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Abstract

Finite-context modeling is a powerful tool for compressing and hence for representing DNA
sequences. We describe an algorithm to detect genomic regularities, within a blind discovery
strategy. The algorithm uses information profiles built using suitable combinations of finite-
context models. We used the genome of the fission yeast Schizosaccharomyces pombe strain
972 h− for illustration, unveiling locations of low information content, which are usually
associated with DNA regions of potential biological interest.

Introduction

Graphical representations of DNA sequences are a handy way of quickly finding re-
gions of potential interest. This has been a topic addressed using various approaches
(see, for example, [1–10]), some of them relying on information theoretical principles.
Both global and local estimates of the randomness of a sequence provide useful in-
formation, but both also have shortcomings. Global estimates do not show how the
characteristics change along the sequence. Local estimates fail to take into consider-
ation the global properties of the sequence. This latter drawback was addressed by
Clift et al. [11] using the concept of sequence landscape, plots displaying the number
of times oligonucleotides from the target sequence occur in a given source sequence.
If the target and source sequences coincide, then the landscape provides information
about self-similarities (repeats) of the target sequence.

The sequence landscapes of Clift et al. [11] have been a first attempt to display
local information, taking into account global characteristics of the sequence. This
idea was pursed by Allison et al. [12] using XM, a model that considers a sequence as
a mixture of regions with little structure and regions that are approximate repeats.
With this statistical model, they have produced information sequences, which quan-
tify the amount of surprise of having a given base at a given position, knowing the
remaining of the sequence. When plotted, one of these information sequences provides
a quick overview of certain properties of the original symbolic sequence, allowing for
example to easily identify zones of rich repetitive content [13–15].

The information sequences of Allison et al. [12] are deeply related to data com-
pression. The role of data compression for pattern discovery in DNA sequences was
initially pointed out by Grumbach et al. [16] and, since then, it has been pursued
by other researchers (e.g. [13, 17]). In fact, the algorithmic information content of a
sequence is the size, in bits, of the shortest description of the sequence.

In this paper, we propose using combinations of several finite-context models, each
of a different depth, for building information profiles. Such models have been shown
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to adequately capture the statistical properties of DNA sequences [18–21] but are
direction-dependent, i.e., the results depend on which direction the DNA sequence
is processed. We remove this directional dependency by combining the amount of
information that a certain DNA base carries in each processing direction.

The information profiles are found using an algorithm based on finite-context
models that needs time proportional to the length of the sequence. We present a
proof-of-concept study of the potential of information profiles in genome analysis,
namely, for detecting genomic structural and functional regularities. We uncover
genomic regularities on a large-scale, such as, centromeric and telomeric regions of
a chromosome, or transposable elements. In this context, we use the genome of the
fission yeast Schizosaccharomyces pombe strain 972 h− as case-study.

Building the information profiles

Finite-context models are probabilistic models based on the assumption that the in-
formation source is Markovian, i.e., that the probability of the next outcome depends
only on some finite number of (recent) past outcomes referred to as the context. The
proposed approach is based on a mixture of finite-context models. We assign prob-
ability estimates to each symbol in A = {A,C,G,T}, regarding the next outcome,
according to a conditioning context computed over a finite and fixed number k > 0
of past outcomes xn−k+1..n = xn−k+1 . . . xn (order-k finite-context model with |A|k

states).
The probability estimates P (xn+1|xn−k+1..n) are calculated using symbol counts

that are accumulated while the sequence is processed, making them dependent not
only on the past k symbols, but also on n. We use the estimator

P (s|xn−k+1..n) =
C(s|xn−k+1..n) + α

C(xn−k+1..n) + |A|α
, (1)

where C(s|xn−k+1..n) represents the number of times that, in the past, symbol s was
found having xn−k+1..n as the conditioning context and where

C(xn−k+1..n) =
∑

a∈A

C(a|xn−k+1..n) (2)

is the total number of events that has occurred so far in association with context
xn−k+1..n. Parameter α allows balancing between the maximum likelihood estimator
and a uniform distribution (when the total number of events, n, is large, it behaves as
a maximum likelihood estimator). For α = 1, (1) reduces to the well-known Laplace
estimator.

