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Abstract: In this work we address the problem of recovering sparse solutions to 

non-linear inverse problems. We look at two variants of the basic problem – the 

synthesis prior problem when the solution is sparse and the analysis prior 

problem where the solution is co-sparse in some linear basis. For the first 

problem, we propose non-linear variants of the Orthogonal Matching  Pursuit 

(OMP) and CoSamp algorithms; for the second problem we propose a non-

linear variant of the Greedy Analysis Pursuit (GAP) algorithm. We empirically 

test the success rates of our algorithms on exponential and logarithmic functions. 

We model speckle denoising as a non-linear sparse recovery problem and apply 

our technique to solve it. Results show that our method outperforms state-of-the-

art methods in ultrasound speckle denoising.  

1. Introduction 

In the last decade, there has been a lot of interest in solving linear inverse problems 

where the solution is known to be sparse, especially when the problem is under-

determined. In his seminal work Donoho [1] showed that sparse solutions are necessarily 

unique, even when it is under-determined.  

There are two approaches to solve the sparse recovery problem. One approach is to relax 

the NP hard l0-norm by its nearest convex surrogate the l1-norm. Such l1-norm 

minimization problems can be solved using linear programming. The other approach to 

solve the sparse recovery problem is via greedy methods. These techniques are based on 

iteratively finding the support (via some heuristic) of the solution and estimating the 

values at those positions. Orthogonal Matching Pursuit (OMP) [2] and CoSamp [3] are 

the two popular greedy recovery algorithms.  

There is a variant to the basic problem (2), where the solution is not sparse but has a co-

sparse representation in a transform domain. This is the analysis prior problem [4]. Much 

like the synthesis prior problem, there are two ways to solve the NP hard analysis prior 

problem – via convex relaxation and via greedy algorithms like Greedy Analysis Prior 

(GAP). 

In this work, our interest is in solving non-linear sparse recovery problems. In a previous 

study [5], a non-linear l1-norm minimization problem was proposed to solve it. The 

problem with such an approach is its slow convergence (owing to small step-size). To 

overcome the limitations of speed, we propose greedy algorithms based on the 

modifications of OMP and CoSamp to solve the synthesis prior non-linear sparse 

recovery problem (when the solution is sparse) and modification of GAP to solve the 

analysis prior non-linear co-sparse recovery problem (when the solution is co-sparse in a 



transform domain). Before going into our proposed techniques, we will discuss a 

practical motivation of such non-linear sparse recovery problems in the next section; we 

model ultrasound speckle denoising as a non-linear sparse recovery problem.  

2. Speckle Denoising in Ultrasound 

Ultrasound images are corrupted by speckle noise [6-10]. Speckle noise is multiplicative 

in nature and can be modeled as, 

0x x n             (1) 

Here x0 is the clean image (to be recovered), n is the noise and x is the speckle corrupted 

image.  

Broadly there are two classes of approach. The more popular one is to log-transform (1) 

to an additive noise model and apply wavelet (or other *let) based thresholding method to 

remove noise, followed by exponential transform to get back the cleaned image [6-9]. 

The other approach is to apply spatial domain filtering methods like non local means to 

get rid of the noise [10]. 

In this work we propose a novel formulation. In a fashion similar to thresholding 

technique, we first convert (1) to an additive model.  

0log( ) log( ) log( )x x n          (2) 

Prior studies like [6-9] and others assumed that log(x0) is sparse in a transform domain. 

They applied the sparsifying transform to log(x0) and thresholded the coefficients (strictly 

speaking the log transform of the noise follows a Fisher-Tipett distribution; but for the 

purpose of simplicity it has been considered to be white Gaussian in nature). It is proven 

that wavelet (and other *let) transform is able to sparsely represent piecewise smooth 

signals like images; however to the best of our knowledge there is no formal proof that 

says that logarithm of a piecewise signal will also be piecewise smooth and hence 

sparsely representable in such sparsifying transform domains.  

In this work, we follow the standard assumption that that the image is piecewise smooth 

and hence sparsely representable in a transform domain - this has been used profusely in 

removing additive Gaussian noise from images and in Compressed Sensing based 

additive noise removal. In the most general case we assume that H is the sparsifying 

transform (not necessarily orthogonal or tight-frame). This allows formulating speckle 

denoising as follows: 

0

2

0 02 1
min log( ) log( )

x
x x Hx    (3)        (8) 

The l2-norm for data fidelity has been widely used in speckle denoising; studies like [6-

10] are based on the assumption that log(n) follows a Gaussian distribution - hence the 

justification of using the Euclidean norm. 

This is a typical candidate for analysis prior non-linear co-sparse recovery. If we assume 

that the sparsifying transform is orthogonal (or tight framed) we can pose denoising as a 

sparse synthesis prior problem: 
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min log( ) log( )Tx H
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       (4)         (9) 

There are no off-the shelf algorithms for solving the sparse recovery problem from non-

linear measurements. In the next section, we will discuss the few studies on this topic.  

