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We consider practical implementations of compressed bitvectors, which support rank and select
operations on a given bit-string, while storing the bit-string in compressed form. Our approach
relies on variable-to-fixed encodings of the bit-string, an approach that has not yet been considered
systematically for practical encodings of bitvectors. We show that this approach leads to fast
practical implementations with low redundancy (i.e., the space used by the bitvector in addition
to the compressed representation of the bit-string), and is a flexible and promising solution to
the problem of supporting rank and select on moderately compressible bit-strings, such as those

encountered in real-world applications.
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1. INTRODUCTION.

A bitvector is a fundamental building block of many space-
efficient data structures. Given a bit-string X of length n
with weight m (i.e., with m 1 bits), the aim is to pre-process
X to support the following operations, for any b ∈ {0, 1}:

• rankb(X, i) returns the number of occurrences of b in
the first i positions of X .

• selectb(X, i) returns the position of the ith b in X .

These operations can be supported in O(1) time using
n + o(n) bits of space [1]. If X is a (uniformly)
random bit-string, it cannot be compressed, and this space
bound is therefore, in the worst case, optimal to within
lower-order terms. However, bit-strings encountered in
practical applications are often compressible, and many
algorithmic applications use bitvectors on bit-strings that
are constructed to be sparse—contain m = o(n) 1s—
and such bit-strings are compressible to o(n) bits. Starting
from the work of [2, 3], there is now a rich theory of
compressed bitvectors, which aim to use space approaching
that used by a compressed representation of the bit-string,
for many different measures of compressibility4. The most
basic measures of compressibility are density-sensitive, i.e.
they depend only upon the length n and weight m of the
bit-string. These are the information-theoretic minimum,
B(n,m)

def
=
⌈
lg
(
n
m

)⌉
bits5, and the zeroth-order empirical

4As is common in the area of succinct and compressed data structures,
we focus on empirical measures, i.e., those that are a function of
the bitstring X itself, rather than measures derived by postulating a
probabilistic model for generating bit-strings.

5We use lg to denote the logarithm base 2.

entropy, H0(X)
def
= −

∑1
i=0 pi lg pi, where p1 = m/n and

p0 = 1 − p1; the compressed bit-string size should then
be nH0(X) + O(1) bits. Note that if m = o(n) then
B(n,m) ≈ nH0(X) = o(n).

Instance-sensitive measures6, where the compressibility
of the string X is a function of X , are more diverse, and
include the k-th order empirical entropyHk and functions of
the gaps between successive 1s [4], or the size of the output
produced by a grammar-based compressor to X . In general,
such measures would show that a bit-string X is at least as
compressible as a density-sensitive measure on X .

Although there have been many papers on implementa-
tions of bitvectors [5, 6, 7, 8, 9, 10] (and some researchers
have implemented bitvectors as part of more complex data
structures), there are fewer papers on compressed bitvec-
tors for sparse bit-strings. It should be noted that supporting
O(1)-time rank/select operations using reasonable space is
possible only when m = n/(lg n)O(1) [11]. In this range,
even the density-sensitive measure gives O(m lg(n/m)) =
O(m lg lg n) bits, so a compressed bitvector is potentially
significantly smaller than either an uncompressed bitvector,
which takes Θ(n) bits, or viewing X as the characteristic
vector of a set and storing the set explicitly, which requires
O(m lg n) bits. Such moderately sparse bit-strings are also
of great practical interest. One focus of this paper is on rep-
resenting such bit-strings.

The following authors have considered practical data
structures for sparse bit-strings. Geary et al. [12] considered
“uniformly” sparse bit-strings, but their techniques do
not apply to general sparse bit-strings, and they do not

6A related term, data-aware, is used in [4].
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perform a stand-alone evaluation of their bitvector. Gupta
et al. [4] considered very sparse bit-strings, and showed
that instance-sensitive measures related to the γ and δ
codes outperform density-sensitive ones, but they did
not report on moderately sparse bit-strings. Delpratt et
al. [5] considered Golomb coding in the context of the
select1 operation. Okanohara and Sadakane [13] performed
arguably the first comprehensive evaluation, but focused
mostly on the density-sensitive measures. Navarro et al.
[14] considered rank and select on grammar-compressed
bit-strings, but do not consider general sparse bit-strings.
Navarro and Providel [15] also provide an implementation
of compressed bitvectors. This, again, targets the density-
sensitive measures. Very recently, Kärkkäinen et al. [16]
presented a hybrid approach combining run-length encoding
(RLE), raw encoding and explicit encoding, and showed
good performance on a class of bit-strings obtained from text
indexing applications.

In this paper we explore the use of variable-to-fixed (V2F)
encodings of a bit-string, which have only been partially
explored previously. Our results show that this approach
leads to very compact and high-performance compressed
bitvectors. Indeed, we give a theoretical basis for the low
redundancy (wasted space) of the codes as well as that of
the bitvector. An `-bit V2F code partitions the input bit-
string into a concatenation of variable-length phrases. Each
phrase, except the last one, is constrained to belong to a
given dictionary D of ≤ 2` bit-strings; the last phrase is
a non-null prefix of a dictionary entry. Once the input bit-
string is parsed, each phrase is replaced by its position in the
dictionary, stored as a `-bit codeword. V2F codes are studied
in the data compression literature due to their desirable
properties such as error-resilience [17], but it appears that
there has not yet been a comprehensive investigation of V2F
bitvectors. The class of V2F codes includes e.g. RLE and
grammar-based compression, and it is possible that there
are application-specific implementations of V2F bitvectors
inside other data structures.

Our main conceptual contributions are as follows:

• We argue that in general, V2F coding is an effective
approach to reduce the redundancy of the bitvector,
or the difference between the compressed size of the
bit-string and the size of the bit-vector data structure.
The redundancy can dominate the space usage of
compressed bitvectors: e.g. if m = O(n/(lg n)2), the
space usage of the compressed bitvector of [3], which
is B(n,m) + O(n lg lg n/ lg n) bits, is dominated by
the redundancy. We show that for the density range
of interest, V2F compressors give redundancy that is
asymptotically smaller than the compressed size of the
bit-string.

• In practice, we give an approach for density-sensitive
encoding of a bit-vector that has a significantly
lower (intrinsic) redundancy over that of Navarro
and Providel [15] by using Tunstall codes [18].
Furthermore, we show that the Tunstall code always
achieves H0 empirical entropy with low redundancy

(previously this was known only for random inputs).
• We give a new class of enumerative V2F codes. These

codes generalize both Khodak’s code [19, 20], a close
relative of the Tunstall code, and RLE. Finally, a hybrid
enumerative code which combines Khodak’s code
with RLE achieves excellent compression performance,
even on bit-strings that are relatively incompressible by
density-sensitive measures.

• We argue, as does Vigna [10], that practical implemen-
tations of select based on the method of “sampling”
must address the issue of long gaps, which many im-
plementations do not do. This is because in practice,
guarding against a worst-case scenario for long gaps
(using ideas which derive back to [1]) consumes a lot
of space. Although it seems real-life bit-strings can
have a number of reasonably long gaps, we note that
the typical test (select a random 1) is likely to give
running times that are independent of the distribution of
the underlying bit-vector. We propose a test that would
“fairly” and “naturally” test the handling of a select
implementation in the presence of long gaps, and show
that implementations that do not guard against long
gaps do indeed slow down.

