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Abstract. Probability estimation is essential for every statistical data compression algorithm.
In practice probability estimation should be adaptive, i. e. recent observations should receive
a higher weight than older observations. We present a probability estimation method based on
exponential smoothing that satisfies this requirement and runs in constant time per letter. Our
main contribution is a theoretical analysis in case of a binary alphabet for various smoothing
rate sequences: We show that the redundancy w. r. t. a piecewise stationary model with s
segments is O (s

√
n) for any bit sequence of length n, an improvement over redundancy

O
(
s
√
n log n

)
of previous approaches with similar time complexity.

1 Introduction
Background. Sequential probability assignment is an elementary component of every sta-
tistical data compression algorithm, such as Prediction by Partial Matching, Context Tree
Weighting and PAQ (“pack”). Statistical compression algorithms split compression into
modeling and coding and process an input sequence letter-by-letter. During modeling a
model computes a distribution p and during coding an encoder maps the next letter x, given
p, to a codeword of a length close to− log p(x) bits (this is the ideal code length). Decoding
is the reverse: Given p and the codeword the decoder restores x. Arithmetic Coding is the
de facto standard en-/decoder, it closely approximates the ideal code length [1]. All of the
mentioned compression algorithms require simple, elementary models to predict a probabil-
ity distribution. Elementary models are typically based on simple closed-form expressions,
such as relative letter frequencies. Nevertheless, elementary models have a big impact on both
theoretical guarantees [9, 11] and empirical performance [4, 10] of statistical compression
algorithms. (Commonly, we express theoretical guarantees on a model by the amount of bits
the model requires above an ideal competing scheme assuming ideal encoding, the so-called
redundancy.) It is wise to choose elementary models carefully and desirable to analyze them
theoretically and to study them experimentally. In this work we focus on elementary models
with the ability to adapt to changing statistics (see next paragraph) whose implementation
meets practical requirements, that is O(Nn) (arithmetic) operations and O(N) data words
(holding e. g. a counter or a rational number) while processing a sequence of lengthn over an
alphabet of sizeN .

Previous Work. Relative frequency-based elementary models, such as the Laplace- and
KT-Estimator, are well-known and well-understood [1]. A major drawback of these classical
techniques is that they don’t exploit recency effects (adaptivity): For an accurate prediction
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novel observations are of higher importance than past observations [2, 7]. From a theoretical
point of view adaptivity is evident in low redundancy w. r. t. an adaptive competing scheme
such as a Piecewise Stationary Model (PWS). A PWS partitions a sequence of length n arbi-
trarily into s segments and predicts an arbitrary fixed probability distribution for every letter
within a segment. (Since both segmentation and prediction within a segment are arbitrary,
we may assume both to be optimal.)

To lift the limitation of classical relative frequency-based elementary models we typically
age observation counts, aging takes place immediately before incrementing the count of a
novel letter. For aging frequency-based elementary models there exist two major strategies,
which are heavily used in practice. In Strategy 1 (count rescaling) we divide all counts by a
factor in well-defined intervals (e. g. when the sum of all counts exceeds a threshold) [2], for
Strategy 2 (count smoothing) we multiply all counts by a factor in (0, 1) in every update [7].
Strategy 1 was analyzed in [5] and has redundancyO(s

√
n log n). Similarly, a KT-estimator

which completely discards all counts periodically was analyzed in [8] and has redundancy
O(s
√
n log n). Strategy 2 was studied mainly experimentally [7, 9, 10].

Another approach for adaptive probability estimation, commonly used in PAQ, is smooth-
ing of probabilities, Strategy 3. Given a probability distribution (i. e. the prediction of the
previous step) and a novel letter we carry out an update as follows: First we multiply all prob-
abilities with smoothing rate α ∈ (0, 1) and afterwards we increment the probability of the
novel letter by 1−α. Smoothing rateα does not vary from step to step. To our knowledge this
common-sense approach was first mentioned in [3]. A finite state machine that approximates
smoothing was analyzed in [6] and has redundancy O(nK−2/3) w. r. t. PWS with s = 1,
whereK is the number of states.

All aforementioned approaches meet practical demands, they requireO(Nn) (arithmetic)
operations andO(N)data words. More complex (but unpractical) methods are based on mix-
tures over elementary models associated to so-called transition diagrams [8, 12] or associated
to (PWS-)partitions [10].