The per symbol information content average provided by the finite-context model
of order-k, after having processed n symbols, is given by

Hk,n = −
1

n

n−1∑

i=0

log2 P (xi+1|xi−k+1..i) (3)

bits per symbol. When using several models simultaneously, the Hk,n can be viewed
as measures of the performance of those models until that instant. Therefore, the



probability estimate can be given by a weighted average of the probabilities provided
by each model, according to

P (xn+1) =
∑

k

P (xn+1|xn−k+1..n) wk,n, (4)

where wk,n denotes the weight assigned to model k and
∑

k

wk,n = 1. (5)

Our modeling approach is based on a mixture of probability estimates. In order to
compute the probability estimate for a certain symbol, it is necessary to combine the
probability estimates given by (1) using (4). The weight assigned to model k can be
computed according to

wk,n = P (k|x1..n), (6)

i.e., by considering the probability that model k has generated the sequence until that
point. In that case, we would get

wk,n = P (k|x1..n) ∝ P (x1..n|k)P (k), (7)

where P (x1..n|k) denotes the likelihood of sequence x1..n being generated by model k
and P (k) denotes the prior probability of model k. Assuming

P (k) =
1

K
, (8)

where K denotes the number of models, we also obtain

wk,n ∝ P (x1..n|k). (9)

Calculating the logarithm we get

log2 P (x1..n|k) = log2

n∏

i=1

P (xi|k, x1..i−1) = (10a)

=
n∑

i=1

log2 P (xi|k, x1..i−1) =
n−1∑

i=1

log2 P (xi|k, x1..i−1) + log2 P (xn|k, x1..n−1), (10b)

which is related to the number of bits that would be required by model k for represent-
ing the sequence x1..n. It is, therefore, the accumulated measure of the performance
of model k until instant n.

DNA sequences are known to be non-stationary. Due to this, the performance of a
model may vary considerably from region to region of the sequence. In order to extract
the best possible performance from each model, we adopted a progressive forgetting
mechanism. The idea is to allow each model to progressively forget the distant past
and, consequently, to give more importance to recent outcomes. Therefore, we write
a modified version of (10b) as

log2 pk,n = γ log2 pk,n−1 + log2 P (xn|k, x1..n−1), (11)



where γ ∈ [0, 1) dictates the forgetting factor and log2 pk,n represents the estimated
number of bits that would be required by model k for representing the sequence x1..n

(we set pk,0 = 1), taking into account the forgetting mechanism.
Removing the logarithms, we can rewrite (11) as

pk,n = pγk,n−1
P (xn|k, x1..n−1) (12)

and, finally, set the weights to

wk,n =
pk,n∑
k pk,n

. (13)

This probabilistic model yields an estimate of the probability of each symbol in
the DNA sequence, and as such it allows us to quantify the degree of randomness or
surprise along one direction of the sequence.

Results and Discussion

For illustration, we used the S. pombe genome (uid 127), obtained from the National
Center for Biotechnology Information (NCBI)1. The profiles are the result of the
combination of eight finite-context models with context depths of 2, 4, 6, 8, 10, 12, 14
and 16. Probabilities were estimated with α = 1/20 in Eq. 1 for the larger contexts
of k =14 and k =16. For clarity, the full chromosome profiles result from low-pass
filtering with a Blackman window of 1, 001 bases and sampling every 20 bases.

Chromosomes are processed both in the downstream, or direct (5’→3’), and up-
stream, or reversed (3’→5’), directions. This dual processing aims at eliminating the
directionality bias introduced when only one of the two possible directions is taken
into consideration. Therefore, the information content of each DNA base is calcu-
lated by running the statistical model in one direction, then in the other direction,
and finally by taking the smallest value obtained.

We have computed the information profiles for each of the three chromosomes
(Fig. 1). There are locations of low information content which are associated with
DNA regions of biological interest, such as telomeric and centromere regions. We
have marked with letters A, C, D, F, G and I the telomeric regions and with letters
B, E and H the centromere regions. They also allow to identify the long arm (q)
and short arm (p) on each chromosome. In Fig. 2, we display a zoomed view of the
centromeres, revealing that their size varies inversely with the length of the respective
chromosome.

