
ar
X

iv
:1

40
1.

51
43

v2
 [

cs
.D

S]
 2

9
Ja

n
20

14

Fully Online Grammar Compression in Constant Space

Shirou Maruyama∗ and Yasuo Tabei†

∗Preferred Infrastructure, Inc. †PRESTO, Japan Science
maruyama@preferred.jp and Technology Agency

tabei.y.aa@m.titech.ac.jp

Abstract

We present novel variants of fully online LCA (FOLCA), a fully online grammar com-
pression that builds a straight line program (SLP) and directly encodes it into a succinct
representation in an online manner. FOLCA enables a direct encoding of an SLP into a
succinct representation that is asymptotically equivalent to an information theoretic lower
bound for representing an SLP (Maruyama et al., SPIRE’13). The compression of FOLCA
takes linear time proportional to the length of an input text and its working space depends
only on the size of the SLP, which enables us to apply FOLCA to large-scale repetitive
texts. Recent repetitive texts, however, include some noise. For example, current sequenc-
ing technology has significant error rates, which embeds noise into genome sequences. For
such noisy repetitive texts, FOLCA working in the SLP size consumes a large amount of
memory. We present two variants of FOLCA working in constant space by leveraging the
idea behind stream mining techniques. Experiments using 100 human genomes correspond-
ing to about 300GB from the 1000 human genomes project revealed the applicability of our
method to large-scale, noisy repetitive texts.

1 Introduction

Large-scale, highly repetitive text collections are becoming more and more ubiquitous.
Examples are sequences of individual human genomes, source code in repositories and
version controlled documents. In particular, the 1000 human genomes project stores
more than 2,000 human genomes, which makes it possible for us to analyze human
genetic variations [1]. Thus, we face a problem storing and processing a vast number
of individual genome sequences of the same species, perhaps millions of genomes in
the near future. There is therefore a strong demand for developing powerful methods
to compress and process such text data on a large scale.

Grammar compression is effective for compressing and processing repetitive texts.
There are two types of problems in the field: (i) building a small context-free grammar
(CFG) that generates a single text and (ii) representing the obtained CFG as com-
pactly as possible. The method also reveals a processing ability for repetitive texts,
e.g., pattern matching [2], pattern mining [3] and edit distance computation [4]. As
far as we know, existing methods use two-step approaches: they first build a CFG
from an input text and then encode it into a compact representation. Although these
methods achieve a high compression ratio, they require a large working space con-
sumed by building the CFG and its encoding. Even worse, they are not applicable to
streaming texts because of the indirectness of these steps.

This work was supported by JSPS KAKENHI(24700140).

http://arxiv.org/abs/1401.5143v2

Table 1: Comparison with existing algorithms. Here, N is the length of the input string,
σ is the alphabet size, n is the number of generated rules, and α is a parameter between 0
and 1 (the load factor of hash tables). The expected time complexities are due to the use
of a hash function.

Compression time Working space (bits) Ref.
O(N/α) expected (3 + α)n lg(n+ σ) [7]
O(N/α) expected (11

4
+ α)n lg(n+ σ) [9]

O(N lgn) 2n lgn(1 + o(1)) + 2n lg ρ (ρ ≤ 2
√
n) [6]

O(N lgn

α lg lg n
) expected (1 + α)n lg(n+ σ) + n(3 + lg(αn)) [5]

O(N/α) expected constant this study

Maruyama et al. [5] overcame the efficiency problem by introducing a fully online
grammar compression called FOLCA that builds a straight line program (SLP), a
normal form of a CFG, and directly encodes it into a succinct representation in an
online manner. To achieve a small working space, they also presented a space-efficient
implementation of reverse dictionary, a crucial data structure for checking whether
or not a production rule in an SLP already exists in execution. FOLCA consumes
a small working space that depends only on the size of the SLP and not on the size
of the input text because of the directness of building the SLP and its encoding in
an online manner. In addition, the size of the succinct representation of an SLP of
n variables by FOLCA is lg n+ 2n+ o(n) bits, which is asymptotically equivalent to
the information theoretic lower bound of lgn + n + o(n) bits presented in [6]. The
compression time and approximation ratio are O(N) and O(lg2N), respectively, for
the length N of an input text, which are the same as those of the previous version of
FOLCA [7]. Such nice properties of FOLCA enable the compression of a large-scale
repetitive text in a small working space depending on the SLP size.