Our Contribution. In this work we analyze a generalization of strategies 2 and 3 for a binary
alphabet. Based on mild assumptions on sequence α1, α2, . . . of smoothing rates (αk is used
for an update after observing the k-th letter) we explicitly identify an input sequence with
maximum redundancy w. r. t. PWS with s = 1 and subsequently derive redundancy bounds
for s ≥ 1 (Section 3). For PWS with arbitrary swe give redundancy bounds for three choices
of smoothing rates in Section 4. First, we consider a fixed smoothing rateα = α1 = α2 = . . .
(as in PAQ) and provide α∗(n) that guarantees redundancyO(s

√
n) for a sequence of length

n; second, we propose a varying smoothing rate, where αk ≈ α∗(k); and finally a varying
smoothing rate that is equivalent to Strategy 2 from the previous section. By tuning param-
eters we obtain redundancy O(s

√
n) for all smoothing rate choices, an improvement over

redundancy guarantees known so far for models requiringO(Nn) (arithmetic) operations per
input sequence. Section 5 supports our bounds with a small experimental study and finally
Section 6 summarizes and evaluates our results and gives perspectives for future research.

2 Preliminaries
Sequences. We usexi:j to denote a sequencexixi+1 . . . xj of objects (numbers, letters, . . . ).
Unless stated differently, sequences are bit sequences (have letters {0, 1}). If i > j, then



xi:j := φ, where φ is the empty sequence; if j = ∞, then xi:j = xixi+1 . . . has infinite
length. For sequence x1:n define x<i := x1:i−1 and x≤i := x1:i; we call x1:n deterministic, if
x1 = · · · = xn, and non-deterministic, otherwise.

Code Length and Entropy. Code length is measured in bits, thus log := log2. For prob-
ability distribution p over {0, 1} and letter x we define `(x; p) := − log p(x). The binary
entropy function is denoted as H(q) := −q log(q) − (1 − q) log(1 − q), for a probability
q. For sequence x1:n and relative frequency q of a 1-bit in x1:n let h(x1:n) := nH(q) be the
empirical entropy of x1:n.

Partitions and Sets. Calligraphic letters denote sets. A partition of a non-empty segment
(interval) (a, b] of integers is a set of non-overlapping segments (i0, i1], . . . , (in−1, in] s. t.
a = i0 < i1 < · · · < in = b. The phrase k-th segment uniquely refers to (ik−1, ik].

Models and Exponential Smoothing of Probabilities. We first characterize the term model
from statistical data compression, in order define our modeling method. A model MDL maps
a sequence x1:n of length n ≥ 0 to a probability distribution p on {0, 1}. We define the short-
hands MDL(x≤n) := p (this is not the probability of sequencex≤n!) and MDL(x;x≤n) := p(x).
Model MDL assigns `(x≤n;MDL) := −

∑
1≤k≤n log MDL(xk;x<k) bits to sequence x≤n. We

are now ready to formally define our model of interest.
Definition 2.1. For sequence α1:∞, where 0 < α1, α2, · · · < 1, and probability distribution
p, where p(0), p(1) > 0, we define model ESP = (α1:∞, p) by the sequential probability
assignment rule

ESP(x;x≤k) =


αkESP(x;x<k) + 1− αk, if k > 0 and x = xk

αkESP(x;x<k), if k > 0 and x 6= xk

p(x), if k = 0

. (1)

Smoothing rates control the adaption of ESP, large αi’s give high weight to old observations
and low weight to new observations, the converse holds for small αi’s. For our analysis we
must assume that the smoothing rates are sufficiently large:
Assumption 2.2. ESP = (α1:∞, p) satisfies 1

2
< α1, α2, · · · < 1 and w. l. o. g. p(0) ≤ p(1).

For the upcoming analysis the product of smoothing rates plays an important role. Hence,
given smoothing rate sequence α1:∞, we define β0 = 1 and βi := α1 · . . . · αi, for i > 0.