In general, low-information regions are associated with the presence of repetitive
sequences. For example, chromosome III has more and often more prominent low-
information regions than chromosomes I and II, which is in compliance with some
properties of this chromosome concerning repetitive structures, such as, the presence
of tandem rDNA repeats [22] or the density of transposable element remnants in this
chromosome being twice that of chromosomes I and II [23].

We have also performed an inter-chromosomal study. We concatenated chromo-
some I with chromosome III and ran the algorithm from left to right and from right

1ftp://ftp.ncbi.nlm.nih.gov/genomes/.



Figure 1: Plots of the information content for chromosome I (first row), chromosome II
(second row) and chromosome III (third row) of S. pombe. The information profiles were
obtained by processing the sequences in both directions, and then choosing the minimum
information value in each direction. For better visualization, low-pass filtering with a Black-
man window of 1, 001 bases was applied to the profiles.

Figure 2: Plot of the information content of the centromeres of chromosome I (C1), II (C2)
and III (C3).

to left, picking the lowest information content values of both, base by base. A simi-
lar process has been done substituting chromosome I by II. Figure 3 shows only the
information profile of chromosome III calculated taking into account the statistics
of chromosome I, second row, and chromosome II, third row. We can see important
regions marked with the letters A, B and C. The region marked with letter B contains
the 2, 529 bases of gene eft202 (from base 537, 326 to 539, 854 in chromosome III).
This gene is also present in chromosome I, named eft201, located from base 2, 907, 701
to 2, 910, 229, and has ∼99% sequence similarity to gene eft202.

The region marked with letter A in Fig. 3 indicates a region in chromosome III
(gene ef1a-a) that is highly similar (∼98% sequence similarity) with a region of chro-
mosome I (gene ef1a-b). Although not included here, we found also an identical
degree of similarity with gene ef1a-c in chromosome II. Fig. 4 illustrates the rela-
tive position of these genes, where letter A marks a region from base 4, 095, 202 to
4, 096, 584 (1, 383 bases, chromosome I), letter B refers from base 626, 106 to 627, 488
(1, 383 bases, chromosome II), and letter C from base 268, 097 to 269, 479 (1, 383
bases, chromosome III).



Figure 3: Information content of chromosome III of S. pombe. The first row shows a
representation for chromosome III and their long repetitive zones. The second row shows
chromosome III (blue) with information added from chromosome I (green). The third row
shows chromosome III (blue) with information added from chromosome II (red).

Figure 4: Illustration of the three chromosomes of S. pombe genome marked with genes
ef1a-b (A), ef1a-c (B) and ef1a-a (C).

Conclusions

We described an algorithm to detect genomic regularities within a blind discovery
strategy. This algorithm uses information profiles built using an efficient DNA se-
quence compression method. The results described support our claim that informa-
tion profiles provide a valuable discovery tool for genome-wide studies. In fact, the
accurate matching of the low-information regions to annotated repetitive genomic
structures, such as the centromeric and telomeric regions of a chromosome, proves
information profiles may be useful in de novo discovery of large-scale genomic reg-
ularities. Clearly, it is not possible to infer the genomic sequence per se from the
information profiles, or the location of genomic regularities within base pair resolu-
tion. However, it is possible to discover the presence of regularities on a genome-wide
scale, which may be useful for an exploratory genome analysis or for genome compar-
isons.

Our algorithm relies on the efficient probabilistic modeling of the genomic sequence
based on finite-context models. The approach is sufficiently flexible and powerful to
enable addressing various biological questions and quickly obtaining the corresponding
information profiles for a first-hand assessment. Indeed, the creation of information



profiles does not require high performance computational facilities. Building an in-
formation profile requires a computation time that depends only linearly on the size
of the sequence. For example, the information profile of a human chromosome can
be created in a laptop computer in just a few minutes. Moreover, the amount of
computer memory required does not depend on the size of the sequence, but only on
the depth of the finite context models used for modeling the sequence.
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