The rest of this paper is structured as follows. Section 2
describes a general result on supporting rank and select
operations on bit-strings compressed using V2F schemes.
In Section 3, we describe the V2F compression algorithms,
and evaluate their compression performance in practice. In
Section 4 we propose an alternative practical approach to bit-
vectors based on V2F compressors. In Section 5 describes
the details of our implementation, and also the results from
the experimental evaluation of V2F bit-vectors. Section 6
contains concluding remarks and future directions.

2. BIT-VECTORS USING V2F CODING

Recall that the redundancy of a compressed bitvector
targeting a particular compressibility measure is the
difference between the size of the bit string under that
compressibility measure and the size of the bitvector.
As noted earlier, we are focussing on the range m =
n/(lg n)O(1). Also as noted earlier, the redundancy of a
standard solution [3], which is O(n lg lg n/ lg n) bits, is
larger than even the H0 entropy of any bit-string with m =
o(n/ lg n). In particular, since the redundancy of [3] is
independent of m, it does not allow one to benefit from the
increasing sparseness of the bitvector.

Pǎtraşcu [21] showed that rank/select can be supported in
O(1) time using B(n,m) + n/(lg n)c bits for any constant
c, and that for m = Θ(n), this is optimal [22]. By choosing
a large enough c, the redundancy can be made up to a poly-
log factor smaller than the H0 entropy of the bit-string for
any bit-string with m = n/(lg n)O(1). However, there is no
evidence yet that the approach of [21] is feasible in practice.
Another approach to low-redundancy compressed bitvectors
achievesB(n,m)+O(m(lg lg n)2/ lg n) bits andO(1) time
for the range m = n/(lg n)O(1) [7, 2]. Observe that for
this range of m, B(n,m) = O(m lg lg n/ lg n). Thus, the
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redundancy of the approach of [7, 2] is roughly a log factor
less than the H0 entropy of the bit-string, even if it is not as
low as Pǎtraşcu’s. We now show that this holds in general
for V2F codes under modest assumptions:

THEOREM 2.1. Given a bit-string X of n bits encoded
as C codewords using a V2F code of ` bits each. Further
assume that there is a data structure, which given a
codeword c, supports rank and select in O(1) time on the
phrase p(c) that the codeword c stands for. Then we can
support select1(X, i) and rank1(X, i) in O(1) time using
C`+O(C lg(n/C)) bits, provided that C = n/(lg n)O(1).

REMARK 1. We will typically choose ` = Θ(lg n) bits.
Thus, provided that lg(n/C) = o(lg n), the redundancy will
be smaller than the size of the compressed output, which is
C` bits. In particular, for C = n/(lg n)O(1), lg(n/C) =
O(lg lg n) = o(lg n).

We use the following two lemmas from [23] that can be
used to support rank and select operations on moderately
dense bit strings (i.e., bit strings in which the number of
zeros and ones is at most a poly-log factor smaller than the
length of the string).

LEMMA 2.1 ([23]). Given a bit-string of length n and
weight m, providing that m ≥ n/(lg n)c for some constant
c > 0, we can support rank1 and select1 inO(1) time using
B(n,m) +O(m) bits.

LEMMA 2.2 ([23]). Given integers N0, N1 > 0 and n =
N0 + N1, such that min{N0, N1} ≥ n/(lg n)c for some
constant c, we can store a bit string X with n0 ≤ N0 0s and
n1 ≤ N1 1s, using B(n,N0) +O(min{N0, N1}) bits, such
that select0 and select1 are supported in O(1) time.

Proof. (of Theorem 2.1) For any bit-string s, let w(s) denote
the weight of s, and for i = 1, . . . , C, let ci denote the i-th
codeword, and let m = w(X). The data structure consists
of two bitvectors on the following bit-strings:

• the ones distribution bit-string OD =
0w(p(c1))10w(p(c2))1 . . . 0w(p(cC))1.
• the phrase size bit-string PS =
10|p(c1)|−110|p(c2)|−11 . . . 10|p(cC)|−1.

It is easy to see that |OD| = m+C,w(OD) = C, |PS| = n
and w(PS) = C.

• To compute select1(X, i), we first determine the
number of codewords before the codeword in which the
selected 1 lies as j = rank1(OD, select0(OD, i)). We
then determine the total number of 1s in c1, . . . , cj as
k = select1(OD, j)− j, and the start position of cj+1

in X as d = select1(PS, j + 1)− 1. Finally, we select
the i−k-th 1 in p(cj+1), add d to the answer and return.
• To compute rank1(X, i), we first find the codeword
j in which the i-th position lies by j = rank1(PS, i).
We then determine d, the start position of cj , and k,
the number of 1s in c1, . . . , cj−1, as before, and return
k + rank1(p(cj), i− d).

We store OD using Lemma 2.2, which uses O(C lg(m/C))

bits. In addition, we pad OD to length n by adding zeros
at the end (so that the condition in Lemma 2.1 applies), and
store the resulting bit-string as well as PS using Lemma 2.1,
which takes O(C lg(n/C)) bits.

3. V2F COMPRESSION ALGORITHMS FOR BIT-
STRINGS

We now describe different V2F compression schemes that
we use to compress the given bit-string X . Each of these
schemes partitions X into a sequence of variable-length
phrases. Each phrase, except the last one, belongs to a
dictionary of size M = 2` that is constructed from the
source string. The dictionary entries are also referred to as
code words. The compressed representation of X simply
consists of a sequence of `-bit codes (from the dictionary)
corresponding to each phrase. The only difference between
various compression algorithms is the way in which they
construct the dictionary.

3.1. Tunstall code

For a given phrase length L, the Tunstall code is designed
to maximize E[L], the expected number of source letters per
phrase for a memoryless source [18]. Given an input bit-
string X , the dictionary constructed by Tunstall’s algorithm
can be represented as a full binary tree T (i.e., every node has
0 or 2 children), which we refer to as the Tunstall tree. Each
edge in T corresponds to a bit, and each phrase corresponds
to a leaf in T . The phrase corresponding to a leaf u can be
obtained by concatenating the symbols corresponding to the
edges on the root-to-leaf path to u.

We now describe the algorithm to construct a Tunstall
code for X with M = 2` codewords. First, we define some
terminology. Letting n = |X|, and m be the weight of X ,
define p0 = 1 − m/n and p1 = m/n. The probability7

of a bit-string b1b2 . . . bl is defined to be
∏l
i=1 pbi . Each

leaf in T is labelled by the probability of the corresponding
phrase, and each internal node is labelled by the sum of the
probabilities of its children. The algorithm is as follows:

(1) Start with 2-level rooted tree with the root connected to
two leaves, corresponding to 0 and 1.

(2) Pick a leaf node which has the highest probability and
grow two leaves on it.

(3) Repeat step (2) while the number of leaves in the tree is
at most M .

It has long been known that the Tunstall code achieves
zeroth-order entropy (defined appropriately) for random
sources [18], and the size of the compressed representation
has been shown to be asymptotically same as nH0. We now
show that the redundancy of the Tunstall code with respect
to empirical entropy is also low.

THEOREM 3.1. Given a bit-string X with length n and
weight m, suppose that it is encoded using a Tunstall code

7This is not a probability in the true sense, of course, since we are
dealing with a given fixed bit-string X .
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with M = 2` codewords, constructed taking p0 = 1−m/n
and p1 = m/n as the probabilities of 0 and 1 respectively.
Assume, without loss of generality, that p1 ≤ p0 and further
assume that ` = Θ(lg n) and lg(1/p1) = o(lg n). Then
C` ≤ nH0(X) +O(nH0(X) lg(1/p1)/`).

