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Abstract

This paper considers the problem of universal lossless source coding with
side information at the decoder only. The correlation channel between the
source and the side information is unknown and belongs to a class parametrized
by some unknown parameter vector. A complete coding scheme is proposed
that works well for any distribution in the class. At the encoder, the proposed
scheme encompasses the determination of the coding rate and the design of the
encoding process. Both contributions result from the information theoretical
compression bounds of universal lossless source coding with side information.
Then a novel decoder is proposed that takes into account the available infor-
mation regarding the class. The proposed scheme avoids the use of a feedback
channel or the transmission of a learning sequence, which both would result in
a rate increase at finite length. Simulations are based on irregular and non-
binary LDPC codes and show that, even at finite length, the proposed scheme
performs close to the theoretical bound.

1 Introduction

The problem of lossless source coding with side information at the decoder has been
well investigated when the correlation model between the source X and the side
information (SI) Y is perfectly known. Several works, see, e.g., [13, 19], propose
practical coding schemes for the Slepian-Wolf (SW) problem. Most of them are
based on channel codes [18], and particularly Low Density Parity Check (LDPC)
codes [12]. This approach allows to leverage on many results on LDPC codes for
the code construction and optimization [11, 14] even if there is a need to adapt the
algorithms developed for channel coding to the case of SW coding [3].

Nonetheless, most of these works assume perfect knowledge of the correlation
channel Y |X between the source and the side information. This assumption is difficult
to satisfy in practical situations such as video coding and sensor networks, due to the
varying nature of the characteristics of the real signals. A usual solution to address
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this problem is to use a feedback channel [1] or to allow interactions between the
encoder and the decoder [20]. These interactions allow the encoder and the decoder
to exchange information on the rate needed and on the correlation channel. These
solutions are however difficult to implement in many practical situations such as
sensor networks. Furthermore, solutions based on learning sequences [6] induce a
rate increase at finite length.

Alternatively, universal coding schemes supposed to be able to decode the source
whatever the correlation channel may be considered. Performance bounds for the
universal setup are provided in [4]. We address the problem of constructing a practical
universal coding scheme for the SW setup. At the encoder part, the rate has to be
chosen and the coding process has to be designed. At the decoder part, the source
has to be reconstructed despite the lack of knowledge on the correlation. When no
feedback or learning sequence is allowed, several practical solutions based on LDPC
codes and proposed for channel coding may be adapted to the SW problem. When
hard decoding is performed, as suggested by [6] only symbol values are used, at the
price of an important loss in performance. An alternative solution is the min-sum
decoding algorithm proposed in [2, 15] for channel coding, respectively for binary and
non-binary sources. The min-sum algorithm uses soft information for decoding, but
does not require the knowledge of the correlation channel. The min-sum algorithm
may be as efficient as the soft decoding algorithm, provided that a coefficient is chosen
carefully. Unfortunately this choice depends on the unknown correlation channel.

In many applications, it is possible to restrict the correlation channel model to a
given class (e.g., binary symmetric, Gaussian etc.) due no the nature of the problem.
Consequently in this paper, the universality is modeled by assuming that the correla-
tion channel belongs to a given class and is parametrized by some unknown parameter
vector θ. Hard and min-sum decoding are not able to exploit the knowledge of the
structure of the class. The coding scheme we propose is based on non-binary LDPC
codes. From an analysis of the performance bounds, we explain how to choose the
coding rate and the LDPC coding matrix. Then, we propose a decoding algorithm
that performs joint estimation of the parameter vector and of the source sequence
with an Expectation Maximization (EM) algorithm. Furthermore, the main problem
of the EM algorithm is its sensitivity to initialization. A method to produce a first
raw estimate of the parameters is thus also provided.

The paper is organized as follows. Section 2 introduces the considered universal
model. Section 3 presents an adaptation of the non-binary LDPC decoding algorithm
for the SW problem. Section 4 describes the practical scheme we propose. To finish,
Section 5 evaluates the performance of the considered scheme through simulations.

