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Abstract

We describe a compression-based distance for genomic sequences. Instead of using the usual
conjoint information content, as in the classical Normalized Compression Distance (NCD),
it uses the conditional information content. To compute this Normalized Conditional Com-
pression Distance (NCCD), we need a normal conditional compressor, that we built using
a mixture of static and dynamic finite-context models. Using this approach, we measured
chromosomal distances between Hominidae primates and also between Muroidea (rat and
mouse), observing several insights of evolution that so far have not been reported in the
literature.

Introduction

The high-throughput sequencing technologies are creating an avalanche of genomic
and metagenomic sequences, nonexistent a few years ago. We are now able to compu-
tationally evaluate similarities, or their absence, among species and across different
regions of the same species, using whole genomes.

Common biological approaches for determining distances, usually using FISH tech-
niques, are very expensive and time-consuming. Computational approaches have
emerged as an affordable, fast and automated process to deal with this problem.
Several computational distance metrics have been proposed, where some of the most
popular are the Hamming [1] and Levenshtein [2] distances. The Hamming distance
can only be applied when the sequences are aligned with precision and have the same
size, requirements hardly found in large genomic sequences. The Levenshtein dis-
tance explores transformations between the sequences, namely insertions, deletions
and substitutions. Although quite successful, its computational time is prohibitive
for large sequences (the fastest known implementation runs with time complexity
O(n2/ logn)).

Compression-based approaches emerged as a natural way for measuring distances,
because, together with the appropriate decoder, the bitstream produced by a loss-
less compression algorithm allows the reconstruction of the original data and, there-
fore, can be seen as an upper bound of the algorithmic entropy of the sequence.
A compression-based distance computes the distance between two objects using the
number of bits needed to describe one of them when a description of the other is
available, as well as the number of bits required to describe each of them.

Compression-based distances are founded on the Kolmogorov notion of complex-
ity, also known as algorithmic entropy, where K(x) of a string x is the length of the
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shortest binary program x∗ that computes x in an appropriate universal Turing ma-
chine and halts [3]. As such, K(x) = |x∗|, the length of x∗, denotes the number of bits
of information from which x can be computationally retrieved [4]. The conditional
Kolmogorov complexity, K(x|y), denotes the length of the shortest binary program,
in the universal prefix Turing machine, that on input y outputs x. A special case
occurs when y is an empty string, y = λ, and hence K(x|λ) = K(x).

Bennett introduced the information distance [5], E(x, y) = max{K(x|y), K(y|x)},
defined as the length of the shortest binary program for the reference universal prefix
Turing machine that with input x computes y, as well as with y computes x. The
normalized version (NID [6]) of E(x, y) is defined as

NID(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)}
, (1)

up to an additive logarithmic term. The normalized compression distance (NCD) [7]
emerged to efficiently compute the NID, due to the non-computability of K,

NCD(x, y) =
C(x, y)−min{C(x), C(y)}

max{C(x), C(y)}
, (2)

up to an additive logarithmic term, where C(x) and C(y) represent, respectively,
the number of bits of the compressed version of x and y, and C(x, y) the number
of bits of the conjoint compression of x and y (usually, x and y are concatenated).
Distances near one indicate dissimilarity, while distances near zero indicate similarity.
It can be seen that for NCD(x, x) = 0 to hold, then the compressor needs to verify
C(x, x) ≈ C(x), one of the most important properties of a normal compressor [7].

In this paper, we describe an admissible normalized compression distance, relying
on a conditional compressor, that builds an internal model of the data using a mix-
ture of static and dynamic finite-context models (FCMs). We assess the metric and
its inherent parameterized compressor, and we present some results of chromosomal
distances between several large eukaryotic chromosomes, namely Hominidae primates
and Muroidea, confirming several documented results and pointing out some undoc-
umented observations.

Proposed Approach

A direct substitution of K by C in (1) would require the availability of compressors
that are able to produce conditional compression, i.e., C(x|y) and C(y|x). Most
compressors do not have this functionality and, therefore, the NCD avoids it by using
suitable manipulations of (1) [7]. Instead of C(x|y) and C(y|x), a term corresponding
to the conjoint compression of x and y, C(x, y), was preferred. Usually, this C(x, y)
term is interpreted as the compression of the concatenation of x and y, but, in fact,
it could be any other form of combination between x and y. Concatenation is often
used because it is easy to obtain, but in fact its use may hamper the efficiency of the
measure [8].



To overcome this limitation, we propose use the direct form, to which we call the
Normalized Conditional Compression Distance (NCCD),

NCCD(x, y) =
max{C(x|y), C(y|x)}

max{C(x), C(y)}
, (3)

where “Conditional” means that the compressor C needs to be able to perform con-
ditional compression.

The conditional compressor

We have built a NCCD compressor based on two model classes (we call them “static”
and “dynamic”), each one composed of mixtures of finite-context models (FCMs)
of several orders [9–11]. To compute C(x|y), the compression is performed in two
phases. In the first phase, the static class of FCMs accumulates the counts regarding
the y object. After the entire y object was processed, the models are kept frozen and,
hence, the second phase starts. At this point, the x object starts to be compressed
using the static models computed during the first phase, in cooperation with the set
of FCMs of the dynamic class, that dynamically accumulate the counts only from x.