3. Literature Review 

Literature on non-linear sparse recovery is parsimonious. There are two studies [11, 12] 

of theoretical nature that explores the conditions under which such recovery is possible. 

They do not propose practical algorithms for solving such problems. To the best of our 

knowledge, there is only a single work [13] from 2008 that proposed a greedy algorithm 

(variant of OMP) to solve the synthesis prior non-linear sparse recovery problem; but in 

essence their algorithm recovered a sparse solution to a linear problem where the cost 

function is not Euclidean.  

To the best of our knowledge, the only algorithmic work on solving non-linear sparse 

recovery problems in [5]. There the authors proposed an l1-norm minimization approach; 

the recovery was posed as (assuming f(.) to be the non-linear function): 

2
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x
y f x x           (5) 

Solving (5) for very small values of ε is as good as solving the equality constrained 

problem. The algorithm in [8] is based on the modified Iterative Soft Thresholding 

Algorithm (ISTA). It is a two step algorithm. The first step is a gradient descent that 

partially solves the non-linear least squares problem –  
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where σ is the step-size. 

The second step is to threshold b in order to project it on the l1-ball, to yield a sparse 

solution –  

( , )kx SoftTh b    

The problem with such an optimization based approach is that it is parametric. For the 

linear case, well known techniques exist to find the step-size (σ) and the threshold τ; but 

for non-linear cases finding the values is difficult. In [5], the step-size was determined by 

the inverse of the Lipchitz bound of the cost function. But it is a very pessimistic (small) 

step-size and the algorithm converges slowly; also the threshold parameter was found 

manually.  To overcome these limitations we propose greedy algorithms to solve the non-

linear sparse recovery problem. 

4. Proposed Greedy Algorithms 

4.1. Solving the Sparse Synthesis Prior Problem 

Before discussing the non-linear extensions, let us discuss the greedy algorithms for 

linear sparse recovery. The most commonly used algorithm for the purpose is Orthogonal 

Matching Pursuit (OMP). The algorithm is as follows: 



OMP Algorithm 

Initialize: Index set -   ; x=0. 

Repeat for k iterations 

Compute correlation - ( ( ))Tc abs A y Ax    

Select the index - arg max i
i

i c   

Update support - i   

Estimate non-zero values -  
2

2
min

x
x y A x     

Finally impute other indices in x with zeroes. 

There are two issues with the OMP algorithm. First, it only selects one index of the 

support set in every iteration. This is slow; there are simple techniques to accelerate OMP 

like Stagewise OMP or Stagewise Weak OMP. However, slow selection is not the most 

pressing problem. The bigger problem is that an index once selected, remains; OMP (or 

its aforesaid variants) cannot prune an incorrectly selected index at a later iteration. The 

CoSamp overcomes overcome both these issues. It allows for selection of multiple 

indices in every iteration (top 2k) and it allows for pruning (by keeping top k).  

CoSamp Algorithm 

Initialize: Index set -   ; x=0. 

Repeat until convergence 

Compute correlation - ( ( ))Tc abs A y Ax    

Select the top 2K support from c - ω  

Update support -    

Perform least squares estimate -  min
x

b y A x     

Update x by pruning b and keeping top K values. 

Finally impute other indices in x with zeroes. 

Let us look at computing the correlation ‘c’ for both the algorithms. It is computed as 

( )TA y Ax ; this is the negative gradient of the Euclidean cost function 
2

2
y Ax  . We 

want to solve the linear sparse recovery problem, i.e. 

0
:  s.t. x y Ax x k           (6) 

The equality (y=Ax) holds only at convergence, for all other iterations (in OMP and 

CoSamp) one finds x by minimizing the Euclidean cost function 
2

2
y Ax . 

Our proposed algorithm for non-linear sparse recovery is based on the same approach. 

For our problem, the Euclidean cost function is 
2

2
( )y f x . We would like to solve the 

non-linear sparse recovery problem:  

0
: ( ) s.t. x y f x x k          (7) 

Following same argument as in the linear case, our ‘correlation’ for non-linear problems 

should be defined as: 
2

2
( )xc y f x             (8) 



The rest of the OMP and the CoSamp algorithm remains as it is except for the least 

squares step. Previously, one needed to solve a linear least squares problem. We need to 

solve a non-linear least squares problem. But solving non-linear least squares is a well 

studied area and there is no dearth of efficient algorithms; we use the Levenberg 

Marquadt method. 

Non-Linear OMP Algorithm 

Initialize: Index set -   ; x=0. 