Recent repetitive texts, however, include some noise. For example, current se-
quencing technology has significant error rates, which embeds noise into genome se-
quences. Actually, there is a 9% difference on average among sequences stored in the
1000 human genomes project, although it is said that the genetic difference between
individual human genomes is less than 0.01%. Since FOLCA works in a space depend-
ing on the SLP size, applying it to such noisy repetitive texts requires a large working
space. One can solve the problem by dividing the input text into several blocks and
applying compressors, e.g., LZ77 and RePair, into each block, but the compression
ratio is ruined as long-range repetitions are not captured [8]. Since the amount of
large-scale repetitive text data including noise is ever increasing, developing a scalable
grammar compression using a constant working space remains a challenge.

In this paper, we present novel variants of FOLCA that are fully online grammar
compressions working in constant space for large-scale, noisy repetitive texts. Our
variants output a succinct representation of an SLP to a secondary storage device and
keep a hash table for a reverse dictionary in a main memory; this accounts for most
of the memory consumed by the hash table for compression. To conserve working
space, our variants keep only frequent production rules in the hash table by leveraging
the idea behind stream mining techniques [10–12]. Since these frequent production
rules can represent as many as possible of the same digrams, they are expected to

help achieve a high compression ratio. In addition, we also present a decompression
algorithm working in constant space from our succinct representation of an SLP
to efficiently recover a large text. Our results and those of existing algorithms are
summarized in Table 1.

Experiments were performed on compressing and decompressing 100 human genomes
from the 1000 human genomes project. The results show the applicability of our
method to large-scale, noisy repetitive texts.

2 Preliminaries

2.1 Basic notation

Let Σ be a finite alphabet for the symbols forming input texts throughout this paper.
All elements in Σ are totally ordered. Σ∗ denotes the set of all strings over Σ, and Σi

denotes the set of all strings of length i. The length of w ∈ Σ∗ is denoted by |w|, and
the cardinality of a set C is similarly denoted by |C|. X is a recursively enumerable
set of variables with Σ ∩ X = ∅. A sequence of symbols from Σ ∪ X is also called a
string, and an ordered pair of symbols from Σ ∪ X is called a digram. Strings x and
z are said to be the prefix and suffix of the string w = xyz, respectively, and x, y, z
are called substrings of w. The i-th symbol of w is denoted by w[i] (1 ≤ i ≤ |w|).
For integers i, j with 1 ≤ i ≤ j ≤ |w|, the substring of w from w[i] to w[j] is denoted
by w[i, j]. lgn stands for log2 n. Let N be the length of an input text, which can be
variable in an online setting.

2.2 Grammar compression

A CFG is a quadruple G = (Σ, V,D,Xs) where V is a finite subset of X , D is a
finite subset of V × (V ∪ Σ)∗ of production rules, and Xs ∈ V represents the start
symbol. D is also called a phrase dictionary. Variables in V are called nonterminals.
We assume a total order over Σ ∪ V . The set of strings in Σ∗ derived from Xs by G
is denoted by L(G). A CFG G is called admissible if for any X ∈ X there is exactly
one production rule X → γ ∈ D and |L(G)| = 1. An admissible G deriving a text
S is called a grammar compression of S. The size of G is the total of the lengths
of strings on the right hand sides of all production rules; it is denoted by |G|. The
problem of grammar compression is formalized as follows:

Definition 1 (Grammar Compression) Given a string w ∈ Σ∗, compute a small,
admissible G that derives only w.

In the following, we assume the case |γ| = 2 for any production rule X → γ. This
assumption is reasonable because any grammar compression with n variables can be
transformed into such a restricted CFG with at most 2n variables.

The parse tree of G is represented as a rooted ordered binary tree such that
internal nodes are labeled by variables in V and the yields, i.e., the sequence of labels
of leaves that are equal to S. In a parse tree, any internal node Z ∈ V corresponds
to the production rule Z → XY , and it has a left child labeled X and a right child

labeled Y . Let height(Xi) be the height of the subtree having the root Xi in the
parse tree. We assume an SLP for the CFG as follows.