Proof. Say that a final leaf refers to a leaf of the Tunstall tree
T at the end of the algorithm. Observe that the probabilities
of the leaves of T at any stage of the algorithm add up to
1. Hence, while the number of leaves is less than M , there
will always be a leaf with probability greater than 1/M , so
we will never expand a leaf with probability at most 1/M .
It follows that the minimum probability of a final leaf is
greater than p1/M . Let p∗ be the maximum probability of
any final leaf. Since all final leaves are created by expanding
leaves with probability ≥ p∗, and at least one final leaf must
have probability ≤ 1/M , it follows that p∗p1 ≤ 1/M or
p∗ ≤ 1/(p1M).

Suppose that the output of parsing X according to the
Tunstall code comprises C codewords c1, c2, . . . , cC . Let
Pr(ci) denote the probability of the phrase of ci. Then
− lg

∏C
i=1 Pr(ci) = − lg(pn−m0 pm1 ) = nH0(X). However,∏C

i=1 Pr(ci) ≤ (1/(p1M))C from the above, which gives
nH0(X) ≥ C lg(p1M), or:

nH0(X) + C lg(1/p1) ≥ C` (1)

With the above assumption on p1, it is not hard to verify that
C` = O(nH0(X)), and plugging this back into Equation (1)
we get that C` ≤ nH0(X) +O(nH0(X) lg(1/p1)/`).

REMARK 2. 1. Since we assume lg(1/p1) = o(`),
the redundancy is a lower-order term.

2. Note that a similar argument shows that C` ≥
nH0(X) − C lg(1/p1). In other words, the output of
Tunstall coding is never much less than the empirical
entropy.

Theorems 2.1 and 3.1 allow us to obtain a small
improvement in redundancy over the bitvector of [7, Thm 2],
which previously had the lowest known redundancy of any
bitvector that does not use the (fairly complex) technique of
informative encoding [7] or its successors [21].

COROLLARY 3.1. Let X be a bit-string with length n and
weight m. There is a bit-vector that supports rank1 and
select1 in O(1) time when m = n/(lg n)O(1) and uses
nH0(X) +O(m lg(n/m) lg lgn

lgn ) bits.

Proof. Since H0(X) = O((m/n) lg(n/m)), from The-
orem 3.1 the output of the Tunstall coding occupies
nH0(X) +O(m(lg(n/m))2/ lg n) bits. To augment it with
rank1 and select1, we use Theorem 2.1. The additional data
structures use O(C lg(n/C)) = O

(
nH0(X)

lgn lg
(

n lgn
nH0(X)

))
bits. Simplifying, we get that the redundancy of
the bitvector is O

(
m lg(n/m)

lgn (lg(n/m) + lg lg n)
)

=

O(m lg(n/m) lg lgn
lgn ) bits.

Finally, it only remains to explain how to do rank/select
on an individual phrase in O(1) time. Taking the notation

of Theorem 2.1, we create the concatenated bit-string
p(0)p(1) . . . p(2` − 1). The maximum length L of an
individual phrase must satisfy (p0)L ≥ p1/M , from
which one can obtain that L = O(n lg n/m). Since
n/m = O(lg n)O(1), if we choose ` = (lg n)/2, the bit-
string containing the concatenated phrases will be of size
O(n1/2+ε), for any positive constant ε < 1/2. By building
a bit-vector on this bit-string and furthermore explicitly
storing the start of each phrase, as well as the cumulative
numbers of 1s in this bit-string (using O(2` lg n) =
O(n1/2+ε) bits), rank and select on individual phrases can
be supported in O(1) time.

3.2. Enumerative codes

We define a class of enumerative codes as follows. An
enumerative code can be specified as a (directed) graph on a
subset of the vertices (i, j), for i ≥ 0 and j ≥ 0. A vertex
(i, j) may either have no outgoing edges (be a leaf ) or point
to both vertices (i + 1, j) and (i, j + 1). Furthermore, a
vertex (i, j) is complete if either it has indegree 2, or either
i or j is 0 (and its indegree is 1); and incomplete otherwise.
All incomplete vertices must be leaves. Finally, the vertex
(0, 0) is always in the graph. Given such a graph, the
code is specified as follows. For every complete leaf (i, j)
we allocate

(
i+j
j

)
codewords, which code for all phrases

with i 0s and j 1s. For every incomplete leaf (i, j), if its
(sole) predecessor is (i, j − 1) then we allocate all

(
i+j−1
j−1

)
codewords, which code for all phrases with i 0s and j 1s that
end with a 1. If its predecessor is (i− 1, j), then we allocate
all
(
i+j−1
j

)
codewords, which code for all phrases with i 0s

and j 1s that end with a 0 (see Fig. 1). Clearly, we must
ensure that the total number of codewords is at most 2`.

Given such a graph, we parse the input-bit string as
follows. Each phrase starts at (0, 0). If we are currently
at the non-leaf vertex (i, j), upon reading a 1, we move to
(i, j + 1); upon reading a 0, we move to (i + 1, j). By
construction, both these vertices are in the graph. If we are
at a complete leaf (i, j) then we have so far read a phrase
with i 0s and j 1s; since all possible

(
i+j
j

)
such phrases have

associated codewords, we choose the appropriate codeword,
output it and restart from (0, 0). Arriving at an incomplete
leaf (i, j) from (i, j − 1), we must have read a phrase with
i 0s and j 1s where the last bit is a 1, so we output the
appropriate codeword (the other case is similar), and restart
from (0, 0). We now give examples of enumerative codes.

RLE.
RLE is a special case of enumerative coding. To have
codes for runs of 0s and 1s of length 1, . . . , 2`−1, the
corresponding graph contains the non-leaf vertices (0, i)
and (i, 0), and the leaf vertices (1, i) and (i, 1) for i =
1, . . . , 2`−1−1, together with the leaf vertices (0, 2`−1) and
(2`−1, 0). A codeword is thus assigned to each phrase of the
form 0i1 and 1i0 for i = 1, . . . , 2`−1 − 1; and one each for
02

`−1

and 12
`−1

.
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(2,0)

(1,0)

(0,2)

(1,2)

(2,2)(2,1)

(1,1)

(0,0) (0,1)

(3,0) (3,1)

(4,0)

Codeword Phrase Vertex in the graph
0 11 (0,2)
1 011 (1,2)
2 101
3 0011 (2,2)
4 0101
5 1001
6 0001 (3,1)
7 0010
8 0100
9 1000

10 0000 (4,0)

FIGURE 1: An example of an (ad-hoc) enumerative code.
The graph is given on the top (leaves shown gray) and the
codewords, and their phrases, below.

Khodak Code.
The Khodak code [20] is is obtained by modifying Step (2)
of the Tunstall algorithm in Section 3.1 to pick all the leaf
nodes with highest probability and grow two leaves on all
of them. It is known that every Khodak code is a Tunstall
code, and that for the same dictionary size, the Khodak code
has asymptotically the same average phrase length as the
Tunstall code [20]. We show:

THEOREM 3.2. Any Khodak code is an enumerative code.

Proof. We first prove an auxiliary lemma that implies that,
when the probabilities of zero and one are not the same, the
dictionary constructed by the Khodak algorithm is a subset
of the dictionary constructed by the Tunstall algorithm – by
observing that the order in which the leaves are expanded in
both the algorithms is the same; but Khodak algorithm may
stop earlier if there is not enough space to expand all the
leaves with same probability.

LEMMA 3.1. For rational number 0 < d < 1, d 6= 1/2,
there are no nonnegative integers x, y, z, w such that x 6= z
and dx(1− d)y = dz(1− d)w.