The probability of each symbol is obtained by mixing the probabilities provided
by each FCM of the static and dynamic models, using a weighted average, according
to

P (xn+1) =
∑

k

P (xn+1|xn−k+1..n) wk,n, (4)

where wk,n denotes the weight assigned to the finite-context model k and
∑

k wk,n = 1.
The conditional probabilities are given by the estimator

P (s|xn−k+1..n) =
C(s|xn−k+1..n) + α

C(xn−k+1..n) + 4α
, (5)

where C(s|xn−k+1..n) represents the number of times that, in the past, symbol s was
found having xn−k+1..n as the conditioning context and where C(xn−k+1..n) is the total
number of events that has occurred so far in association with context xn−k+1..n.

For stationary sources, we could compute weights such that wk,n = P (k|x1..n),
i.e., according to the probability that model k has generated the sequence until that
point. In that case, we would get

wk,n = P (k|x1..n) ∝ P (x1..n|k)P (k), (6)

where P (x1..n|k) denotes the likelihood of sequence x1..n being generated by model k
and P (k) denotes the prior probability of model k. Assuming P (k) = 1/K, where
K denotes the total number of FCMs, we obtain wk,n ∝ P (x1..n|k). Calculating the
logarithm we get

log2 P (x1..n|k) = log2

n∏

i=1

P (xi|k, x1..i−1) =
n∑

i=1

log2 P (xi|k, x1..i−1), (7)



which corresponds to the code length that would be required by model k for represent-
ing the sequence x1..n. It is, therefore, the accumulated measure of the performance
of model k until instant n. However, since the DNA sequences are not stationary, a
good performance of a model in a certain region of the sequence might not be attained
in other regions. Hence, the performance of the models have to be measured in the
recent past of the sequence, for example using a mechanism of progressive forgetting
of past measures. For that, we use the recursive relation

n∑

i=1

log2 P (xi|k, x1..i−1) = (8a)

= γ
n−1∑

i=1

log2 P (xi|k, x1..i−1) + log2 P (xn|k, x1..n−1). (8b)

This relation corresponds to a first-order recursive filter that, for γ ∈ [0, 1), has a low-
pass characteristic and an exponentially decaying impulse response. For additional
information, see, for example, [12, 13].

Parameterization and assessment

The parameters used in each compression measure must be kept constant, in order
to be used as a valid comparable metric between distances (otherwise it will change
the meaning of C). Accordingly, we have used a fixed setup of five static FCMs and
three dynamic FCMs, mixed using a set of weights estimated with γ = 0.9. From
our experience, we have verified that γ = 0.99 maximizes the compression gain for
bacterial genomes, while for eukaryotic genomes γ = 0.9 seems to be the best choice.
The orders used for the static models were: 4, 6, 8, 10 and 15. For the first four
we used α = 1 (Laplace estimator), whereas the one with the highest order we used
α = 0.001. Usually, a small α is important only for high orders (above ten). Moreover,
the high order used (15) ensures an admissible identity (i.e., NCCD(x, x) ≈ 0), as
Fig. 1 suggests. The curve in Fig. 1 labeled “lossy” corresponds to using always
the best FCM for each base and shows that the first part of the curves is due to
the adaptation of the method when not enough data is present, suggesting that a
very small sequence may harm the identity property, also observed in very large
sequences. The latter drawback may be overcome using higher FCM orders, at the
cost of additional computational memory.

The three FCMs of the dynamic class have orders 4, 10 and 15, where the first two
rely on a Laplace probability estimator and the last one use α = 0.05. For the two
deeper models, the inverted repeats are also taken into account [14]. The maximum
counters used in each static model were, respectively, 29, 212, 212. This limitation
acts also as a forgetting mechanism, because the counters are divided by two when
one of them reaches the maximum, decreasing the importance of statistics collected
in the far past. More information regarding FCM parameterization can be obtained
in [12, 13, 15].

The DNA data sequences are products of sequencing techniques, which have a
sequencing quality, coverage and assembly technique associated [16]. Although these



Figure 1: NCCD(x, x) value on uniformly distributed DNA (synthetic) sequences with
custom sizes, for several depths of the highest order model. The “lossy” curve shows the
behavior of NCCD when the best FCM is chosen for each base, corresponding to a lower
bound of the (non-reversible) compressor.

external factors may sometimes constitute a problem, we believe that generally they
are mitigated by the compressor [17]. Nevertheless, since we use a metric based on
conditionals targeting genomic sequences, we have assessed the impact of uniformly
distributed mutations, namely substitutions, insertions and deletions, over 50 MB of
real (first 50 MB of chromosome 1 from H. sapiens) and synthetic (simulated using XS
from Exon [18]) genomic data, as can be seen in the top graph of Fig. 2. Substitutions
seem to be the most difficult mutation type to be handled by the compressor, although
only slightly, and, hence, by the NCCD. Although it is clear that the method is still
reporting reasonable distances for sequences with 10% of mutations, both for the real
and synthetic sequences.

