequence ef operations. Letly, Iy, ..., 1,)
and(ly, l,, ..., [,) be the sorted and non-decreasing sequences of codewottdesfy
S, and S, respectively. Suppose that’_, l; > >, l;. If the portion of the shortest
transformation froms,, to S;L satisfies either

¢ S, 2 S or
« there is a sequence of symmetric fix-free coﬁ”&, Sff), o S ¢ S,, for some
h > 2 with

S, =8 s g . . 2 gh =g
and withm; being a prefix ofr; for i > 2,
and if 77 € S, then the codeS, defined by
S, BN BT . M _ g

n

is not an element ofd,. Furthermore, fory > 1 any codeC, related toS, by a
transformation of the form

S, e BB L ACW=(,

for which 77 not being a prefix ob; for 1 <i <n satisfies(, Z O,.

There would be a further simplification in using these ideagenerate all optimal
symmetric fix-free codes if the following conjecture holds:

Conjecture 18:Suppose that the codes,, S;L, C, € 8S,, that S, is in a shortest
transformation fromR,, to S, through a sequence of operations, and tha$,, is
in a shortest transformation from,, to C,, through a sequence ef operations. Let
(L, ly, ..., l,) and (I}, I,, ..., I,) be the sorted and non-decreasing sequences of
codeword lengths of, and S/, respectively. Suppose thgtjg;l l;- > 2?21 l;. If for



somen > 1 a shortest transformation frorfi, to C,, can be described, = S, 2
chzePa ol =c,thenC, ¢ 0,. If in additon7 € S, and S, = S,
thenS’ ¢ @, andS, is not in any shortest transformation froR), to a code in0Q,,.

If this conjecture is true, then at each coflg generated as a candidate member of
0,, we need only consider additional transformations invajvaodewords which when
replaced will result in codes with smaller sums of codewandgths than that of,,.
Furthermore we obtain constraints 6P which may result in other reductions to
our search space for optimal codes. However, while thisextaje is open, one way
to effectively use Theorenis 14 and] 15 is to establish for emte S, and stringw
whether or not the conditions, = 5, andY>"_, [; > Y7 I; imply that (1).S, also
has a sum of codeword lengths which is at most that of any cogde S, given by
s Ao zoPz o=, wherer is a prefix ofo; for eachl < i < n or
(2) the preceding sequence of code transformations is soteged with a non-increasing
sequence of maximum codeword lengths. If these latter @ingt can be verified for
a given codeS, and stringr, then it can be concluded th&f is not in any shortest
transformation fromR,, to any code ir0,,; as we indicated earlier, this places restrictions
on CP'efiX for optimal codes.

We have mentioned earlier th&t, € O,, for n > 3. This is the only optimal symmetric
fix-free code forn = 3 andn = 4. We next describe some of the other code®jnfor
n > 5.

Theorem 19:Let (Iy, I, ..., l,) be the sorted and non-decreasing sequence of
codeword lengths for a cod€&, € S, satisfyingR,, = S,. ThenS,, e D, if > I, <
n(n+1)/2.

Proof: Assumej is the index for whichS,, C (R, \ {s;}) UN,(s;). To arrive at
a contradiction, suppose that there is a cage= {c¢;, ..., ¢,} € S, which differs
from both S,, and its complementary code, satisfieg < |c3| < --- < |¢,|, and has the
property that

D lel <>l forallke {1, ..., n}. (51)
i=1 i=1

Since}"" , |¢;| < n(n+1)/2, it follows thatC,, # R,. By LemmaB, each codeword of

C, has a prefix inR,, = {s1, ..., s,}. SinceC, # R,, there exists and~ such that

s+ is a proper prefix ok,. Let k be the smallest index for whick, ¢ C,. Therefore,

since the shortest string o¥,,(s.,) has lengthmax{2y — 1, 2},

le,| > max{2y — 1, 2} > max{2k — 1, 2}. (52)

SinceC,, € S,, it follows that2k — 1 < n.
We next show that the firsthax{2k — 2, 1} sorted and non-decreasing codeword
lengths ofC), satisfy

el =i, i<k-—1 (53)
lesl >i+1,  k<i<max{2k—2, 1}. (54)
If k=1, then0, 1 ¢ C,, so|c;| > 2. If k > 2, then [GB) holds becauge;, ..., sp_1} C

C,. By the Kraft inequality,|c,| > k£ — 1 with strict inequality sincg1, 2, ..., k —
1, k—1) is not a feasible sequence of codeword lengths among syrarfietfree codes.