Definition 2 (Karpinski-Rytter-Shinohara [13]) An SLP is a grammar compression
over Σ∪ V whose production rules are formed by Xk → XiXj, where Xi, Xj ∈ Σ∪ V
and 1 ≤ i, j < k ≤ |V |+ |Σ|.

Note that although our definition of an SLP is different from the original definition [13]
in that our production rules derive only digrams, they are equivalent. In this paper,
we use our definition for notational convenience.

2.3 Reverse dictionary

A reverse dictionary D−1 : (Σ ∪ X)2 → X is a mapping from a given digram to a
nonterminal symbol. D−1 returns a nonterminal Z associated with a digram XY if
Z → XY ∈ D; otherwise, it creates a new nonterminal symbol Z ′ /∈ V and returns
Z ′. For example, if we have a phrase D = {X1 → ab,X2 → cd}, then D−1(a, b)
returns X1, while D−1(b, c) creates a new nonterminal X3 and returns it. We can
implement a reverse dictionary using a chaining hash table that has a load factor α.
The hash table has αn entries and each entry stores a list of a triple (Xk, Xi, Xj) for
a production rule Xk → XiXj . For the rule Xk → XiXj , the hash value is computed
from Xi and Xj . Then, the list corresponding to the hash value is scanned to search
for Xk. Thus, the expected access time is O(1/α). The space is αn lg (n + σ) bits
for the hash table and 3n lg (n+ σ) bits for the lists. Therefore, the total size is
n(3 + α) lg (n+ σ) bits.

3 FOLCA in Compressed Space

FOLCA builds a post-order SLP (POSLP) as a special form of an SLP that can be
transformed into a post-order partial parse tree (POPPT): a partial parse tree whose
internal nodes are post-ordered. FOLCA directly encodes a POSLP into a succinct
representation of a POPPT. In the original FOLCA, the succinct representation of a
POPPT is kept in a main memory and used as the reverse dictionary in combination
with a hash table. Instead, we modified FOLCA as it outputs the succinct represen-
tation of a POPPT into a secondary storage device, and we implemented a reverse
dictionary using a chaining hash table kept in a main memory. Thus, the hash table
is a crucial data structure for large-scale applications of FOLCA, because it accounts
for most of the working space. In the next section, we present two space-efficient
versions of FOLCA created by reducing the space of the hash table.

3.1 Post-order SLP

A partial parse tree defined by Rytter [14] is a binary tree formed by traversing a
parse tree in a depth-first manner and pruning out all descendants under every node
of nonterminal symbols appearing no less than twice. A POPPT and POSLP are
defined as follows.

(ii) Parse tree for the post-order SLP (iii) Post order partial parse tree
 (POPPT)

(iv) A succinct representation
 of the POPPT that is output
 to a secondary storage

 12345678910
 B:0010101011
 L:abbX

1
X
2

(v) A hash table for the reverse
 dictionary of the POSLP.
 The hash table is stored
 in a main memory.

(i) Post-order SLP

Figure 1: Example of a POSLP, parse tree of a POSLP, a post-order partial parse tree
(POPPT), a succinct representation of POPPT and a hash table for a reverse dictionary.
The succinct representation of the POPPT is output to a secondary storage device and the
hash table is stored in a main memory.

Definition 3 (POSLP and POPPT [5]) A post-order partial parse tree (POPPT)
is a partial parse tree whose internal nodes have post-order variables. A post-order
SLP (POSLP) is an SLP whose partial parse tree is a POPPT.

Note that the number of nodes in the POPPT is 2n+1 for a POSLP of n variables,
because the numbers of internal nodes and leaves are n and n + 1, respectively.
Examples of a POSLP and POPPT are shown in Figure 1-(i) and -(iii), respectively.
In this example, all the descendants under every node having the second X1 and X2

in the parse tree (ii) are pruned out. The resulting POPPT (iii) has internal nodes
consisting of post-order variables.