Proof. Suppose that there exist nonnegative integers
x, y, z, w such that x 6= z and dx(1−d)y = dz(1−d)w. Let
d = n/m for positive integers m and n, such that n and m

are relatively prime. Without loss of generality, assume that
d > 1

2 and z+w ≥ x+y. Then it is easy to argue that z ≥ x
and y ≥ w. Thus, mz+w−x−y(m− n)y−w = nz−x. If m is
even, then left side is even while right side is odd as n is rel-
atively prime to m. If m is odd and n is even, then left side
is odd while right side is even. Finally, if both m and n are
odd, the left side is even while the right side is odd.

We now prove Theorem 3.2. Define T k as the tree whose
leaves represent the phrases of the Khodak code (similar to
T in the Tunstall code). Next, let T k(i, j) be the set of all
leaves in T k which represent the phrases with i zeros and
j ones. We say that T k(i, j) is complete if T k contains
all possible (

(
i+j
i

)
) phrases with i zeros and j ones (this is

analogous to the definition of completeness of nodes in the
enumerative codes). Now to prove Theorem 3.2, it is enough
to prove the claim that if the Khodak algorithm expands
the leaves in T k(i, j) then T k(i, j) is complete. The claim
holds if the zero density is 1/2, because in this case, T k

is always a complete binary tree (and each expansion step
expands all the leaves). Now we assume that the one density
is strictly larger than the zero density. Since for every step
in the Khodak algorithm, i and j for expanding T k(i, j) are
uniquely determined by the Lemma 3.1, the claim can be
proved by the induction on the number of expansion steps
taken by the Khodak algorithm.
(Basis step) In the first step, we expand the leaf T k(0, 1)
which is complete.
(Inductive step) Assume the hypothesis that the claim is
true if the number of steps is at most r. In the r + 1
step, suppose we expand T k(i, j) which is not complete.
Note that T k(i, j) is generated by expanding T k(i, j − 1)
or T k(i − 1, j). Since both T k(i, j − 1) and T k(i − 1, j)
are expanded before r + 1-th step (because they have the
smaller probability than T k(i, j)), by induction hypothesis,
they are complete. But if we expand T k(i, j − 1) and
T k(i−1, j) which are complete, T k(i, j) becomes complete,
contradicting the assumption.

Hybrid Enumerative Coding.
To obtain better compression using enumerative encoding,
we reserve a fraction of codewords for run-length codes,
and use the remaining for the Khodak codewords. The run-
length codewords are divided among 0 runs and 1 runs based
on the densities of 0s and 1s. Details can be found in the next
section.

3.3. LZW algorithm

Lempel-Ziv-Welch (LZW) algorithm [24] is a well-
known dictionary-based compression algorithm. Our next
compressor is a loose adaptation of the original. The
main constraint is that while the dictionary constructed
by the classic LZW algorithm has no fixed bound on its
size, our approach uses a bounded-size dictionary (with M
codewords). Furthermore, the phrases output by the LZW
parsing can be prefixes of each other, which is undesirable
in our context. Our approach works as follows. Let R be a
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Bit-string Total Size Density Max run- Max run-
Tunstall LZW

Enumerative code
H0 Logsum

(106 bits) of 0s length of 0s length of 1s Khodak RLE Hybrid
factor9.6 812.0 0.964 2927 1 0.242 0.151 0.241 0.573 0.228 0.223 0.236
proteins 374.9 0.900 27376 1 0.466 0.104 0.475 1.585 0.546 0.466 0.484

Z-Accidents 903.3 0.996 4,250,294 1,315 0.045 0.035 0.046 0.058 0.030 0.041 0.111
Z-Pumsb2 1661.1 0.999 1,138,613 7,774 0.007 0.006 0.007 0.007 0.004 0.008 0.097
dblp 100 680.8 0.629 5,252,073 3,115,460 0.975 0.145 0.975 0.369 0.136 0.952 0.201

english 100 784.3 0.710 2,142,856 743,383 0.869 0.285 0.869 0.771 0.306 0.868 0.305
rand dblp 680.8 0.629 42 20 0.956 0.971 0.956 4.872 0.956 0.952 0.991

rand english 784.3 0.710 50 17 0.874 0.891 0.874 4.146 0.874 0.868 0.910

TABLE 1: Characteristics of the test files (left), compression ratios (right).

copy of the input bit-string S.

1. Initialize the dictionary with the phrases 0 and 1.
2. Find the longest prefix P of R that is in the dictionary,

and remove P from R.
3. If the dictionary has less than M phrases, remove P

from the dictionary and add the phrases P0 and P1 to
the dictionary and go to 2.

The algorithm terminates when either M phrases have been
added, or (exceptionally) when no prefix of R matches a
phrase in the dictionary. Now we assign each of these M
phrases a code, and use this dictionary to parse S in a second
pass. Also, unlike the original LZW algorithm, the modified
algorithm requires both the compressed string as well as the
dictionary for decompression.

3.4. Empirical evaluation of the compressors

We now describe the compression performance of the above
algorithms. When designing the RLE codewords, we created
RLE codewords for runs of 0s and 1s of lengths 1, . . . , ρ0
and 1, . . . , ρ1, where ρ0 and ρ1 are two values such that
ρ0 + ρ1 ≤ 2`, and the balance between ρ0 and ρ1 is
determined by (a) the density of 0s and 1s and (b) the
maximum length of a run of 0s or 1s in the input. The precise
algorithm is as follows.

Let p1 = m/n be the density of 1s in the input bit-string,
and let p0 = 1− p1, and let R0 and R1 be the lengths of the
longest runs of 0s and 1s in the input.

1. If R0 +R1 ≤ 2` then ρi = Ri for i = 0, 1.
2. If not, suppose that R0 > R1. If R0 > 2`, we

set ρ0 = p0 · 2`. Otherwise we set ρ0 = R0, and
ρ1 = min{2` − ρ0, R1}.

3. IfR0 ≤ R1 we apply the symmetric version of step (2).

Note that the above procedure states the maximum length
of runs of 0s and 1s in the pure RLE code. In Hybrid code,
set aside 2`−1 codes for run-length codes, and 2`−1 codes
for Khodak codes. The run-length codes for the Hybrid
algorithm are determined as above, but using 2`−1 instead
of 2` to decide ρ0 and ρ1.

3.4.1. Test files
Table 1 summarizes the characteristics of the bit-strings we
used in our experiments. factor9.6 and proteins
are obtained by parsing two XML files, and outputting

0i1 when a text node of length i is encountered [5].
Z-Accidents and Z-Pumsb2 are used in a data
structure for mining frequent patterns from benchmark data
sets [25]. dblp 100 and english 100 are the FM-
indices [26] of english.100MB and dblp.xml.100MB
in Pizza&Chili Corpus [27] respectively (with 25%
of positions in suffix array are sampled). We use
the implementation of FM-index from fm-index++ [28].
rand dblp and rand english are generated at random,
but setting their length and density to be the same as
dblp 100 and english 100, respectively. The test bit-
strings can be classified into four types based on their
properties. The bit-strings factor 9.6 and proteins
are fairly sparse but have relatively short runs of 0s and
1s. The bit-strings Z-Accidents and Z-Pumsb2 are
very sparse and have some very long runs of 0s. While
dblp 100 and english 100 are quite dense, they have
long runs of 0s and 1s; obviously, their randomly generated
analogues do not have such long runs.