3 Redundancy Analysis
First Main Result. Now we can state our first main result which compares ESP to the code
length of an optimal fixed code forx1:n, that is the empirical entropyh(x1:n). Before we prove
the theorem, we discuss its implications.
Theorem 3.1. If Assumption 2.2 holds, then we have

`(x1:n; ESP)− h(x1:n)

≤

{ ∑n−1
i=0 log 1

1−p(1)βi , if x1:n is deterministic

log 1
p(1)βn−1

+
∑n−2

i=0 log 1
1−p(1)βi − nH

(
1
n

)
, otherwise

. (2)



Recall that by Assumption 2.2 we have p(0) ≤ p(1). First, consider a deterministic sequence
of 0-bits. By (1) we have ESP(1;x≤i) = βip(1), thus ESP(0;x≤i) = 1− βip(1), both for 0 ≤
i < n. The total code length is `(x1:n; ESP) = −

∑n−1
i=0 log(1−βip(1)) and clearlyh(x1:n) =

0, so the redundancy `(x1:n; ESP) − h(x1:n) matches (2). Now consider a non-deterministic
sequence x1:n = 00 . . . 01 with single 1-bit at position n. Similar to the deterministic case
the same equations for ESP( · ;x≤i) hold, for i < n. The total code length is `(x1:n; ESP) =
−
∑n−2

i=0 log(1 − βip(1)) − log(βn−1p(1)) and the empirical entropy is h(x1:n) = nH( 1
n
).

Again, the redundancy matches (2). In summary, if p(0) ≤ p(1), then 00 . . . 0 is a determin-
istic sequence with maximum redundancy and 00 . . . 01 is a non-deterministic sequence with
maximum redundancy. Similar statements hold, if p(0) ≥ p(1): by symmetry we must tog-
gle 0-bits and 1-bits. When p(0) = p(1) we have equal redundancy, e. g. `(00 . . . 0; ESP) =
`(11 . . . 1; ESP) in the deterministic case. In summary, for a given instance of ESP (that satis-
fies Assumption 2.2) the worst-case input is either 00 . . . 0 (only 0-bits) or 00 . . . 01 (single 1-
bit), among all2n bit sequences of lengthn. For fixednwe can now easily compare the redun-
dancies of those two inputs and immediately depict the worst-case input and its redundancy.

For the proof of Theorem 3.1 we require the following lemma.
Lemma 3.2. Any non-deterministic sequence x1:n of length n ≥ 2 satisfies

h(x1:n)− h(x2:n) ≥

{
nH

(
1
n

)
, if x2:n is deterministic

nH
(
1
n

)
− (n− 1)H

(
1

n−1

)
, otherwise

.

Proof. Let 1− p be the relative frequency of x1 in x1:n, thus h(x1:n)− h(x2:n) = nH(p)−
(n− 1)H

(
n
n−1 · p

)
=: f(p). We distinguish two cases:

Case 1: x2:n is deterministic. We have p = n−1
n

and f(p) = nH
(
n−1
n

)
= nH

(
1
n

)
.

Case 2: x2:n is non-deterministic. Since H(p) is concave, H ′(p) is decreasing and f ′(p) =
n
[
H ′(p)−H ′

(
n
n−1 · p

)]
≥ 0, i. e. f(p) is increasing and minimal for minimum p. Since

x1:n is non-deterministic the minimum value of p is 1
n

and we get f(p) ≥ f
(
1
n

)
= nH

(
1
n

)
−

(n− 1)H
(

1
n−1

)
.

Now let us proceed with the major piece of work in this section.

Proof of Theorem 3.1. We define r(x1:n, ESP) := `(x1:n; ESP)− h(x1:n) and distinguish:

Case 1: x1:n is deterministic. By p(0) ≤ p(1) (Assumption 2.2) we have ESP(x;x<i) ≥
ESP(0;x<i) = 1− p(1)βi−1 and h(x1:n) = 0, we get

r(x1:n, ESP) =
∑

1≤i≤n

log
1

ESP(xi;x<i)
≤
∑

0≤i<n

log
1

1− p(1)βi
.

Case 2: x1:n is non-deterministic. We have n ≥ 2 and by induction on nwe prove

r(x1:n, ESP) ≤ log
1

p(1)βn−1
+

∑
0≤i<n−1

log
1

1− p(1)βi
− nH

(
1
n

)
.

Base: n = 2. — We have x1:n ∈ {01, 10}, in either case h(x1:n) = nH
(
1
n

)
= 2 and

`(x1:n; ESP) = log 1
p(x1)β1p(x2)

= log 1
p(1)β1

+ log 1
1−p(1) , the claim follows.