2 Model and performance

The source X to be compressed and the SI Y available at the decoder produce se-
quences of symbols {Xn}+∞n=1 and {Yn}+∞n=1, respectively. X and Y denote the source
and SI discrete alphabets. In this paper, we mainly consider the case where X = Y =
GF(q), the Galois Field of size q. Bold upper-case letters, e.g., XN

1 = {Xn}Nn=1, de-
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note random vectors, whereas bold lower case letters, xN1 = {xn}Nn=1, represent their
realizations. Moreover, when it is clear from the context that the distribution of a
random variable Xn does not depend on n, the index n is omitted. Similarly, XN

1 is
in general denoted X.

In the universal setup we consider, the correlation channel is parametrized by an
unknown vector θ. It is assumed fixed for a sequence {(Xn, Yn)}+∞n=1 but it is allowed
to vary from sequence to sequence. Formally,

Definition 1. (WP-Source). A source (X, Y ) Without Prior (WP-Source) produces a
sequence of independent symbols {(Xn, Yn)}+∞n=1 drawn from a distribution belonging to
a family {P (X, Y |θ) = P (X)P (Y |X,θ)}θ∈Pθ

parametrized by a vector θ. The vector
θ takes its value in a set Pθ that is either discrete or continuous. The source symbols
X and Y take their values in the discrete sets X and Y, respectively. Moreover, the
parameter θ is fixed for the sequence {(Xn, Yn)}+∞n=1.

The WP-source, completely determined by Pθ and {P (X, Y |θ)}θ∈Pθ
, is stationary

but non-ergodic [8, Section 3.5]. No distribution for θ is specified, either because such
a distribution is not known or because θ cannot be modeled as a random variable.

For the WP-Source, the infimum of achievable rates in lossless SW coding is [4]

RSW
X|Y = sup

θ∈Pθ

H(X|Y,θ) . (1)

This result shows that the encoder (rate and coding matrix) has to be designed for
the worst parameter case. However, since classical decoding algorithm require the
knowledge of the true correlation channel, i.e., θ, we propose a practical scheme
capable of dealing with the lack of knowledge of the parameter at the decoder.

3 LDPC codes

LDPC codes are binary [7] or non-binary [5] linear correcting codes. In [12], they
have been adapted to SW coding for binary sources with perfect model knowledge.
This section generalizes the adaptation of LDPC codes to the SW non-binary case.

The SW encoding of a vector x of length N is performed by producing a vector
s of length M < N as s = HTx. The matrix H is sparse, with non-zero coefficients
uniformly distributed in GF(q)\{0}. In the following, ⊕, 	, ⊗, � are the usual
operators in GF(q). In the bipartite graph representing the dependences between the
random variables of X and S, the entries of X are represented by Variable Nodes (VN)
and the entries of S are represented by Check Nodes (CN). The set of CN connected
to a VN n is denoted N (n) and the set of VN connected to a CN m is denoted N (m).
The sparsity of H is determined by the VN degree distribution λ(x) =

∑
i≥2 λix

i−1

and the CN degree distribution ρ(x) =
∑

i≥2 ρix
i−1 with

∑
i≥2 λi = 1 and

∑
i≥2 ρi = 1.

In SW coding, the rate r(λ, ρ) of a code is given by r(λ, ρ) = M
N

=
∑

i≥2 ρi/i∑
i≥2 λi/i

.