Table 1 shows the compression ratio achieved by the
compressors on the test bit-strings (with ` = 16, so each
dictionary has 216 = 65536 codewords). We also give
the H0 values of the bit-strings and their Logsum value,
defined as follows. If we divide a given bit-string X of
length n into fixed-size blocks Bi, i = 1 . . . dn/63e of size
63 and each Bi has weight m(i), Logsum(X) is defined
as 1

n

∑dn/63e
i=1 dlg(

(
63
m(i)

)
e+ 6). Logsum is an estimate

of the standard density-sensitive approach to compressed
bitvectors used in [3] and predecessors (referred to as RRR in
what follows), based on the implementation of [15], which
is optimized for low redundancy. Roughly, the idea is to
view the input bit-string as chunks of length 63 bits, and to
store each chunk with weight m(i) by viewing it as a subset
of the universe {1, . . . , 63} and storing its position in some
canonical listing of all subsets of this universe of size m(i)
(which takes dlg(

(
63
m(i)

)
e bits) plus the value m(i) (which

takes 6 bits). We make the following observations:

• There is a negligible difference in compression ratio
between the Tunstall and Khodak codes. While
Tunstall/Khodak are sometimes better than H0, the
variation is small, as implied by Remark 2.

• Logsum is sometimes significantly better thanH0, e.g.
in dblp 100 and english 100. The reason is that
all-0 and all-1 blocks (which occur frequently in these
bit-strings) compress far better than would be suggested
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by the overall density of these bit-strings. However,
the additive overhead of 6 bits per block means that
Logsum’s performance is poor on bit-strings such
as Z-Pumsb2 and Z-Accidents, as well as the
random bit-strings.

• Among the enumerative codes, Hybrid uniformly
performed the best, even easily outperforming RLE
on very sparse files. It is also often the overall best
performer, but it does perform poorly relative to LZW
on the XML bit-strings. We speculate that this is
because in XML files, identical elements may have
similar-length text nodes under them (e.g., a zipcode
element will usually contain a text string of length 5)
and LZW is able to capture such long-range patterns.

4. A SIMPLE APPROACH TO BIT-VECTORS
BASED ON V2F COMPRESSION

In this section we describe a simple approach to supporting
rank and select on V2F compressed bit-strings. The
approach we describe is completely standard and is in fact
used in many existing implementations such as that of [15].
We describe an overview in Section 4.1. However, when
applied to V2F compressed bit-vectors, some changes need
to be made: specifically, the choice of two key parameters
(B and LG below) is crucial. This is dicussed in Section 4.2.

4.1. Overview

rank/select1 index. For rank we divide the bit-string into
rank blocks of size B, where the i-th block consists of the
bits numbered iB through (i + 1)B − 1. For each block,
we store the position of the first codeword that intersects
the block, the weight at the start of that codeword, and
the absolute position in the bit-string where that codeword
begins.

For select1, we use the standard “sample and scan”
approach [1] used by most select implementations including
[10, 15, 29]. We choose a sampling parameter s and
logically divide the raw bit-string into select blocks, where
the i-th select block begins at the position of the is-th 1,
and scan this select block to answer select1(j) queries for
j = is + 1, . . . , (i + 1)s − 1 (Type 0 blocks). Again, as
in the case of rank blocks, the starts of the select blocks are
adjusted to the nearest phrase boundary. For Type 0 blocks,
as with rank blocks, we store codeword/phrase alignment
information, and cumulative information.

This approach does not guarantee a good time bound if
the 1s are distributed non-uniformly: in the worst case, one
may need to scan Θ(n) bit positions. To mitigate this effect,
we choose a threshold LG, and whenever a select block is
larger than LG, it is called a long gap (Type 1 block) and is
treated differently [1], by storing the positions of the 1s in
the block explicitly. Even though the number of long gaps
is at most n/LG, LG must be relatively high, as the cost of
a long gap—s words to store all 1 positions in a long gap—
is also quite high. Choosing LG too high, however, slows
down select operations on 1s in between sampled positions

that are separated by just under LG positions (borderline
long gaps in what follows).

4.2. Parameter selection

An important difference between the “sample and scan”
approach when using V2F codes is the choice of the
parametersB and LG. We discuss this in an asymptotic way
first, and then explain how it affects our implementation in
practice.

Long Gaps: a Theoretical View. In this paragraph, we
illustrate the potential asymptotic gains by using V2F codes
in the “sample and scan” approach to select1. This
illustration makes a number of mappings from current
practical parameter choices to asymptotic functions, which
by its very nature involves a certain amount of guesswork:
we do not hope to convince everybody of these mappings.
For simplicity we consider the case of a bit-string with
weight m = Θ(n/ lg n), i.e. one whose compressed size is
O(n lg lg n/ lg n) bits, and assume that we wish to achieve
a redundancy of O(n/ lg n) bits, and a running time of
O(lg n) for rank and select1.8

This can be achieved by using a rank block size of
B = Θ((lg n)2) bits, accessing O(1) random memory
locations and scanning O(lg n) consecutive memory words,
where each word comprises Θ(lg n) bits. For select1, a
typical sampling factor would be s = lg n, so that the cost
of pointers to the sampled locations is O((m/s) lg n) =
O(n/ lg n) bits. We would choose LG = Θ((lg n)3), so
that the cost of storing the locations of the 1s in the at most
O(n/LG) long gaps is O((n/LG)s lg n) = O(n/ lg n)
bits. The time to scan a borderline long gap is therefore
O((lg n)2).

However, the key observation is that borderline long gaps
are highly compressible, and V2F codes exploit this better
than the standard approaches to compressed bit-vectors
[2, 3, 15]. These standard approaches would compress
a borderline long gap to Θ((lg n)2 lg lg n) bits. Using
(say) Tunstall or Khodak coding, a bit-string with length
L = Θ((lg n)3) with weight s = O(lg n) is compressed
to O((lg n)2) bits or O(lg n) codewords, which can be
scanned in O(lg n) time. Indeed, in this case, the Tunstall
or Khodak code is based on the global density and encodes
each 0 using lg(n/(n − m)) = O(1/ lg n) bits and each
1 using lg(n/m) = O(lg lg n) bits, so the compressed
representation of a borderline long gap would indeed take
Θ((lg n)2) bits. However, one can do better. For example,
using RLE, or an appropriate asympotic generalization of
Hybrid codes, borderline long gap can be compressed to just
O(lg n lg lg n) bits, and can be scanned even faster than a
normal gap.

Selecting parameters in practice. In practical implemen-
tations, we need to choose B according to the compress-

8As there is evidence that due to address translation, the cost of a random
memory access is O(lgn) [30], we argue that O(lgn) time per operation
is the best achievable for succinct data structures.
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File name B s LG
Average

#codewords
per single block

factor9.6 4096 512 271641 39
proteins 2048 512 31290 37

Z-Accidents 16384 256 543308 32
Z-Pumsb2 131072 256 4202659 37
dblp 100 4096 4096 2039256 35

english 100 2048 2048 135501 40
rand dblp 512 512 31863 31

rand english 512 512 33874 28

TABLE 2: Size of rank block and number of codewords
spanned by a single rank block for test files.

ibility of the bit-string, so that each rank block (on aver-
age) spans a moderate number (about 30 ∼ 50) of code-
words (see Table 2). Note that this is necessary: a fixed
block size would either be unreasonably large for relatively
incompressible files such as english 100, making oper-
ations slow, or too small for highly compressible files such
as Z-Pumsb2, making the redundancy overwhelm the com-
pressed bit-vector size.