Step: n > 2. — By defining ESP′ = (α′1:∞, p
′), where α′i = αi+1, β′i = α′1 · . . . · α′i,

p′ = ESP(x≤1)we may write

r(x1:n, ESP) = log
1

p(x1)
+ r(x2:n, ESP′)− (h(x1:n)− h(x2:n)). (3)

Now w. l. o. g. fix p′ s. t. p′(0) ≤ p′(1). Since we want to bound (3) from above, we must
choose x1 s. t. p(x1) is minimal (and the r. h. s. of (3) is maximal). To do so, distinguish:

Case 1: x1 = 0. For some distribution q with q(0) > 0 we have p(x1) = q(0) and 1
2
≥

p′(0) = α1q(0) + 1 − α1, thus q(0) ≤
[
α1 − 1

2

]
/α1. (Notice the subtle detail: α1 ≤ 1

2

implies q(0) ≤ 0, which contradicts q(0) > 0 and would make Case 1 impossible; however
we assumed α1 >

1
2
.) Furthermore, we have q(0) ≤ 1

2
.

Case 2: x1 = 1. For some distribution r with r(1) > 0 we have p(x1) = r(1) and 1
2
≤

p′(1) = α1r(1) + 1− α1, thus r(1) ≥
[
α1 − 1

2

]
/α1.

Since q(0) ≤ r(1) (i. e. Case 1 minimizes p(x1)) and q(0) ≤ 1
2

we may now w. l. o. g.
assume that x1 = 0, p′(1) = α1p(1), p(x1) = 1− p(1) and p(0) ≤ p(1). We distinguish:

Case 1: x2:n is deterministic. We must have x2:n = 11 . . . 1, since x1 = 0 and x1:n is non-
deterministic, thus

r(x2:n, ESP′) =
∑

0≤i<n−1

log
1

1− p′(0)β′i
≤ log

1

p(1)βn−1
+

∑
1≤i<n−1

log
1

1− p(1)βi
, (4)

where we obtain the inequality by p′(0)β′i ≤ p′(1)β′i = p(1)βi+1, for i < n − 2 and
1 − p′(0)β′n−2 = 1 − [1 − p(1)α1]βn−1/α1 ≥ p(1)βn−1, for i = n − 2. To obtain the
claim we plug the inequalities (4) and h(x1:n) − h(x2:n) ≥ nH( 1

n
) (by Lemma 3.2) into (3)

and note that p(x1) = 1− p(1)β0 (since β0 = 1).

Case 2: x2:n is non-deterministic. The hypothesis and p′(1)β′i = p(1)βi+1 yield

r(x2:n, ESP′) ≤ log
1

p′(1)β′n−2
+
∑

0≤i<n−2

log
1

1− p′(1)β′i
− (n− 1)H

(
1

n−1

)
= log

1

p(1)βn−1
+
∑

1≤i<n−1

log
1

1− p(1)βi
− (n− 1)H

(
1

n−1

)
. (5)

We plug the inequalities (5) andh(x1:n)−h(x2:n) ≥ nH( 1
n
)−(n−1)H( 1

n−1) (by Lemma 3.2),
into (3) and note that p(x1) = 1− p(1)β0 (since β0 = 1) to end the proof.

Second Main Result. Let us now extend the competing scheme of Theorem 3.1, to which
we compare ESP to. Suppose the competing scheme splits the input sequence x1:n according
to an arbitrary partition S of [1, n] and may use an optimal fixed code within every segment
[a, b] ∈ S . The competing scheme has total coding cost h(xa:b) for xa:b, thus coding cost∑

[a,b]∈S h(xa:b) for x1:n Notice, that this a lower bound on the coding cost of any PWS with
partition S. Since the situation within a segment resembles the situation of Theorem 3.1, we
may now naturally extend the redundancy analysis to the aforementioned competitor.
Theorem 3.3. Let S be an arbitrary partition of [1, n]. If Assumption 2.2 holds, then

`(x1:n; ESP)−
∑

[a,b]∈S

h(xa:b) ≤ |S| log
1

p(0)βn−1
+
∑

(a,b]∈S

∑
a<i<b

log
1

1− βi/βa
. (6)