The decoder performs a Maximum A Posteriori (MAP) estimation of x from the
received codeword s and the observed side information y via a Message Passing (MP)
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algorithm. The messages exchanged in the dependency graph are vectors of length q.
The initial messages for each VN n are denoted m(0)(n, yn), with components

m
(0)
k (n, yn) = log

P (Xn = 0|Yn = yn)

P (Xn = k|Yn = yn)
. (2)

The messages from CN to VN are computed with the help of a particular Fourier
transform, denoted F(m). Its i-th component is given by [11]

Fi(m) =

∑q−1
j=0 r

i⊗je−mj∑q−1
j=0 e

−mj
(3)

where r is the unit-root associated to GF(q). At iteration `, the message m(`)(m,n, sm)
from a CN m to a VN n is

m(`)(m,n, sm) = A[sm]F−1
 ∏
n′∈N (m)\n

F
(
W
[
Hn′m

]
m(`−1)(n′,m, yn′)

) (4)

where s̄m = 	sm � Hn,m, Hn′m = 	Hn′,m � Hn,m and W [a] is a q × q matrix such
that W [a]k,n = δ(a ⊗ n 	 k),∀0 ≤ k, n ≤ q − 1. A[k] is a q × q matrix that maps a
vector message m into a vector message l = A[k]m with lj = mj⊕k −mk. Note that
the matrix A does not appear in the channel coding version of the algorithm and is
specific to SW coding. At a VN n, a message m(`)(n,m, yi) is sent to the CN m and
an a posteriori message m̃(`)(n, yn) is computed. The both satisfy:

m(`)(n,m, yn) =
∑

m′∈N (n)\m

m(`)(m′, n, sm′) + m(0)(n, yn) , (5)

m̃(`)(n, yn) =
∑

m′∈N (n)

m(`)(m′, n, sm′) + m(0)(n, yn) . (6)

The algorithm ends if s = HT x̂(`) or if the maximum number of iterations Lmax is
reached.

4 Practical Coding Scheme

When θ is unknown, the LDPC decoding algorithm cannot be applied directly, since
the initial messages (2) depend on θ. Therefore an EM algorithm jointly estimates
the source vector x and the parameter vector θ. An efficient initialization is proposed
for the EM, this being a known issue.

4.1 Joint estimation of θ and x

The joint estimation of the source vector x and the parameter θ from the observed
vectors y and s is performed via the EM algorithm [9]. Knowing some estimate θ(`)
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obtained at iteration `, the EM algorithm maximizes, with respect to θ,

Q(θ,θ(`)) = EX|y,s,θ(`) [logP (X|y, s,θ)] =
∑

x∈GF(q)n

P (x|y, s,θ(`)) logP (y|x, s,θ) (7)

=
N∑
n=1

q−1∑
k=0

P (Xn = k|yn, s,θ(`)) logP (yn|Xn = k,θ) .

Solving this maximization gives the update rules detailed in Lemma 1.

Lemma 1. Let (X, Y ) be a binary WP-Source. Let the correlation channel be a
Binary Symmetric channel (BSC) with parameter θ = P (Y = 0|X = 1) = P (Y =
1|X = 0), θ ∈ [0, 1]. The update equation for the EM algorithm is [17]

θ(`+1) =
1

N

N∑
n=1

|yn − p(`)n | (8)

where p
(`)
n = P (Xn = 1|yn, s, θ(`)).

Let (X, Y ) be a WP-Source that generates symbols in GF(q). Let the correlation
channel be such that Y = X ⊕ Z, where Z is a random variable in GF(q), and
P (Z = k) = θk. The update equations for the EM algorithm are

∀k ∈ GF(q), θ
(`+1)
k =

∑N
n=1 P

(`)
yn	k,n∑N

n=1

∑q−1
k′=0 P

(`)
yn	k′,n

(9)

where P
(`)
k,n = P (Xn = k|yn, s,θ(`)).

Proof. The binary case is provided by [17]. In the non-binary case, the updated
estimate is obtained by maximizing (7) taking into account the constraints 0 ≤ θk ≤ 1

and
∑q−1

k=0 θk = 1. The P
(`)
k,n = P (Xn = k|yn, s,θ(`)) are obtained from the LDPC

decoder considering that the true parameter is θ(`).