The select block size is chosen so that the number of select
blocks is roughly the same as the number of rank blocks, i.e.
n/B ∼ m/s (so on average both rank and select queries
scan similar numbers of codewords). Our value of LG is
chosen conservatively so that the worst-case cost of handling
essentially sn/LG long gaps is comparable to the space cost
of the rank and select indices. It is not hard to see that the
value of LG chosen this way will need to be significantly
larger than the “average” select block size.

One can see the effect of compression of long gaps on the
two files english 100 and rand english in Figure 2.
We plot the select block size (in bits) against the number of
codewords spanned by the select block, for select blocks that
were < LG in size9. Recall that we choose B differently
for rand english and english 100 (see Table 2).
Since we choose s based on B, we have different values of
s = 512 and 2048 for rand english and english 100
respectively. Our aim below is not to compare the absolute
values of the select block sizes, but rather capture relevant
patterns.

The different block sizes lead to different values of
LG :∼33800 and ∼135000 for rand english and
english 100 respectively. Only 437 select blocks
exceeded LG in size in english 100, and none in
rand english. The average sizes of a select block that
is not a long gap are 1770 and 5570 in rand english
and english 100 respectively. In rand english, the
select block sizes are in a narrow range (as expected), and
the number of codewords per block grows roughly linearly
with the size (as expected). In english 100, the range
is much larger, and we can see that the larger blocks tend
to compress well. Indeed, the upper envelope, which gives
a kind of “worst-case”, suggests a “sub-linear” growth (it’s

9Due to rounding to phrase boundaries, these values are approximate.

not clear how to interpret Figure 2 asymptotically, hence the
quote marks).

4.3. Supporting Rank/Select Operations.

Scanning a Rank/Select Block. To perform a rank
operation, we need to scan a rank/select block to find
the codeword that contains position i. The key loop in
scanning a block is to (a) read a codeword at a time from
the compressed bit string, (b) obtain (and accumulate) the
length of its phrase and its weight, and (c) determine both the
codeword where position i lies, and the offset of position i
within that codeword. If the codeword length ` is at most
c lg n bits, for some c < 1, then this can be done by table
lookup in O(1) time using a table of o(n) bits. A similar
loop can be used for the select1 operation, which will
identify the codeword containing the position to be returned,
and also the position to be selected within the phrase of the
codeword.

Operations on Codewords. After scanning a block, the
codeword containing the index i (for a rank operation)
or containing the position to be returned (for a select
operation) is identified, and the global rank/select
operation is reduced to a rank/select operation on the
phrase representing this codeword. In most standard
“compressed” bit-vectors, this final step can also be done
in O(1) time through table lookup, by tabulating answers to
all queries on this final step, using a table of negligible size.
However, in V2F bit-vectors, in principle it is possible that
the phrase represented by a codeword is Θ(n) bits long, and
such a table could then take Ω(n) words of space.

A number of solutions are possible for this step,
depending on the compressor. For example, [14], which
uses grammar-compression, navigates the grammar for this
final step, which is not guaranteed to take O(1) time. We
propose a default implementation of rank on a codeword,
which concatenates all phrases into a bit-string similar to
Corollary 3.1 and stores it in a bit-vector supporting rank,
together with two words per codeword to allow rank on an
individual phrase to be reduced to rank on the bit-vector.
Assuming, wlog, that all possible codewords appear at least
once in the compressed output, the concatenation of these
phrases is at most n bits, and we can support rank on a
codeword in O(1) time (select can be handled similarly).
Clearly, for individual compressors (such as RLE) one can
consider tailor-made solutions.

5. IMPLEMENTATION AND EXPERIMENTAL
EVALUATION

5.1. Implementation

We implemented the data structures described in Sections 2
and 4 in C++. The implementations are described below.

5.1.1. Overview.
Our implementation has been structured into two indepen-
dent parts: a bit-vector class that contains the indices for
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FIGURE 2: Scatter plot showing the size of select block size (gap size) for select blocks with size < LG, against the number
of codewords spanned by the select block in rand english (top) and english 100. In the latter plot, maximal points are
circled in red. rand english (english 100) uses s = 512 (2048) and LG ∼ 33800 (135000).

rank and select, and a compressor-specific part that deals
with individual codewords. The bit-vector class is (largely)
independent of the compressor, and takes as input two files:
one which contains the codewords and the phrases, and an-
other which contains the sequence of codewords output by
the compressor. The codeword class is responsible for read-
ing these files and storing them in an array of the smallest
“integer-like” type that will hold them. It also is respon-
sible for creating the tables for scanning codewords in the
approach of Section 4 and for supporting operations on indi-
vidual codewords in both implementations.

5.1.2. Implementation based on Section 2.
Our implementation follows Theorem 2.1 closely. We
implemented OD and PS using the compressed bit-vector
implementations RRR and sdarray from the sdsl-lite

library [29] and Okanohara’s code [31] repectively, which
have low redundancy on dense and sparse bit-strings
respectively.

5.1.3. Implementation based on Section 4.
The implementation follows the description in Section 4.
The bit-vector class has two main parts: arrays of
rank/select1 blocks, and a table for scanning codewords.
We now describe each in detail. Each of the rank and select
blocks uses 3 long ints, or 24 bytes. One of these is
a pointer into the array of codewords and the other two
contain cumulative information. For example, the rank block
contains the number of 1s up to the start of the codeword
pointed to, as well as the total lengths of all the phrases of
all the preceding codewords (stored as an offset).

As noted previously, the implementation of both opera-
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File name Khodak LZW
Enumerative code
Khodak Hybrid

factor9.6 2.15% 7.24% 2.15% 2.15%
proteins 1.26% 3.01% 1.23% 0.90%

Z-Accidents 38.36% 7.22% 38.30% 19.60%
Z-Pumsb2 668.61% 200.14% 667.98% 73.25%
dblp 100 0.16% 15.53% 0.16% 0.54%

english 100 0.17% 52.20% 0.17% 0.22%
rand dblp 0.16% 0.16% 0.16% 0.16%

rand english 0.17% 0.16% 0.17% 0.17%

TABLE 3: Total phrase length of test files (as % of
compressed output), excluding RLE codewords

tions involves scanning the array of codewords, and accu-
mulating the lengths of the phrases and their weights. This is
done by table lookup, giving rise to the most important con-
straint on the size ` of a codeword. The table that contains
this information has 2` entries and must comfortably fit “into
cache” (as the cache is likely to contain other data in real ap-
plications). On our machine, this suggests that ` ≤ 16. In
practice, we choose ` = 16 so the codewords are stored in
an unsigned short array. The table then takes at most
512KB10. We have also considered ` = 8 but the smaller
cache footprint does not compensate for the greater number
of codewords to be scanned, and ` = 8 also typically has
poorer compression.

5.1.4. Implementation of Codeword Operations.
Having located the codeword containing the answer, we
perform an appropriate rank/select on its phrase. The
default implementation of rank on a codeword concatenates
all phrases into a bit-string similar to Corollary 3.1 and stores
it in a bit-vector supporting rank [29], together with two
words per codeword to allow rank on an individual phrase to
be reduced to rank on the bit-vector. select on each phrase
is done by explicitly storing the positions of the 1s in the
phrase in an array. We estimate the fixed overhead to be
about 4 ints per codeword, or 1MB overall. However, a
potentially major variable overhead is the size of the rank
phrase bit-vector and the phrase select array.