Proof. Let r(x1:n, ESP) := `(x1:n; ESP) − h(x1:n). Our plan for the proof is to simplify (2)
(see calculations below) to yield

`(x1:n; ESP)− h(x1:n) ≤ log
1

p(0)βn−1
+
∑

1≤i<n

log
1

1− βi
(7)

and use to (7) to bound the redundancy for an arbitrary segment (a, b] fromS (see calculations
below) via∑

a<i≤b

log
1

ESP(xi;x<i)
− h(xa+1:b) ≤ log

1

p(0)βb−1
+
∑
a<i<b

log
1

1− βi/βa
. (8)

We now obtain (6) easily by summing (8) over all segments (a, b] fromS and byβb−1 ≥ βn−1.

Simplifying (2). Observe that
∑

0≤i<n log
1

1−p(1)βi = log 1
p(0)

+
∑

1≤i<n log
1

1−p(1)βi and fur-
thermore p(0) ≤ p(1). So bound (2) becomes

r(x1:n, ESP) ≤ log
1

p(0)
+
∑

1≤i<n

log
1

1− p(1)βi
≤ log

1

p(0)
+
∑

1≤i<n

log
1

1− βi
,

if x1:n is deterministic and by log 1
p(1)
− nH

(
1
n

)
≤ 0 (since p(1) ≥ 1

2
and n ≥ 2)

r(x1:n, ESP) ≤ log
1

p(0)p(1)βn−1
+

∑
1≤i<n−1

log
1

1− p(1)βi
− nH

(
1
n

)
≤ log

1

p(0)βn−1
+
∑

1≤i<n

log
1

1− βi
,

if x1:n is non-deterministic. In either case bound (7) holds.

Redundancy of (a, b]. For segment (a, b] we define sequence x′1:b−a = xa+1:b and ESP′ =
(α′1:∞, p

′), s. t. ESP(x;x<i) = ESP(x′;x′<i−a) for i ∈ (a, b]. Therefore, let α′1:∞ = αa+1:∞,
β′i = α′1 · . . . · α′i and w. l. o. g. p′(0) ≤ p′(1). We obtain∑

a<i≤b

log
1

ESP(xi;x<i)
− h(xa+1:b)

=
∑

1≤i≤b−a

log
1

ESP′(x′i;x
′
<i)
− h(x′1:b−a) = `(x1:n, ESP)− h(x1:n)

(7)
≤ log

1

p′(0)β′b−a−1
+
∑

1≤i<b−a

log
1

1− β′i
≤ log

1

p(0)βb−1
+
∑
a<i<b

log
1

1− βi/βa
,

where the last step is due to p′(0) ≥ p(0)βa (also p′(1) ≥ p(0)βa) and β′i = βa+i/βa.

4 Choice of Smoothing Rate Sequence
Fixed Smoothing Rate. A straight-forward choice for the smoothing rates is to use the same
rate α in every step. This leads to a simple and fast implementation, since no smoothing rate
sequence needs to be computed or stored. We require the following lemma for the analysis:

Lemma 4.1. For 0 < α < 1 we have
∑

1≤i≤m log 1
1−αi ≤

(π log e)2

6 log 1
α

.



Proof. Form = 0 the bound trivially holds, letm ≥ 1. Since log 1
1−αz is decreasing in z and

integrable for z in [0,∞)we may bound the series by an integral,∑
1≤i≤m

log
1

1− αi
≤
∫ m

0

log
1

1− αz
dz = log(e)

∫ m

0

∑
j≥1

αjz

j
dz. (9)

The equality in (9) follows from the series expansion ln 1
1−y =

∑
j≥1 y

j/j, for |y| < 1. To
end the proof, it remains to bound the integral in (9) as follows (notice

∑
j≥1 j

−2 = π2/6):∫ m

0

∑
j≥1

αjz

j
dz =

∑
j≥1

1

j

∫ m

0

αjzdz =
log e

log 1
α

∑
j≥1

1− αjm

j2
≤ π2 log e

6 log 1
α

.