4.2 Initialization of the EM algorithm

We now propose an efficient initialization of the EM algorithm valid for irregular codes
and for sources X, Y taking values in GF(q). This generalizes the method proposed
in [17] for regular and binary codes. The rationale is to derive a Maximum Likelihood
(ML) estimate of a subpart u = HTx⊕HTy of the observed data (HTx and y).

4.2.1 The BSC with irregular codes

Let Z denote the error of the BSC, i.e. Z = X⊕, and let U = HTZ, for a given
matrix H.

In this case, each binary random variable Um is the sum of random variables of Z.
Although each Zn appears in several sums, we assume that each Um is the sum of i.i.d.
random variables Z

(m)
j . The validity of this assumption depends on the choice of the
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matrix H and is not true in general. Although it produces a suboptimal solution, this
choice may lead to a reasonable initialization for the EM algorithm. Furthermore,
the number of terms in the sum for Um depends on the degree of the CN m. One can
use the CN degree distribution ρ(x) as a probability distribution for these degrees, or
decide to take into account the knowledge of the CN degrees. Both cases lead to a
probability model for the Um and enable to obtain an ML estimate for θ, as described
in the two following lemmas.

Lemma 2. Consider a vector U of M binary random variables such that each Um
is the sum of Jm i.i.d. binary random variables Z

(m)
j i.e. Um =

∑Jm
j=1 Z

(m)
j . Jm

is an i.i.d. random variable taking its values in {2, . . . , dc} with known probability
P (J = j) = ρj. Denote θ = P (Z = 1), α = P (U = 1) and assume that θ and α are

unknown. Denote θ̂ and α̂ there respective ML estimates from an observed vector u.
Let f(θ) = 1

2
− 1

2

∑dc
j=2 ρj(1 − 2θ)j, ∀θ ∈ [0, 1

2
]. Then the random variables of U are

i.i.d., α̂ = 1
M

∑M
m=1 um, α = f(θ), f is invertible, and θ̂ = f−1(α̂).

Proof. The random variables Um are independent because they are obtained from
sums of independent variables. They are identically distributed because the Jm and
the Zm

j are identically distributed. are such that α = P (U = 1) =
∑dc

j=2 ρjP (U =

1|J = j). Then, from [17], P (U = 1|J = j) =
∑j

i=1,i odd

(
j
i

)
θi(1 − θ)j−i and from [7,

Section 3.8], P (U = 1|J = j) = 1
2
− 1

2
(1− 2θ)j. Thus α = f(θ). A ML estimate α̂ of

α can be obtained as α̂ = 1
M

∑M
m=1 um. Finally, as f is obviously invertible for

[
0, 1

2

]
,

then from[10, Theorem 7.2], the ML estimate of θ is given by θ̂ = f−1(α̂).

Lemma 3. Consider a vector U of M binary random variables such that each Um is
the sum of jm i.i.d. binary random variables Z

(m)
j , i.e., Um =

∑jm
j=1 Z

(m)
j . The values

of jm are known and belong to {2, . . . , dc}. Denote θ = P (Z = 1) and assume that θ

is unknown. Then the entries of U are independent and the ML estimate θ̂ from an
observed vector u is the argument of the maximum of

L(θ) =
dc∑
j=2

N1,j(u) log

(
1

2
− 1

2
(1− 2θ)j

)
+

dc∑
j=2

N0,j(u) log

(
1

2
+

1

2
(1− 2θ)j

)
(10)

where N1,j(u) and N0,j(u) are the number of symbols in u obtained from the sum of
j elements and respectively equal to 1 and 0.

Proof. The random variables Um are independent because they are obtained from
sums of independent variables. We maximize the likelihood function

L(θ) = logP (u|θ) =
M∑
m=1

logP (um|jm, θ) (11)

with respect to θ. The second equality in (11) comes from the independence of the
symbols. Then, (10) is obtained from the proof of Lemma 2.