A major advantage of the POSLP is that we can directly encode the corresponding
POPPT into a succinct representation consisting of a bit string B and a label sequence
L. A bit string B representing a POPPT is built by traversing a POPPT in a depth-
first manner and placing ’0’ if a node is a leaf and ’1’ otherwise in post-order. The last
bit ’1’ in B represents a virtual node and is placed for fast tree operations without
computing boundary conditions. Thus, a POPPT of a POSLP of n variables consists
of n internal nodes, n+1 leaves and a virtual node. Label sequence L keeps symbols in
the leaves of a POPPT. The length of L is n+1 and its space is (n+1)⌈lg(n+σ)⌉ bits.
Thus, the size of the POPPT of a POSLP of n variables is (n+1)⌈lg(n+σ)⌉+2n+2
bits.

3.2 FOLCA

The basic idea of FOLCA is to (i) start from symbols of an input text, (ii) replace
as many as possible of the same pairs of symbols in common substrings by the same
nonterminal symbols, and (iii) iterate this process in a bottom-up manner until it
generates a complete POSLP. The POSLP is built in an online fashion.

FOLCA builds two types of subtrees in a POPPT from strings XY and XY Z
of length two and three, respectively. The first type is a 2-tree corresponding to a
production rule in the form of A→ XY . The second type is a 2-2-tree corresponding
to production rules in the forms of A→ Y Z and B → XA.

To build a 2-tree or 2-2-tree from a substring of a limited length, FOLCA uses

Algorithm 1 FOLCA: Fully Online LCA. D: phrase dictionary, D−1: reverse dic-
tionary, qk: queue at level k.
1: function FOLCA

2: D := ∅; initialize queues qk
3: while Read a new character c until it is not the end of the file do

4: ProcessSymbol(q1, c)
5: end while

6: end function

7: function ProcessSymbol(qk, X)
8: qk.enqueue(X)
9: if qk.size() = 4 then

10: if L(qk, 2) = 0 then ⊲ Build a 2-tree
11: Y := Update(qk[3],qk[4])
12: ProcessSymbol(qk+1, Y)
13: qk.dequeue(); qk.dequeue()
14: end if

15: else if qk.size() = 5 then ⊲ Build a 2-2-tree
16: Y := Update(qk[4],qk[5]); Z := Update(qk[3],Y)
17: ProcessSymbol(qk+1, Z)
18: qk.dequeue(); qk.dequeue(); qk.dequeue()
19: end if

20: end function

21: function Update(X ,Y)
22: Z := D−1(X,Y)
23: if Z → XY /∈ D then

24: D := D ∪ {Z → XY }
25: end if

26: return Z
27: end function

a landmark, which is defined as a local feature determined by strings of length four.
Let u be a string of length m. A function L : (Σ ∪ V)m × [m] → {0, 1} classifies
whether or not the i-th position of u has a landmark, i.e., the i-th position of u has a
landmark if L(u, i) = 1. L(u, i) is calculated from a substring u[i−1]u[i][i+1]u[i+2]
of length four. FOLCA builds a 2-2-tree from a substring u[i + 1]u[i + 2]u[i + 3] of
length three if the i-th position of u does not have a landmark; otherwise, it builds
a 2-tree from a substring u[i + 2]u[i + 3] of length two. Landmarks on a string are
decided such that they are synchronized in long common subsequences to make the
size of the POSLP generated by FOLCA as small as possible. See [7] for the details
of landmarks.

The algorithm uses a set of queues, qk, k = 1, ..., m, where qk corresponds to
the k-th level of a parse tree of a POSLP and builds 2-trees and 2-2-trees at each
level. Since FOLCA builds a balanced parse tree, the number m of those queues
is bounded by lgN . In addition, landmarks are decided on strings of length four,
and the lengths of these queues qk, k = 1, ..., m, are also fixed to five. Algorithm 1
consists of three functions, FOLCA, ProcessSymbol and Update. The main
function is FOLCA, which reads new characters from an input text and gives them
to the function ProcessSymbol one by one.