Corollary 4.2. Let S be an arbitrary partition of [1, n]. If α = α1 = α2 = . . . and
Assumption 2.2 holds, then

`(x1:n; ESP)−
∑

[a,b]∈S

h(xa:b) ≤ |S| ·
[
log

1

p(0)
+

(π log e)2

6 log 1
α

+ (n− 1) log
1

α

]
. (10)

Proof. We have βi = αi, thus for i ∈ (a, b] we plug the estimate∑
a<i<b

log
1

1− βi/βa
=

∑
0<i−a<b−a

log
1

1− αi−a
Lem. 4.1
≤ (π log e)2

6 log 1
α

and log βn−1 = (n− 1) logα into (6) to conclude the proof.

Choosing α = e
− π√

6(n−1) minimizes the r. h. s. of bound (10) and satisfies α > 1
2

(Assump-
tion 2.2), when n ≥ 5. The optimal choice gives redundancy at most

|S| ·
[
2π log e√

6
·
√
n+ log

1

p(0)

]
< |S| ·

[
3.701 ·

√
n+ log

1

p(0)

]
. (11)

Varying Smoothing Rate. It is impossible to choose an optimal fixed smoothing rate, when
n is unknown. A standard technique to handle this situation is the doubling trick, which will
increase the

√
n-term in (11) by a factor of

√
2/(
√
2− 1) ≈ 3.41. However, we can do better

by slowly increasing the smoothing rate step-by-step, which only leads to a factor
√
2 ≈ 1.41.

Corollary 4.3. Let S be an arbitrary partition of [1, n]. If αk = e−π/
√

12(k+1) (i. e. αk > 1
2
)

and Assumption 2.2 holds, then

`(x1:n; ESP)−
∑

[a,b]∈S

h(xa:b) ≤ |S| ·
[
log

1

p(0)
+

2π log e√
3
·
√
n

]
. (12)

Proof. We have βi = exp
(
− π√

12

∑
1<k≤i+1 k

−1/2
)

and bound the terms depending on the
βi’s in (6) from above. First, observe that∑

1<k≤n

k−1/2 ≤
∫ n

1

dz√
z
≤ 2
√
n

Def.βi
=⇒ log

1

βn−1
≤ π log e√

3

√
n, (13)

second, for a < i < b we have βi/βa = αa+1 · . . . · αi ≤ (αn−1)
i−a, since i < n and

α1, α2, . . . is increasing, consequently we obtain∑
a<i<b

log
1

1− βi/βa
≤
∑
a<i<b

log
1

1− (αn−1)i−a
Lem. 4.1
≤ (π log e)2

6 log 1
αn−1

=
π log e√

3

√
n. (14)



We plug (13) and (14) into (6), the result is (12).

Count Smoothing. Consider aging Strategy 2 from Section 1 with smoothing rate λ ∈
(0, 1). We will now show that Strategy 2 is an instance of ESP. For s0, s1 > 0 we define the
smoothed count s(x;x≤k) of bit x and the smoothed total count tk as follows

s(x;x≤k) :=


λs(x;x<k) + 1, if k > 0 and xk = x

λs(x;x<k), if k > 0 and xk 6= x

sx, if k = 0

and tk :=

{
λtk−1 + 1, if k > 0

s0 + s1, if k = 0
.

Strategy 2 predicts p(x;x≤k) = s(x;x≤k)/tk. In case xk = xwe get

p(x;x≤k) =
λs(x;x<k) + 1

tk
=
λtk−1
tk

s(x;x<k)

tk−1
+

1

tk
=
tk − 1

tk
p(x;x<k) +

1

tk
,

similarly p(x;x≤k) = tk−1
tk
p(x;x<k), if xk 6= x. If we now choose αk = tk−1

tk
and p(x) =

sx
s0+s1

the above sequential probability assignment rule resembles (1). This insight allows us
to adopt our analysis method. To do so, we require the following technical statement first.
Lemma 4.4. For 1 ≤ a ≤ b and 0 < λ < 1 we have 1−λa

1−λb ≥
a
b
.

Proof. Letf(z) := ln((1−λz)/z), it suffices to prove thatf(a) ≥ f(b). By lnλz ≥ 1−1/λz
we get f ′(z) = [(1− lnλz) · λz − 1] / [a(1− λa)] ≤ 0, so f is decreasing.