Repeat for k iterations 

Compute correlation - 
2

2
( ( ) )xc abs y f x     

Select the index - arg max i
i

i c   

Update support - i   

Estimate non-zero values -  min ( )
x

x y f x     

Finally impute other indices in x with zeroes. 

Non-linear CoSamp Algorithm 

Initialize: Index set -   ; x=0. 

Repeat until convergence 

Compute correlation - 
2

2
( ( ) )xc abs y f x    

Select the top 2K support from c - ω  

Update support -    

Perform least squares estimate -  min ( )
x

b y f x     

Update x by pruning b and keeping top K values. 

Finally impute other indices in x with zeroes. 

4.2. Solving the Co-sparse Analysis Prior Problem 

There are well known l1-minimization based algorithms to solve the sparse synthesis and 

co-sparse analysis prior problem for the linear case; there are a few algorithms 

(mentioned before) for solving the sparse synthesis problem for non-linear 

measurements, but there is no prior technique to solve the non-linear problem. We 

propose to modify the Greedy Analysis Prior (GAP) algorithm to solve the co-sparse 

analysis prior problem for non-linear measurements. GAP starts from a dense solution 

and in every iteration it prunes one non-zero element from it. After pruning, the solution 

(at the current co-support) is updated by solving a least squares problem. The algorithm 

for linear measurements is given below:  

GAP Algorithm 

Initialize: Index set -  1,2,3,.....,n   

2

2
arg min

x
x x   subject to  y Ax  

Repeat for k iterations 

Compute - ( )c abs x    

Select the index - arg max i
i

i c   

Update co-support - \ i     

Update solution -  
2

2
arg min

x
x x   subject to  y Ax  



We are interested in solving the co-sparse analysis prior problem when the measurement 

is non-linear. We modify the GAP algorithm to achieve this. The first step is to obtain the 

sparse representation of the solution x, here it is represented as c; it is computed by 

applying the sparsifying transform to the current solution. As long as the sparsifying 

transform is linear (as in our case), this step does not change when the measurement is 

non-linear. The pruning operation also remains as it is. The only change that needs to be 

introduced is in solving the least squares problem for updating x. We have a non-linear 

measurement function therefore we need to solve a least squares problem with non-linear 

equality constraints. There are several well known methods to solve such problems.  

Non-linear GAP Algorithm  

Initialize: Index set -  1,2,3,.....,n   

2

2
arg min

x
x x   subject to ( )y f x  

Repeat for k iterations 

Compute - ( )c abs x    

Select the index - arg max i
i

i c   

Update cosupport - \ i     

Update solution -  
2

2
arg min

x
x x   subject to  ( )y f x  

We believe in reproducible research. Matlab implementations of both the algorithms are 

available at the author’s Matlab Central account [14]. 

5. Experimental Results 

5.1. Experiments on Synthetic Data 

There is no benchmark to compare our greedy algorithms non-linear recovery. So we 

tested them against the linear recovery problems. We used the original algorithms (OMP 

and CoSaMP) for linear recovery – the results for this problem are well known, vis-à-vis 

we used our proposed non-linear OMP and CoSaMP algorithms to solve the linear 

recovery problem. We also used the proposed algorithms to solve the exponential and 

logarithmic inverse problems to check how they compare against the well-known success 

rates of linear recovery. The results are shown in Fig. 1 for i.i.d Gaussian and Bernoulli 

measurements; the size of the problem is 40 X 100. The number of non-zero values (k) in 

x is varied. For each configuration, 1000 trials are generated; a trial is considered 

successful if the normalized mean squared error ( 2

2

original reconstructed
NMSE

original


 ) is 

below 10-3. 

We find that for OMP, our non-linear algorithm performs better than the original for 

linear recovery problems. But for CoSaMP, the algorithm for linear recovery [2] 

performs much better than our proposed technique on linear problems. The success rates 

for the non-linear problems show a similar trend, but are worse than that of their linear 

counterparts. 



 

Figure 1. Comparison of success rates for various functions with OMP and CoSaMP for 

i.i.d. Gaussian and Bernoulli measurement matrix. 

In the second set of experiments we show how the success rates vary with number of 

non-zero values in the solution (k) and number of measurements (m) for our proposed 

non-linear OMP and CoSaMP algorithms for exponential and logarithmic functions. In 

Fig. 2 we show the results for an i.i.d Gaussian matrix; owing to limitations in space we 

cannot show the results for Bernoulli measurements, but the trends are similar. For OMP, 

the results follow a well-known pattern – the success rates decrease with increasing 

number of non-zeroes in the solution and increases with the number of measurements. 

The results for CoSaMP on the logarithmic problem shows a peculiar pattern – the 

success rates increases initially with the increase in the number of non-zero values and 

then the rate decreases as expected; this pattern is only visible when the number of 

measurements is 60 and 80. We have tested this scenario multiple times and always saw 

the same pattern. We do not know how to explain this behavior. 