If |cx| =k, then{sy, ..., sp_1} C C, impliess, € C,, which contradicts the definition
of k. Therefore|c,| > k+ 1. Fork > 3, k+ 1 < i < 2k — 2, suppose tha{ (54) is not
always true. Then there is a smallest index {k + 1, ..., 2k — 2} such that|c,| < t.
Since|c;_1| > t, we have

cim1] = la| =1 < 2k —2. (55)

We next show that; € R,. To arrive at a contradiction, suppose thate R, is a

proper prefix ofc,. By the same argument as fdr [52), we have thgt > 2k — 1,

which contradicts[(85). Hence; € R,,. The same argument implies that, € R,,, but

lei| # || for different elements of?,,. Thus, [54) follows becausgé (55) is false.
There are three cases to consider to establish the result:

1)

2)

3)

1 <k < j < n:SinceR, is a subset ofS,, it follows thatl; < i for i < k.
Therefore, by[(B3) and (54%_" | I; < 31, |¢;|, which contradicts[{31).

1 <k =7 <n:Wehavel, s; € C,, so each codeword;, € C, has a prefix
w; € (R, \ {s;}) UN,(s;). Furthermore,S,, consists of the shortest strings in
(R, \ {sj}) UN.(s;). Therefore, fori = 1, |¢;| > |wy| > I;, and so[(BlL) implies
that c; = w;. Next suppose that there is an ind&x {1, ..., n — 1} such that
¢; = w; for all i < \. Observe that ifvy,1 € {wy, ..., wr} ={e1, ..., e}, then
{c1, ..., ¢\, cry1}, dOes not satisfy the prefix condition and cannot be a synienetr
fix-free code. Hencew, 1 & {w1, ..., wy}. Therefore{wy, ..., wy, wys1} iS
a subset of R,, \ {s;}) UN,(s;) with X + 1 distinct elements. Thug_ ! |c;| >
S | > S22 5L It follows from (B1) thaty ' |¢;] = S22 1. By induction
(leals Jealy -y Jen]) = (L, ..., L), which contradicts our earlier assumption.
1 <j <k < n: Letwv be the shortest element &f,(s,). Define the code3y;,_; =
(Rok—1 \ {s;}) U{v} C (R, \ {s;}) UN,(s;). Let b, be the sum of lengths of
the elements of3,,_,. Therefore,

2k—1
S li= bum (56)
=1
= 2k —k—j+max{2j — 1, 2}
< 22 —1 (57)
k—1 2k—2
= > i+ (Z(z’+1)> +(2k—1)
=1 i=k
2k—1

< Y el (58)

by (53), [54), and the fact théty, 1| > |cor_o| > 2k — 1. The only way for[(5B) to
be consistent with (51) is for (56), (67), and(58) all to beadies. In order forl(57)
to be an equality; = 1 andk = 2. Sincej = 1, S, = {00, 11, 010, 101, ...}.
For (58) to be an equality¢;| = 1, |c2| = 3, |c3| = 3. Recall that we assume that
n > 5. Sincec; = 0, ¢, ¢z € {101, 111}, it follows that|cs| > 4. However, for
these choices of, and C, we find that>>F I, = 10 < 11 < 37, |¢;|, which
again contradictd (51).

Since each way of constructing the symmetric fix-free coferesults in a violation
of an assumption, we find th&t, € D,,. N



One can use the experimental results|of [13] to show ®)aand the optimal codes
of Theoreni 1B make up all of the optimal codes fox 10.

Our last technical result establishes a special case ofeCumgl 18.

Theorem 20:Suppose symmetric fix-free codé§ and C,, are related to each other
and toR, by R, = S, > C,, and supposé,, ¢ D,,. ThenC,, £ Q,.

Proof: The case where = s, for v # . is established by Theoreém]15. Therefore we
will assume thatr € N, (s,). As usual, let/, denote the maximum codeword length of
S’ . We will prove the result by arguing thﬁtlnwe/\/’ || > I,. Because of the structure
of s,, it is simple to establish that| > 2. — 1 andmmwe/\/(a W| > 3. — 2. Therefore it
suffices to show

3L—2>1. (59)
As in earlier proofs, let
=[5, \ Ral = | R0 \ S, . (60)
Let 0" denote a string of zeroes and le?” denote a palindrome of length The shortest
elements ofV,,(s,) are of the form10°=210:721, s,s,, s,0's,, s,0%s,, ..., 50 3s,. For

0 < p <1 — 3, every palindrome” satisfiess,0”s, € N(s,). Since there ar@l(»+1/2]
pallndromes of lengthp, if m < >".~5 29lt/2] then we have a complete description of
S’ \ R,.

In Corollary[16 we showed the desired result whern n/2. Therefore, we need only
consider the case where< (n — 1)/2. Suppose that for sone> 1,

I =24k (61)
It follows from (59) and [(6l1) that we would like to show
kE<.—3. (62)

Note that the preceding condition would also imply that ieglest codeword of,, \ R,
is of the forms, 6" s, for an arbitrary lengthe palindromed* and that we could completely
describeS,, \ R,,.