The function ProcessSymbol builds a POSLP in a bottom-up manner. There

are two cases according to whether or not a queue qk has a landmark. For the first
case of L(qk, 2) = 0, i.e., qk does not have a landmark, the 2-tree corresponding to a
production rule Z → qk[3]qk[4] in a POSLP is built for the third and fourth elements
qk[3] and qk[4] of the k-th queue qk. For the other case, the 2-2-tree corresponding
to production rules Y → qk[4]qk[5] and Z → qk[3]Y is built for the third, fourth and
fifth elements qk[3], qk[4] and qk[5] of the k-th queue qk. In both cases, the function
Update returns a nonterminal symbol replacing a given digram. If the digram is
a novel digram in execution, it returns a new nonterminal symbol, and otherwise,
it returns the existing nonterminal symbol replacing the digram. The nonterminal
symbol Z is given to qk+1 that is one level higher for a queue qk, which enables the
bottom-up construction of a POSLP in an online manner.

The number of variables of a POSLP is O(n∗ lg
2N) for the optimal grammar size

n∗ and the length N of an input text. The partial parse tree built by Algorithm 1 is
a POPPT. See [5] for the proof.

FOLCA builds nodes of the POPPT and directly encodes them into a succinct
representation in an online manner. These nodes are output to a secondary storage
device immediately after they have been built. Most of the working space is consumed
by a hash table implementing a reverse dictionary (Figure 1-(v)). Therefore, the
working space of FOLCA is at most n(3 + α) lg (n+ σ) bits, while the compression
time is O(N/α). In the next section, we introduce techniques for reducing the space
of a hash table.

4 FOLCA in Constant Space

We present novel variants of FOLCA working in constant space. We reduce the size
of the hash table implementing a reverse dictionary in FOLCA by leveraging the idea
behind data mining techniques proposed in [10–12] for finding frequent items in data
streams. Our methods are counter-based algorithms that compute the frequencies
of production rules of a dictionary in a streaming text and remove infrequent ones
from the dictionary at a point in the algorithm. The frequent production rules in
the resulting dictionary are expected to greatly contribute to string compression.
We present two algorithms called frequency counting and lossy counting that can be
used instead of the function Update in Algorithm 1 to update a phrase dictionary
and remove infrequent production rules. We shall refer to FOLCAs using frequency
counting and lossy counting as FREQ FOLCA and LOSSY FOLCA, respectively.

4.1 FREQ FOLCA

The basic idea of frequency counting is to use a phrase dictionary of fixed-size k
and keep only frequent production rules in the phrase dictionary. Such frequently
appearing production rules are expected to replace as many as possible of the same
digrams by the same nonterminal symbols. Algorithm 2 shows an algorithm for
frequency counting that can be used instead of function Update in Algorithm 1 to
(i) generate a production rule, (ii) push it into a phrase dictionary and (iii) remove
infrequent production rules. We use a frequency counter c for each variable in a

Algorithm 2 Frequency counting. k: the maximum size of a phrase dictionary D, ǫ:
vacancy rate, c: frequency counter. Note that FrequencyCounting can be used
instead of function Update in Algorithm 1.
1: function FrequencyCounting(X ,Y)
2: Z := D−1(X,Y)
3: if Z → XY ∈ D then

4: c(Z) := c(Z) + 1
5: else

6: if |D| ≥ k then

7: while k(1− ǫ/100) < |D| do
8: for all Z ′ → X ′Y ′ ∈ D do

9: c(Z ′) := c(Z ′)− 1
10: if c(Z ′) = 0 then

11: D := D\{Z ′ → X ′Y ′}
12: end if

13: end for

14: end while

15: end if

16: D := D ∪ {Z → XY }
17: c(Z) := 1
18: end if

19: return Z
20: end function

dictionary to compute its frequency. FREQ FOLCA builds a production rule Z →
XY for a novel digram XY and pushes it into a dictionary D where the frequency
counter c(Z) for the left variable Z is initialized to 1. c(Z) is incremented by one
each time a digram XY for Z → XY appears. If the dictionary size reaches k,
FREQ FOLCA removes the bottom ǫ percent of infrequent production rules for a
vacancy rate ǫ.