Corollary 4.5. Let S be an arbitrary partition of [1, n]. Fix 0 < λ < 1 and m ≥ 1, define
tk := λtk−1 + 1 for k ≥ 1 and t0 = 1 + λ + · · · + λm−1 for k = 0. If αk = tk−1

tk
and

Assumption 2.2 holds, then

`(x1:n; ESP)−
∑

[a,b]∈S

h(xa:b) ≤ |S| ·
[
log

n

p(0)
+

(π log e)2

6 log 1
λ

+ (n− 1) log
1

λ

]
. (15)

Proof. Let k ≥ 1 and note that by tk = λtk−1 + 1 we may write αk = λtk−1/tk and
tk = 1 + λ+ · · ·+ λk+m−1 = (1− λk+m)/(1− λ) and get

βi = α1 · . . . · αi =
λt0
t1

λt1
t2

. . .
λti−1
ti

=
t0
ti
· λi = 1− λm

1− λm+i
· λi.

We now proceed by bounding the terms dependent on βi in (6):

βi =
(1− λm)λi

1− λm+i

Lem. 4.4
≥ mλi

m+ i

m≥1
≥ λi

i+ 1
and

βi
βa

=
1− λm+a

1− λm+i
· λi−a

a≤i
≤ λi−a

From the above inequalities we obtain

log
1

βn−1
≤ log

n

λn−1
and

∑
a<i<b

log
1

1− βi/βa
≤
∑
a<i<b

log
1

1− λi−a
Lem. 4.1
≤ (π log e)2

6 log 1
λ

.

Finally we plug the above inequalities into (6) and rearrenging yields (15).

For k →∞we have tk → 1
1−λ , thus αk → λ, i. e. we expect the smoothed counts method to

perform similar to ESP with fixed smoothing rate λ, when the input is large enough. Bound
(15) reflects this behavior, it differs from (10) only by the additive term |S| log n. Further-
more, the optimal value of λ in (15) matches the optimal value of α in (10).



5 Experiments
For inputs of lengthnwe experimentally checked the tightness of our bounds from the previ-
ous section for a wide range of ESP-instances with smoothing rate choices (i) fixed “optimal”
smoothing rate α = exp(−π/

√
6(n− 1)) (here “optimal” means that the corresponding

bound, c. f. Corollary 4.2, is minimized), (ii) varying smoothing from Corollary 4.3 and (iii)
varying smoothing from Corollary 4.5 with “optimal”λ = exp(−π/

√
6(n− 1)) andm = 1.

Since our bounds from corollaries 4.2, 4.3 and 4.5 are worst-case bounds we compare them to
the empirically measured (approximate) worst-case redundancy. Furthermore, we compare
the (approximate) worst-case redundancy of (i), (ii) and (iii) to each other. We now explain
the details below.

Experimental Setup. In the following let smoothing rate sequence α1:∞, input length n =
1000, partitionS = {(0, 200], (200, 700], (700, 1000]} and ε = 0.05 be fixed. (We inspected
the outcome of our experiments for different parameters and got similar results, hence these
values.) We want to judge on our bounds on a wide range of ESP-instances, in particular we
choose class C = {(α1:∞, p) | 0 < ε ≤ p(0), p(1)} of ESP-instances. To do so, we have to
modify our bound slightly, we must replace the term p(0) by ε: For instance, in Situation (i),
we may bound the redundancy of any ESP ∈ C of prefix x1:k of given x1:n as follows

`(x1:k; ESP)−
∑

[a,b]∈S

h(xa:min{k,b}) ≤ |S| ·
[
2π log e√

6
·
√
k − 1 + log

1

ε

]
, (16)

for 1 ≤ k ≤ n. Since the resulting bounds remain worst-case bounds, we compare the
resulting bounds for situations (i)-(iii) to the worst-case redundancy

r(k) := max
ESP∈C,x1:n

(
`(x1:k; ESP)−

∑
[a,b]∈S

h(xa:min{k,b})
)

. (17)