The method of Lemma 2 is simpler to implement but does not take into account
the knowledge of the matrix H, at the price of a small loss in performance.
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4.2.2 The non-binary discrete case

Only the case of a regular code is presented here, but the method can be easily
generalized to irregular codes (see the previous section). Now, the probability mass
function of Z is given by θ = [θ0 . . . θq−1] with θk = P (Z = k) ∀k ∈ GF(q). As
for the case of binary irregular codes, two signal models are first introduced through
two lemmas. Now, each Um is the sum of symbols of Z, weighted by the coefficients
contained in H. A first solution does not exploit the knowledge of these coefficients,
but uses the fact that the non-zero coefficients of H are distributed uniformly in
GF(q)\{0} (Lemma 4). A second solution takes into account the knowledge of the
coefficients (Lemma 5).

Lemma 4. Consider a vector U of M random variables of GF(q) such that each

Um is the sum of dc i.i.d. products of random variables, i.e., Um =
∑dc

j=1H
(m)
j Z

(m)
j .

The Z
(m)
j and H

(m)
j are independent and i.i.d. random variables. H is uniformly

distributed in GF(q)\{0}. The of Z
(m)
j take their values in GF(q). Denote θk =

P (Z = k), αk = P (U = k) and assume that θ = [θ0 . . . θq−1] and α = [α0 . . . αq−1] are

unknown. Denote θ̂ and α̂ there respective ML estimates from an observed vector u,
with α̂k = Nk(u)

M
where Nk(u) is the number of occurrences of k in the vector u. Let

f(θ) =
∑

n0...nq−1

(
dc

n0 . . . nq−1

)(
1

q

)dc
F−1

(
q−1∏
j=0

(F (W [j]θ)))nj

)
(12)

where the sum is on all the possible combinations of integers n0 . . . nq−1 such that
0 ≤ nk ≤ dc and

∑q−1
k=0 nk = dc. Then the random variables of U are independent,

α = f(θ), and if f is invertible, θ̂ = f−1(α̂).

Proof. The random variables Um are independent because they are obtained from
sums of independent variables and Um =

∑dc
j=1H

(m)
j Z

(m)
j . One has αk = P (U =

k) =
∑
{hj}dcj=1

P ({hj}dcj=1)P (U = k|{hj}dcj=1) in which the sum is on all the possible

combinations of coefficients {hj}dcj=1. This can be simplified as αk =
∑

n0...nq−1
P (N0 =

n0 . . . Nq−1 = nq−1)P (U = k|n0 . . . nq−1) where nk is the number of occurences of k

in a combination {hj}dcj=1. One has P (N0 = n0 . . . Nq−1 = nq−1) =
(

dc
n0...nq−1

) (
1
q

)dc
Then, the vector denoted

PU|n0...nq−1 = [P (U = 0|n0 . . . nq−1) . . . P (U = q − 1|n0 . . . nq−1)] (13)

can be expressed as PU|n0...nq−1 = F−1
(∏q−1

j=0 (F (W [j]θ)))nj

)
. Therefore,

α = [α0 . . . αq−1] =
∑

n0...nq−1

(
dc

n0 . . . nq−1

)(
1

q

)dc
F−1

(
q−1∏
j=0

(F (W [j]θ)))nj

)
. (14)

The ML estimates α̂k of αk are α̂k = Nk(u)
M

. Finally, if f is invertible, then from [10,

Theorem 7.2] the ML estimate of θ is given by θ̂ = f−1(α̂)

7



10-4

10-3

600 800 1000 1200 1400 1600 1800 2000

M
S

E

N

Irregular mixture model (MCMC)
Irregular model (MCMC)

Irregular mixture model (LDPC)
Irregular model (LDPC)

Figure 1: MSE for the binary irregular
case

Lemma 5. Consider a vector U of M random variables of GF (q) such that each Um
is the sum of dc i.i.d. random variables such that Um =

∑dc
j=1 h

(m)
j Z

(m)
j . The Z

(m)
j are

i.i.d. random variables taking their values in GF(q). The values of the coefficients h
(m)
j

are known and belong to GF(q)\{0}. Denote θk = P (Z = k), αk = P (U = k) and
assume that θ = [θ0 . . . θq−1] and α = [α0 . . . αq−1] are unknown. Then the random

variables of U are independent and the ML estimate θ̂ from an observed vector u is
the θ that maximizes

L(θ) =
M∑
m=1

logF−1m

(
dc∏
j=1

F(W [hszm,j]θ)

)
(15)

and satisfies 0 ≤ θk ≤ 1 and
∑q−1

k=0 θk = 1.