FREQ FOLCA generates one succinct POPPT each time FrequencyCounting

is called for an efficient decompression. Thus, each succinct POPPT represents a
subtext of an input text. FREQ FOLCA recovers the original text for every succinct
POPPT, which enables decompression using the same working space for compression.

When a reverse dictionary is implemented using a chaining hash table that has a
load factor α, the working space of FREQ FOLCA is k(α + 3) lg(k + σ) bits, while
the compression time is expected to be O(N/α).

4.2 LOSSY FOLCA

The basic idea of lossy counting is to divide an input string into intervals of fixed
length, and keep production rules in the next successive intervals according to the
number of appearances of these production rules. Thus, if a production rule appears
no less than the total number of intervals, it is kept until the end of the execution.

Algorithm 3 shows a lossy counting algorithm. An input string is divided into
ℓ intervals. Thus, the length of each interval is N/ℓ. We use a counter c for each
variable for counting the number of appearances of each variable Z . For a variable
Z appearing for the first time, c(Z) is initialized to N/ℓ + 1, which means that a

Algorithm 3 Lossy counting. ℓ: parameter, N : length of an input string at a point
in time, X, Y ∈ (V ∪Σ). Note that LossyCounting can be used instead of Update

in Algorithm 1.
1: Initialize ∆ := 0
2: function LossyCounting(X,Y)
3: Z := D−1(X,Y)
4: if Z → XY ∈ D then

5: c(Z) := c(Z) + 1
6: else

7: D := D ∪ {Z → XY }
8: c(Z) := ∆+ 1
9: end if

10: if ⌊N
ℓ
⌋ 6= ∆ then

11: ∆ := N/ℓ
12: for all Z ′ → X ′Y ′ ∈ D do

13: if c(Z ′) < ∆ then

14: D := D\{Z ′ → X ′Y ′}
15: end if

16: end for

17: end if

18: return Z
19: end function

production rule Z is kept in a dictionary for at least the next interval. If an existing
variable Z in a dictionary appears r times, c(Z) is incremented by r, resulting in
Z being kept in a dictionary for the next r successive intervals. LOSSY FOLCA
generates one succinct POPPT each time LossyCounting is called for an efficient
decompression just like FREQ FOLCA.

The working space of LOSSY FOLCA is at most 2ℓ(α+3) lg(2ℓ+σ) bits as a result
of implementing a reverse dictionary as a chaining hash table, while the compression
time is expected to be O(N/α).

We also implemented another variant of FOLCA as a baseline by fixing ∆ =∞ in
Algorithm 3, which corresponds to dividing an input text into several blocks and ap-
plying FOLCA to each block. We shall call this variant of FOLCA BLOCK FOLCA.
Comparing FREQ FOLCA and LOSSY FOLCA with BLOCK FOLCA reveals that
BLOCK FOLCA using such a standard strategy for compressing large-scale texts
cannot capture long-range repetitions, which is presented in Section 6.

5 Decompression in Constant Space

We recover the original text from multiple succinct POPPTs that FREQ FOLCA and
LOSSY FOLCA output into a secondary storage device. Our succinct representation
of POPPTs consists of a bit string B and a label sequence L presented in Figure 1-
(iv). We build a phrase dictionary D by simulating a depth-first traversal which we
can perform by gradually reading a bit from string B and a label corresponding to a
leaf label from L from the beginning. Since a substring corresponding to one POPPT
in B has the same numbers of ′0′ and ′1′, respectively, we can detect each substring

Algorithm 4 Decompression. B: bit string representing a POPPT, L: label sequence
of leaves in a POPPT, D: phrase dictionary, S: stack, c: counter for ’0’ and ’1’, i:
counter for nonterminal symbols.
1: Initialize c := 0; D := ∅; S := ∅; i := 0
2: function Decompress(B,L)
3: while Read b from B do

4: if b = 0 then ⊲ b is a leaf
5: c := c+ 1
6: Read A from L
7: Push A to S
8: else ⊲ b is an internal node
9: c := c− 1
10: Pop A and B from S
11: D ← {Xi → AB}
12: Push Xi to S
13: i := i+ 1
14: end if

15: if c = 0 then

16: Pop A from S
17: Recover subtext using A and D
18: Remove infrequent production rules from D ⊲ This step depends on the space

reductions of hash table.
19: end if

20: end while

21: end function

corresponding to a POPPT in B by counting the number of ′0′ and ′1′. When we
reach a position of B corresponding to one POPPT, we recover the original string
corresponding to a substring in B from an obtained phrase dictionary D.