By the definition of the= operation,R, \ S, = {s,, Soi1tt1, S24ks2, ---, Sn},» @Nd
the sum of the lengths of these words is

- . (m—1)(m—2)
L—i—‘ Z i=t+n(m-—1) 5 : (63)
i=21+k+1
In order to findk, we wish to have
Noik—1(8)] < m < [Nag(s,)]- (64)
If (62) holds andk is odd, thenk satisfies
k+1
Z 9 [t/2] _ 2(l€+3 —2<m S 2(k‘+3)/2 + 2(k+1)/2 —9 = Z2\_t/2J (65)
t=0
If (62) holds andk is even, therk satisfies
k k+1
22 [t/2] __ 2(k+2 /2 + 2k/2 2<m < 2(k+4)/2 _9— Z 2Lt/2J (66)
t=0 t=0



Observe that if[(62) holds, then the sum of the codeword tengver the sef,, \ R,
is
k k
m(2e—1)+) 212 4 (k+1) ( Z2W2J> = m(2u+k) =Y (k+1—t)2172 (67)
t=0 t=0 t=0

SinceS, ¢ D,,, we have that the sum of codeword lengths oigh S, is at most the
sum of codeword lengths oveéf, \ R,. Hence [(6F) and(63) imply that

k
t+nim-—1)— (m = 1)(m = 2) <m(2t+ k) —Z(k+1—t)-2w2J. (68)

2
t=0
Since
m=|R,\ S;L| = [{s,, Sovikt1, S2utkt2, ---s Snt|=n+1—20—Fk, (69)
the condition[(6B) can be rewritten
2z — L Z (k+1-— (70)

Because of[(89), the condltlotﬂ62) that we wish to estahiséquivalent to

k
2 2
Therefore, to demonstrate (71) it sufficient to show that
m?2—k—1 < m+3k+5
. 1) .olt/zl s MToNTo
p LT
or
m* —m : 1t/2)
5 —2k =3+ (k+1-t)-22 >0 (72)

t=0

If k is odd, theny ) (k+1—t)-2/2 =7.20+D/2 9k _ 9 and we wish to verify

if
m? —
2

whenm satisfies[(65). The expressiaw —m is minimized whenn = 2-+3/2 _ 1 and
for this m the left-hand side oﬂI.{B) igF+2 4 4. 20412 4k 11 > 1 for k > 1. If
k > 2 is even, one can show that,_ (k +1—1t)-2¥/2) = 10.2%2 — 2k — 9, and we
wish to assess if

M7 D2 g 19> (73)

2

2

whenm satisfies[(66). The expressian’ — m is minimized whenn = 3-2%2 — 1, and

for this m the left-hand side of(74) i8 - 2¥=! + 5.5 2%/2 — 4k — 11 > 10 for k > 2.
Since [[72) holds for alk > 1, the result follows. ]
In Figure[1, we illustrate the tree of alll codes inDy,. The numbers within the

vertices represent the sum of codeword lengths for the sporeding code. The strings

" 10282 — 4k — 12> 0 (74)




labeling the edges represent the codeword removed to go draode to the next one.
The codelength sequences discussed in [11] form a lattgtedd of a tree. Furthermore
in [11] the codelength sequence with minimum sum was thehdéstt away from that
corresponding to the most imbalanced code, while this istim@tcase here. However,
both here and in [11] the most imbalanced (optimal) code efdlass being studied had
a central role in a mathematical analysis of optimal codes.
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Appendix

Table[1 shows the exact number of different sorted and astgnddelength sequences
for Huffman codes (i.e., binary prefix condition codes whselisfy the Kraft inequality
with equality) and an upper bound for the counterpart fompaksymmetric fix-free codes
with n words based on the number of dominant codelength sequeresw< 30. The
numbers for the Huffman code are taken fram [6], and the nusnfee dominant length
sequences for symmetric fix-free codes come from [1], [13].



Table 1. Number of (Sorted and Nondecreasing) Dominant Codelength
Sequences over a Binary Code Alphabet

n | Huffman | Symmetric
2 1 1
3 1 1
4 2 1
5 3 2

6 5 2
7 9 3

8 16 3
9 28 4
10 50 4
11 89 6
12 159 6
13 285 8
14 510 11
15 914 11
16 1639 13
17 2938 13
18 5269 17
19 9451 18
20 16952 21
21 30410 22
22 54555 24
23 97871 26
24 | 175588 29
25| 315016 32
26 | 565168 34
27 | 1013976 36
28 | 1819198 42
29 | 3263875 43
30 | 5855833 46
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