Proof. The random variables Um are independent because they are obtained from
sums of independent variables The ML estimate θ̂ is the value that maximizes the
likelihood function given by

L(θ) = logP (u|θ, {h(m)
j }

dc,M
j=1,m=1) =

M∑
m=1

logP (um|θ, {h(m)
j }

dc
j=1) (16)

with respect to 0 ≤ θk ≤ 1 and
∑q−1

k=0 θk = 1. The second equality comes from
the independence assumption. Following the steps of Lemma 4, we show that (16)

becomes L(θ) =
∑M

m=1 logF−1m
(∏dc

j=1F(W [h
(m)
j ]θ)

)
.

5 Simulations

For the binary case, we consider a code λ(x) = 0.4295x3 + 0.2750x4 + 0.0745x10 +
0.1150x11 + 0.0035x12 + 0.0930x16 + 0.0095x17, ρ(x) = 0.2187x7 + 0.7760x8 + 0.0053x9

8



obtained from a code optimization realized with a differential evolution algorithm [16].
The rate of this code is R = 0.75 bit/symbol.

We first focus on the proposed initialization method. The ML performance of
the models introduced in Lemmas 2 and 3 are first evaluated via Monte Carlo (MC)
simulations [9]. More precisely, 50000 vectors U of length M are generated from the
models defined in Lemmas 2 and 3, for θ = 0.1. Then, the two proposed estimation
methods are applied to each realization. We average the relative squared error (θ−θ̂)2
over the realizations, in order to obtain an approximate version of the Mean Squared

Error (MSE) E
[
(θ − θ̂)2

]
. This gives the two stacked lower curves of Figure 1. They

represents the approximate MSE for several values ofN = M
R

. The fact that the curves
are stacked suggest that the ML performance is the same for the two models. Hence,
one should choose the simpler model of Lemma 2 for the initialization of the EM
algorithm. Then, 10000 vectors Z of length N are generated with respect to θ, and a
matrix H of the defined code is applied to each vector. The two proposed estimation
methods are applied to each realization. As before, an approximate version of the
MSE is obtained. This gives the two stacked upper curves of Figure 1. We observe an
important loss compared to the samples generated directly from the models. However,
the performance seems sufficient for the initialization of the EM algorithm.

Second, we are interested in the EM algorithm. For a length N = 10000, we
compare the Bit Error Rate (BER) of three setups over 100 realizations. The first
setup is the genie-aided setup, i.e, the setup where the the true parameter θ is given
to the decoder. The second setup corresponds to the EM algorithm initialized with
the proposed method. The third setup corresponds to the EM algorithm initiliazed
with a random θ. The results are presented in Figure ??. The BER is plotted with
respect to the number of iterations of the EM algorithm, for several values of θ. We
see that the EM algorithm initialized properly converges faster than the one initialized
at random, and that there is only a small loss compared to the genie aided setup.

6 Conclusion

This paper presents a universal Slepian-Wolf coding scheme based on non-binary
LDPC codes. The proposed method allows to decode whatever the correlation chan-
nel in a given class by performing joint estimation of the source vector and of the
parameter of the correlation channel. A method to initialize the EM algorithm real-
izing the joint estimation is also introduced.

The objective of future works is to provide tools based on density evolution meth-
ods to evaluate the performance of the proposed scheme. From such tools, one would
be able to optimize the coding matrix both for the decoding of the source vector and
for the estimation of the parameters.
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