An obvious optimization is that for codes known to
comprise runs of 0s or 1s, indicated by an additional
type field stored in the length/weight table, we directly
(and trivially) answer rank and select queries on the
corresponding phrase. Table 3 shows the size of the resulting
rank phrase bit-vector (the phrase select array is usually
smaller). As suggested by Corollary 3.1, for Khodak codes,
the size of the dictionary is negligible for relatively high-
density bit-vectors. The overhead is much larger for the
Z-Accidents and Z-Pumsb2, though Hybrid codes,
which have many RLE codes, have smaller dictionaries than
Khodak codes. Nevertheless, for very sparse bit-strings, it is
clear that this naive approach is inappropriate.

10For the current compressors, no phrase can be longer than 2` bits, so
this could be reduced to 256KB.

5.2. Testing Methodology

The code was compiled with g++ 4.8.3 with optimization
level 3, and tested on a 64-bit machine with 64GB RAM and
an Intel Xeon E7450 6-core CPU clocked at 2.40GHz with
3 × 3 MB shared L2 caches and 12MB L3 cache, running
Fedora Linux (kernel version 3.16.2). Tests were performed
for the memory usage, and four tests for the speed of this
structure, as follows.

Memory Test. To determine the true physical memory used
by these data structures, we initialize them and then fork a
process that allocates memory equal to the physical memory
of the machine, which will result in all other processes’
pages to be swapped out. Putting the forked process to
sleep, we then perform rank and select operations and then
measure the resident memory of the process.

We also measure the memory usage of our implementa-
tions by a self-reporting procedure which checks the total
size of the main data structures using size reporting func-
tions. Testing results shows that the measured memory size
is larger than self-reported memory size because of the ini-
tial space used by OS and other variables in the program.
But the difference between them does not exceed 10MB in
all test files.

rank1 Test. To test the speed of rank, we perform rank1(i)
n times, for random i ∈ 1..n.

Random select1 Test. Like the rank1 test, this test
performs select1(i) n times, for i selected randomly from
1..m. Although “sample-and-scan” approach does not
guarantee a good time bound, if the bit-string has long
gaps, several implementations, including RSDic, do not
guard against long gaps. However, their performance for
random select tests on random bit-vectors (which typically
don’t have long gaps) is good. Vigna [10] proposed
testing on pathological bit-strings to determine whether an
implementation had good worst-case select performance.
We note, however, that essentially regardless of the input
bit-string, a random select test will not be able to distinguish
between “sample-and-scan” bit-vectors, that deal with long
gaps and those that don’t. Specifically, observe that in
any select block, the expected time taken to perform a
select of one of the 1s in this block, assuming a fairly
even distribution of the 1s within this block, is essentially
proportional to its length. Since a random select accesses
each select block with equal probability, it is not hard to
see that the average running time of a random select is
essentially independent of the distribution of select block
lengths; i.e., a random select test is unlikely to distinguish
between an easy bit-string and a pathological one. To
address this issue, we propose a hard select test, described
below.

Hard select1 Test. We perform 219 random rank1 queries,
and store the results in an array Q of the same size (with
repetitions). We then repeat the following, n times: select
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a random index i in Q and perform select1(Q[i] + 1).
Doing this will select a 1 in a select block with probability
proportional to the length of the select block (since the
argument of the rank query falls in a select block with
probability proportional to its length), and thus focusses on
the harder select queries in a bit-string.

Mixed Test. We initialize an array Q of size 219 to values
from random rank1(i) as above. We cycle through the array
and perform select1(Q[i] + 1) as above, but then do a
rank1(j) for a random index j, and store the result in Q[i].
Each such pair of rank and select operations is performed
n times.

5.3. Test setup

For our benchmarks, we choose the LZW code for XML
bit-strings and Hybrid code for other bit-strings as V2F
coders which gives the best compression ratio for their
bit-strings. For comparison, we used Okanohara’s rsdic
code [32] (based on [15]), sdarray from Okanohara and
Sadakane [13] and RRR from sdsl-lite [29]. We now
describe the rsdic and sdarray bitvectors briefly.

The Compressed Rank Select Dictionary, rsdic is based
on the structure proposed by Navarro and Providel [15]. It
divides the bit-string X into fixed-sized blocks of length
t = d(lg n)/2e. The set of all possible blocks are divided
into classes based on the number of 1’s in the block. Hence,
each block can be identified by a pair (k, r), where k is
the class number which is simply the weight of the block,
and r is the index of the block in a table containing the set
of all possible blocks in the class, in some canonical order,
say, the lexicographic order. Thus, the representation of any
block can be stored in dlg(t + 1)e +

⌈
lg
(
t
k

)⌉
bits. Also,

one can rebuild a block “on-the-fly” using its representation,
without storing any additional precomputed tables. For the
sequence of blocks constituting the given bit-string X , it
stores the first components (i.e., the weights of the blocks) in
an array K, using fixed size entries of dlg(t+ 1)e bits each;
the second components of all the blocks in the sequence
are concatenated and stored as a bitvector R. To enable
fast access into R, it first groups every blg nc consecutive
blocks into a superblock. For every superblock, it then
stores a pointer into R to point to the starting position of
the representations corresponding to its blocks. In addition,
we also store the rank up to the first bit in each superblock.
To compute the rank for a given position, we first find
the superblock containing the position, and do sequential
search from the first block in the superblock. To support the
select operation, we first perform a binary search to find
the superblock containing the required position, and then
scan the blocks within the superblock. The size of R can
be shown to be at most nH0(X) + o(n) bits, and the size
of K is ndlg(t+ 1)/te = o(n) bits. Thus the space usage of
rsdic is nH0(X) + o(n) bits.

Okanohara and Sadakane [13] proposed the sdarray
which either stores an sarray when the given bit-string X is

sparse, or a darray whenX is dense. To describe the sarray,
consider an array x[0, . . . ,m − 1] where x[i] stores the
position of the (i+1)-th 1-bit inX . We choose a parameter t,
and store the lower z = dlg te bits of each x[i] in an array L
such that L[i] = x[i] mod t. The upper w = blg(n/t)c bits
of each x[i] is encoded in unary to obtain a bit vector, H , of
length m+ t, along with auxiliary structures to support rank
and select in O(1) time on H . The operation select on X
can be supported in constant time by finding the upper bits
using the select operation on H , and accessing the lower
bits from the array L. To support rank(i) on X , we first find
a smallest element whose position is greater than di/2we·2w
using select on H and count number of ones sequentially
from here using H and L. By choosing t = 1.44m, the total
size of sarray becomes 1.92m+m(lg(n/m)) + o(m) bits.

The construction of darray first divides the given bit-
string X into blocks of L ones each, and constructs an array
P [0, . . . , n/(L − 1)] such that P [i] stores the position of
iL-th one in X . These blocks are represented based on
their length. If the length of a block is more than (lg n)4,
it is represented by storing the positions of all the ones in
it. Otherwise, its representation consists of the position of
every (lg n)-th one in the block, using L(lgL)/ lg n bits.
To support select(i), we first find the block that contains
the answer using P . If this block is longer than (lg n)4,
we can read the answer from its representation. Otherwise,
we use the representation of the block to find a sequence of
(lg n) positions, one of which corresponds to the required
answer, and scan the sequence to find the answer. The rank
operation is supported using an approach similar to that of
rsdic. By choosing L = (lg n)2, the size of darray can be
limited to n+ o(n) bits, including the bit-string X .