The working spaces for decompression depend on the compression method. They
are the same for FREQ FOLCA; likewise, they are the same for LOSSY FOLCA.
The decompression time is O(N/α).

6 Experiments

6.1 Setup

We evaluated the performances of FREQ FOLCA and LOSSY FOLCA by comparing
them with FOLCA, BLOCK FOLCA, and LZMA on one core of a quad-core Intel
Xeon CPU E5-2680 (2.8GHz). We implemented FREQ FOLCA, LOSSY FOLCA,
BLOCK FOLCA, and FOLCA in C ++. LZMA is a general string compressor effec-
tive for repetitive texts, and we used its implementation downloadable from http:

//sourceforge.jp/projects/sfnet_p7zip/. We also used 100 human genomes cor-
responding to 306GB downloadable from the 1000 human genomes project. We tried
k = {1000MB, 2000MB} and ǫ = 0.3 for FREQ FOLCA and ℓ = {5000MB, 10000MB}
for LOSSY FOLCA.

compression decompression

0.0e+00 1.0e+11 2.0e+11 3.0e+11

0
e

+
0

0
4

e
+

0
4

8
e

+
0

4

length of text

w
o

rk
in

g
 s

p
a

c
e

 (
M

B
)

LOSSY_FOLCA (l=5000MB)

LOSSY_FOLCA (l=10000MB)

FREQ_FOLCA (k=1000MB)

FREQ_FOLCA (k=2000MB)

FOLCA

0.0e+00 1.0e+11 2.0e+11 3.0e+11

0
e

+
0

0
4

e
+

0
4

8
e

+
0

4

length of text

w
o

rk
in

g
 s

p
a

c
e

 (
M

B
)

LOSSY_FOLCA (l=5000MB)

LOSSY_FOLCA (l=10000MB)

FREQ_FOLCA (k=1000MB)

FREQ_FOLCA (k=2000MB)

Figure 2: Working space for the length of text in compression (left) and decompression
(right).

6.2 Results

Figure 2 shows the working space of each method for various lengths of a genome
sequence in compression and decompression. FOLCA took more than 100GB of
working space for a genome sequence of 52GB, which demonstrates that FOLCA,
whose working space depends on the POSLP size, was not applicable to large-scale,
noisy repetitive texts. LZMA did not finish within 5 days, which shows that LZMA
is also not applicable to large-scale genome sequences. For both FREQ FOLCA
and LOSSY FOLCA, the working spaces for compression and decompression were
almost the same, despite parameter values being different. The working space of
FREQ FOLCA remained constant for compression and decompression: 36GB and
76GB for k = 1000MB and k = 20000MB, respectively. The working space of
LOSSY FOLCA fluctuated, and the maximum values for ℓ = 5000MB and ℓ =
10000MB were 36GB and 56GB, which did not depend on the text length and SLP
size.

Table 2 shows the compression ratio, maximum working space for compression
and decompression and compression/decompression time for 100 human genomes. A
tradeoff between compression time and working space was observed for each method.
The compression ratio for a larger working space was better for each method. The
compression ratio of LOSSY FOLCA was better than that of BLOCK FOLCA for
the same parameter value ℓ, which showed that the strategy of LOSSY FOLCA for re-
moving infrequent production rules was more effective than that of BLOCK FOLCA.
While LOSSY FOLCA using a small working space achieved a higher compression
ratio than FREQ FOLCA, one can use FREQ FOLCA when one wants to conserve
working space. Compression using LOSSY FOLCA and FREQ FOLCA finished
within about 24hours. These results demonstrate the applicability of LOSSY FOLCA
and FREQ FOLCA to large-scale, noisy repetitive texts.

Table 2: Compression ratio (CR), compression time (CT) in seconds (s), decompression time
(DT) in seconds and maximum working space (WS) in megabytes (MB) for each method
on 100 genome sequences.