Unfortunately, computing the maximum is intractable, since C is uncountably infinite and
there are exponentially many sequences x1:n. To lift this limitation we take the maximum
over a finite subset of ESP-instances from C and inputs x1:n, specified as follows: For num-
bers q0, . . . , q|S| ∈ {0.05, . . . , 0.95} we consider pairs (ESP, x1:n) s. t. ESP(0;φ) = q0 (q0
determines an ESP-instance) and x1:n is drawn uniform at random from all sequences where
for the i-th segment [a, b] ∈ S subsequence xa:b has exactly bqi · (b − a + 1)c 1-bits (qi
determines the (approximate) fraction of 1-bits in the i-th segment). We now take the maxi-
mum in (17) over all combinations (q0, . . . , q|S|) and repeat the random experiment 100 times
for every combination (q0, . . . , q|S|) (in total 19|S|+1 · 100 simulations). Figure 1 depicts the
approximation of r(k) (solid lines) and our bounds on `(x≤k; ESP) −

∑
[a,b]∈S h(xa:min{b,k})

(dashed lines). (For instance, bound (16) is depicted as dashed line in the left plot of Figure 1.)

Approximate Worst-Case Redundancy. We now compare (approximate) r(k) for smooth-
ing rate choices (i)-(iii) and observe: On one hand, as long as k is small, varying smoothing
rates, (ii) and (iii), yield lower redundancy than (i), and (iii) performs better than (ii). On the
other hand, when k is large (i), (ii) and (iii) don’t differ too much. The increase in redundancy
at k = 201 and k = 701 is nearly identical in all cases, the difference in redundancy is almost
entirely caused by segment (0, 200].

Bounds Behavior. Now we compare the bounds to (approximate) r(k). In general, the
tightness of our bounds decreases as the number of segments increases. This is plausible,
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Figure 1: Redundancy bound (dashed line) and approximate worst-case redundancy r(k)
(solid line) of class {(α1:∞, p) | 0 < ε ≤ p(0), p(1)} for ε = 0.05 w. r. t. competitor with
partition S = {[1, 200], (200, 700], (700, 1000]} on the length-k prefix, 1 ≤ k ≤ n of a
sequence with length n = 1000. The x-axis is prefix length k and the y-axis is redundancy in
bit. Every plot corresponds to a different smoothing rate choice: (i) fixed “optimal” smoothing
rate α = exp(−π/

√
6(n− 1)), (ii) varying smoothing from Corollary 4.3 and (iii) varying

smoothing from Corollary 4.5 with “optimal” λ = exp(−π/
√
6(n− 1)) and m = 1.

since we essentially concatenated the worst-case bound for |S| = 1. However, we don’t
know, whether or not the worst-case redundancy for |S| = 1 can appear in multiple adjacent
segments at the same time. Experiments indicate that this may not be the case. Furthermore,
in (i) the bound is tightest, especially within segment (0, 200]. In cases (ii) and (iii) the bounds
are more loose. An explanation is, that in the corresponding proofs we worked with rather
generous simplifications, e. g. when bounding−

∑
a<i<b log(1 − βi/βa) from above. If we

compare (ii) to (i) and to (iii) we can see, that bound (ii) is tighter for very small k. The reason
is simple: Bound (ii) does not depend on a smoothing rate parameter, whereas (i) contains the
term 1/ log 1

α
and (iii) contains the term 1/ log 1

λ
. These terms dominate the bounds, when k

is small and α and λ are close to 1. (We have α = λ ≈ 0.96, since α and λ were chosen to
minimize the corresponding bound for n = 1000.)

6 Conclusion
In this work we analyzed a class of practical and adaptive elementary models which assign
probabilities by exponential smoothing, ESP. Our analysis is valid for a binary alphabet.
By choosing smoothing rates appropriately our strategy generalizes count smoothing (Strat-
egy 2) and probability smoothing from PAQ (Strategy 3). Due to its low memory footprint and
linear per-sequence time complexity ESP is attractive from a practical point of view. From a
theoretic point of view ESP is attractive as well: For various smoothing rate sequences ESP has
redundancy only O(s

√
n) above any PWS with s segments, an improvement over previous

approaches. A short experimental study supports our bounds.
Nevertheless, experiments indicate that there is room for an improved analysis. Despite

minor technical issues a major approach would be to obtain redundancy bounds w. r. t. PWS
that take the similarity of adjacent segments into account. That is, if adjacent segments have
very similar distributions, the increase in redundancy should be small, compared to adjacent
segments with drastically different distributions. Furthermore, it is desirable to generalize
the analysis to a non-binary alphabet. We defer a thorough experimental study that compares
ESP to other adaptive elementary models to future research.
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