5.4. Results of Empirical Evaluation

Memory test. Practical implementation of bitvectors based
on V2F used significantly less memory than the competition
in most cases (see Fig. 4(a)); the exception is sdarray
with Z-Accidents and Z-Pumsb2 and RRR with
rand dblp, rand english and english 100. In the
former case (for Z-Accidents and Z-Pumsb2 files),
despite the V2F compressed bit-string being significantly
less than H0, the compressed size is so small that the fixed
overhead of the phrase rank/select structure dominates.
Also for latter three files, their V2F compression ratios are
close to Logsum, and the overhead in the bitvector based
on V2F implementations is more than that of RRR. Figure 3
shows the results of the memory test.

Although the redundancy in Theorem 2.1 is less than
(little-oh of) the compressed output size in theory, for the
implementation based on Theorem 2.1, the space overhead
is 1 ∼ 3 times more than the compressed output size, in
all the test files except Z-Accidents and Z-Pumsb2 (for
which the compressed output size is significantly smaller).
This is because the O(lg (n/C)) term in the redundancy can
be larger than the codeword size even though the value of
lg (n/C) in these files is 4 ∼ 6, which is less than the
codeword size.
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File name
Compressed Bit-string size Overall space rank1 test Random select1 test Hard select1 test Mixed test

ratio ratio ratio ratio ratio ratio
factor9.6 189.34% 85.94% 129.76% 208.89% 220.93% 223.63%
proteins 341.95% 65.69% 115.79% 210.81% 220.59% 200.93%

Z-Accidents 865.76% 166.42% 351.05% 208.33% 555.56% 480.93%
Z-Pumsb2 5822.67% 366.41% 495.73% 214.29% 229.17% 263.24%
dblp 100 288.90% 138.55% 192.57% 251.75% 164.43% 237.82%
rand dblp 161.84% 103.10% 114.65% 166.67% 198.39% 182.06%

TABLE 4: Comparison between bitvector based on V2F and bitvectors of Beskers and Fischer [33].

File name
Space Usage ratio rank1 test

excluding select index ratio
factor9.6 156.01% 15.46%
proteins 204.24% 15.24%

Z-Accidents 226.70% 56.99%
Z-Pumsb2 689.03% 89.23%
dblp 100 126.24% 24.40%

english 100 97.93% 17.49%
rand dblp 82.28% 9.73%

rand english 87.23% 11.79%

TABLE 5: Comparison between bitvector based on V2F and
bitvectors of Kärkkäinen et al. [16].

rank1 test. Generally speaking, apart from sdarray, which
is not optimized for rank, all others are comparably fast.
However, sdarray does better than rsdic on the Z-vectors,
possibly because it fits in cache due to its much lower
memory usage, and the V2F bitvectors and RRR both do
relatively poorly on the random bit-strings (see Fig. 4(a)).

Random select1 test. As expected, sdarray is generally
the fastest, but loses out a little on the FM-index files, as
it cannot compress them. The V2F bitvector is the second-
best, and is very close to the best, in most cases, but performs
slightly worse on the random files (see Fig. 4(b)). rsdic and
RRR show significant weakness on the Z-vectors and XML
bit-strings respectively.

Hard select1 test. rsdic is the only bit-vector that does not
guard against long gaps, and performs very poorly (up to 20
times slower) on three of the input files (see Fig. 4(c)). V2F
bitvectors do the hard select1 test at roughly the same speed
as the random select1, and thus demonstrate their resilience.

Mixed test. The V2F bitvectors are the best overall per-
formers in this test, since they show good performance for
both the hard select test and the rank test.

Figure 4 shows the results for the above four tests.

5.5. Recent Work

For the sake of completeness, we have performed a
preliminary comparison with the bitvectors of Kärkkäinen
et al. [16] and Beskers and Fischer [33]. These works were
performed independently of ours and both were published
on or after the preliminary publication of our work in [34].

We first compare with Beskers and Fischer’s work. First,

in what concerns the space usage, they (conveniently)
report the sizes of their compressed bit-string and the
rankselect indices separately11. Broadly speaking the
compression ratios of their compressed bit-string are not as
good as ours. In particular, the compression ratio for the
highly compressible Z-Accidents and Z-Pumsb2 are
significantly worse. However, the overall space usage is a
lot closer, between 60% of our usage and 140%, for most
files; only in Z-Pumsb2 is their space usage significantly
worse. Coming now to the running time, we note that their
approach to select is to sample, use the samples to divide
the bit-string into select blocks, and then perform binary
search in the select block. This means that the performance
is less affected by long gaps than a pure sample and scan
approach. Nevertheless, we see that the performance is
indeed affected. For rank as well, the speed is significantly
slower, in particular, the large size of the compressed bit-
string in Z-Pumsb2 results in rank being nearly 5 times
slower.

Coming now to the work of Kärkkäinen et al. [16], there
are significant differences in the two approaches, which
render the comparison a little bit challenging. Firstly,
Kärkkäinen et al. [16] favour speed and simplicity over
compression. Secondly, they do not support select, and
certain aspects of their implementation (such as the use
of hardware pop-count) transfer less easily to select.
On the other hand, we have consciously tried (in our
parameter selection for example) to ensure rank and select
are comparable in speeds. In Table 5 we add together the size
of our compressed bit-string and the size of the rank index
and compare to the reported memory usage of Kärkkäinen
et al. As a result, the performance is very different. In
terms of memory usage, our implementations (excluding any
memory for select) are comparable on the files rand dblp
and dblp 100 (from 18% more memory on rand dblp
to 18% less memory on dblp 100). On the other files,
we perform significantly better, from 36% less memory
for factor9.6 to 85% less memory (i.e about 7 times
smaller) for Z-Pumsb2. However, the speed of our
rank ranges from comparable with theirs (for the highly
compressible file Z-Pumsb2) to 9-11 times slower (for the
incompressible files rand dblp and rand englsih).

11We observe that their code appears to interchange the sizes of the bit-
string and the indices. We note this from the fact that the reported sizes
of the indices would otherwise be several times larger than the reported
sizes of the compressed bit-strings, and also that the random bit-strings
rand dblp and rand englishwould compress well beyond their zero-
th order entropy.
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6. CONCLUDING REMARKS AND FUTURE
WORK

This paper has, for the first time as far as we are aware,
carefully investigated V2F compressors as a basis for
bitvectors. We have shown how V2F bitvectors can lead to
simple bitvectors with good redundancy. Empirical testing
of an implementation, which albeit differs considerably from
the theoretical proposals, shows that low memory usage and
good, robust speed performance can be obtained via V2F
compressors.

There is much room for further investigation. For in-
stance, the naive approach to operations on individual
phrases, as well as the relatively simple approach to sup-
porting rank/select, leads to an overhead that is rather high
for highly compressible bit-strings (admittedly, these are so
sparse as to test the boundaries of our stated aim of target-
ing “moderately compressible” bit-strings). This could be
overcome by adhering more closely to the theoretical result,
and making greater use of on-the-fly decoding, both of
which are very much in our plans in the near future. Apart
from the Tunstall/Khodak/Enumerative codes, we have not
explored V2F codes in any non-trivial way. Much more
work is clearly possible along this axis as well.
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FIGURE 3: Memory test: Y-axis shows RSS size in KB

(a) rank1 test (b) Random select1 test

(c) Hard select1 test (d) Mixed test

FIGURE 4: (a) rank1 test, (b) Random select1 test, (c) Hard select1 test (d) Mixed test: Y-axis shows the running time
per operation in microseconds. X-axis shows the test bit-strings in the order factor9.6, proteins, Z-Accidents,
Z-Pumsb2, rand dblp, rand english, dblp 100 and english 100. The order of bitvectors for each bit-string is
bitvector based on V2F, rsdic, sdarray and RRR
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