Method CR CT (s) DT (s) WS (MB)
FREQ FOLCA (k=1000MB) 31.39 86, 098 18, 658 38, 048
FREQ FOLCA (k=2000MB) 19.71 93, 823 19, 442 76, 096
LOSSY FOLCA (ℓ=5000MB) 20.07 87, 548 22, 103 36, 246
LOSSY FOLCA (ℓ=10000MB) 17.45 87, 446 20, 378 56, 878
BLOCK FOLCA (ℓ=5000MB) 31.85 88, 501 − 23, 276
BLOCK FOLCA (ℓ=10000MB) 25.91 92, 007 − 34, 665

7 Conclusion

We have presented fully-online grammar compressions working in constant space.
Experimental results using 100 human genomes from the 1,000 human genome project
demonstraite the applicability of our method to large-scale, noisy repetitive texts.
Extensions are to develop various text processing methods applicable to large-scale
repetitive texts. This would be beneficial to users for compressing and processing
repetitive texts.

8 References

[1] 1000 Genomes Project Consortium, “A map of human genome variation from
population-scale sequencing,” Nature, vol. 467, pp. 1061–1073, 2010.

[2] T. Yamamoto, H. Bannai, S. Inenaga, and M. Takeda, “Faster subsequence and don’t-
care pattern matching on compressed texts,” in Proceedings of the 22nd Annual Sym-
posium on Combinatorial Pattern Matching, 2011, vol. 6661, pp. 309–322.

[3] K. Goto, H. Bannai, S. Inenaga, and M. Takeda, “Fast q-gram mining on SLP com-
pressed strings,” Journal of Discrete Algorithms, vol. 18, pp. 89–99, 2013.

[4] D. Hermelin, G.M. Landau, S. Landau, and O. Weimann, “A unified algorithm for
accelerating edit-distance computation via text-compression,” in Proceedings of the

26th International Symposium on Theoretical Aspects of Computer Science, 2009, pp.
529–540.

[5] S. Maruyama, Y. Tabei, H. Sakamoto, and K. Sadakane, “Fully-online grammar com-
pression,” in Proceedings of the 20th String Processing and Information Retrieval
Symposium, 2013, pp. 218–229.

[6] Y. Tabei, Y. Takabatake, and H. Sakamoto, “A succinct grammar compression,” in
Proceedings of the 24th Annual Symposium on Combinatorial Pattern Matching, 2013,
pp. 218–229.

[7] S. Maruyama, H. Sakamoto, and M. Takeda, “An online algorithm for lightweight
grammar-based compression,” Algorithms, vol. 5, pp. 213–235, 2012.

[8] S. Kreft and G. Navarro, “On compressing and indexing repetitive sequences,” Theo-
retical Computer Science, vol. 483, pp. 115–133, 2013.

[9] Y. Takabatake, Y. Tabei, and H. Sakamoto, “Variable-length codes for space-efficient
grammar-based compression,” in Proceedings of the 19th edition of the International
Symposium on String Processing and Information Retrieval, 2012, pp. 398–410.

[10] R. Karp, S. Shenker, and C. Papadimitriou, “A simple algorithm for finding frequent
elements in sets and bags,” ACM Transactions on Database Systems, vol. 28, pp.
51–55, 2003.

[11] D. Demaine, A. López-Ortiz, and I. Munro, “Frequency estimation of internet packet
streams with limited space,” in Proceedings of the 10th European Symposium on Algo-

rithms, 2002, pp. 348–360.

[12] G. Manku and R. Motwani, “Approximate frequency counts over data stream,” in
Proceedings of the 28th International Conference on Very Large Data Bases, 2002,
vol. 5, pp. 346–357.

[13] M. Karpinski, W. Rytter, and A. Shinohara, “An efficient pattern-matching algorithm
for strings with short descriptions,” Nordic Journal of Computing, vol. 4, pp. 172–186,
1997.

[14] W. Rytter, “Application of Lempel-Ziv factorization to the approximation of grammar-
based compression,” Theoretical Computer Science, vol. 302, no. 1-3, pp. 211–222,
2003.