Finally, we have assessed the importance of sequence completeness using pro-
gressive missing data, as the bottom graph of Fig. 2 depicts. As expected, it is
characterized by an approximately linear behavior. However, there is a gap between
the curves of the real and synthetic sequences, specially when there are lower missing
rates. This is due to the nature of the sequences, namely the self-similarity, since the
beginning of the real sequence is composed by a telomeric zone (highly-repetitive).
On the other hand, the synthetic sequence does not yield an exact zero of the NCCD
when the missing rate is zero, because it has been simulated with several approxi-
mately repeating zones. This may be overcome with higher FCM orders, although at
the cost of more computer memory.

Results

The data set is composed of six genomes (Table 1), downloaded from the NCBI
website (ftp://ftp.ncbi.nlm.nih.gov/genomes).

Figure 3 presents the inter-chromosomal NCCD distance heatmaps relatively to
H. sapiens with the rest of the primates and M. musculus, and M. musculus relatively



Figure 2: NCCD performance on synthetic and real 50 MB of genomic mutated data (top)
and on progressive block missing data (bottom).

to R. norvegicus, plotted in an all with all scheme. As can be seen, for all primate
species there is a direct correlation with the respective chromosomal number, with the
exception of chromosome 2 (related to 2A and 2B). This is justified by a presumed
chromosomal fusion in humans from previous ancestors [19].

Moreover, the human Y chromosome is highly related with the X chromosome
of other primate species, namely the P. troglodytes, because the Y chromosome ex-
changed genetic information with X in the recombination process [20]. Furthermore,
there is a low distance between chromosomes 5 and 17 of the G. gorilla and H. sapiens,
justified by a chromosomal translocation [21].

Relatively to M. musculus, there is an obvious similarity with R. norvegicus,
although smaller than in P. maniculatus / M. norvegicus [22]. When compared
with the primates, no important similarities are found (at a genomic level), specially
in human chromosomes 19 and 22. Moreover, it seems that only the mithocondrial
sequences attain some level of similarity. Nevertheless, the M. musculus (MM) and



Table 1: Data set used in the experiments. The number of expected chromosome pairs for
each species is represented by “Exp”, while “Missing” is a nonexistence sequence and Mb
represents the approximated size in Mega bases.

Organism Build Exp Missing Mb

Homo sapiens 37.p10 23 - 2,861

Pan troglodytes 2.1.4 24 - 2,756

Gorilla gorilla r100 24 Y 2,719

Pongo abelii 1.3 24 Y 3,028

Mus musculus 38.p1 20 - 2,716

Rattus norvegicus 5.1 21 Y 2,443

R. norvegicus (RN) diagonal is very dissipated for such a low distance depicted in
the mithocondrial sequence. In fact, only chromosomes (C) 18 and X seem to be
homologous (in the diagonal). Subsequent analysis show strong similarity between
MM C2 / RN C3, MM C9 / RN C8 and MM C11 / RN C10, and considerable
similarity between MM C4 / RN C5, MM C6 / RN C4, MM C12 / RN C6 and MM
C14 / RN C15, without detracting other important patterns.

Figure 4 presents the chromosomal distances of P. troglodytes, G. gorilla and P.

abelii (chromosomes 2A and 2B have been concatenated) according to the H. sapiens
chromosomes order. At glance, P. troglodytes has the lowest distance relatively to
H. sapiens, followed by G. gorilla and P. abelii, respectively. Specifically, the G.

gorilla chromosomes 5 and 17 have large distances because of the previous mentioned
translocation, while P. abelii seems to have a very different chromosome 1, besides
other relevant dissimilarities.

According to [23], besides the high divergence of Y chromosome, there are several
breakpoints in chromosomes 4, 5 and 12, which were tested by fluorescence in situ

hybridization (FISH) in P. troglodytes, using H. sapiens as reference. Figure 4 reports
the same dissimilarities, surprisingly adding chromosome 17.

Finally, we have found that chromosomes 4, 12 and 18 of G. gorilla have lower
distances to H. sapiens than to the respective P. troglodytes chromosomes, while
chromosomes 5 and 17 of G. gorilla have higher distances than those of P. abelii.
Mitochondrial sequences, as expected, show that P. troglodytes is the nearest species
to H. sapiens, followed by the G. gorilla and P. abelii.

Conclusion

We have described a compressed-based metric for measuring distances between ge-
nomic sequences, based on the conditional information content. This approach re-
quires a normal conditional compressor, that we have defined and assessed in this
work. The compressor is constituted by a set of multiple static and dynamic finite-
context models, that cooperate under a supervision mixture model. It is able to
handle several types of mutations, and hence rendering it a good candidate to study
large eukaryotic chromosomes. We have calculated chromosomal distances between



Figure 3: P. troglodytes, G. gorilla, P. abelii and M. musculus inter-genomics chromosomal
NCCD heatmaps, in relation to H. sapiens, and M. musculus in relation to R. norvegicus.

Hominidae primates and also Muroidea (rat and mouse) rodents superfamily, attain-
ing results that agree with several already documented results, mainly using expensive
and time-consuming FISH approaches, but also unveiling undocumented ones.
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