 

Figure 2. Variation of success rates for OMP and CoSaMP with number of non-zero 

values and number of measurements for i.i.d Gaussian matrix. 

So far we have discussed results for the synthesis prior problems. We tested the non-

linear GAP algorithm with the standard linear GAP technique for recovering the solution 

for a linear problem. The results are shown in Fig. 3 (a and b); these pertain to 40% 

sampling. We find that our algorithm performs slightly worse than the original technique. 

In the same graph we also compared the results for recovering exponential and 

logarithmic function with our proposed technique. In Fig. 3 (c and d) we compared our 

method for recovering exponential and logarithmic functions for non-linear i.i.d Gaussian 

and measurements. The success rates follow the usual trend. 

 

       (a)           (b)             (c)             (d) 

Figure 3. (a) and (b) Comparison of success rates for various functions with GAP for i.i.d 

Gaussian and Bernoulli measurement matrix. (c) and (d) Variation of success rates for 



GAP with number of non-zero values and number of measurements for i.i.d Gaussian 

matrix. 

5.2. Experiments on Speckle Denoising 

The data used in here has been downloaded from a public access database [15]. The 

database contains images of common carotid artery (CCA) of ten volunteers (mean age 

27.5 ± 3.5 years) with different weight (mean weight 76.5 ± 9.7 kg). Images (usually 

eight images per volunteer) were acquired with Sonix OP ultrasound scanner with 

different set-up of depth, gain, time gain compensation (TGC) curve and different linear 

array transducers. The image database contains 84 B-mode ultrasound images of CCA in 

longitudinal section. The resolution of images is approximately 390x330px. 

We have compared our proposed technique with two state-of-the-art methods [6] 

(published in 2015) and [16] (published 2014). In these studies, it was shown that they 

outperform other standard speckle denoising techniques like adaptive filtering [17] and 

isotropic diffusion [18].  

The images are artifically corrupted by speckle noise with various noise levels and 

denoised using [6], [16] and our three proposed techniques. For simplicity, we assume 

that the noise is white Gaussian. For our OMP and CoSamp we use Daubechies wavelet 

(3 level decomposition, 8 vanishing moments) as the sparsifying transform and for the 

GAP we use total variation prior (finite differencing). We assume that the number of non-

zero coefficients is 10% of the total number of coefficients; but iterations may stop if the 

residual is near about 0. 

The average (over all images) PSNR and the SSIM for the different techniques are shown 

in Table 1. In the table it is understood that our proposed techniques are non-linear 

version of OMP. CoSamp and GAP, therefore we omit the word 'non linear'. 

Table 1. PSNR Values from Various Techniques 

Algorithm Input PSNR = 14 Input PSNR = 12 Input PSNR = 10 

PSNR SSIM PSNR SSIM PSNR SSIM 

Wavelet + NLM [6] 33.4 0.911 28.2 0.856 23.0 0.726 

Framelet Diffusion [16] 32.2 0.903 27.6 0.847 22.3 0.727 

OMP (proposed) 34.0 0.927 30.2 0.891 25.8 0.820 

CoSamp (proposed) 33.2 0.920 29.6 0.874 24.6 0.806 

GAP (proposed) 33.6 0.935 30.1 0.898 25.0 0.831 

We find that our proposed algorithms yield better results than state-of-the-art techniques 

in speckle denoising; especially when the signal is very noisy (poor signal to noise ratio). 

Although the prior techniques show reasonable PSNR (20+) for all noise levels, the 

actual perceptual image quality is poor - as can be verified from the SSIM values. To 

corroborate our claim, we show some denoised images in Fig. 1. Our proposed methods 

show very similar results; therefore we show the results from one of them only (owing to 

limitations in space). 

The denoised images support the numerical (SSIM) results. The results are shown for the 

scenario where the input noise level corresponds to a PSNR of 10. The prior techniques 

yield blurred images, whereas our method yields decent denoising. The blurring owes to 

the fact that the prior methods assume the logarithm of the image to be sparse; this 



smoothes out the signal at the onset, hence the denoising results is also smooth. Our 

method assumes the image to be sparse in the transform domain - an assumption widely 

tested in denoising and Compressed Sensing based reconstruction. There is no smoothing 

transform (like logarithm) prior to the application of the sparsifying transform; hence the 

denoised output is sharper. 

     

     

Figure 4. Left to Right - Clean Image, Noisy Image, Wavelet + NLM [6], Framelet 

Diffusion [16], Proposed non-linear OMP. 

6. Conclusion 

In this work, we modify popular greedy sparse recovery algorithms to solve non-linear 

problems. The OMP and the CoSaMP are modified to solve the synthesis prior problem 

and the GAP is modified for solving the analysis prior problem. We have run standard 

tests to evaluate the performance of these algorithms; we find that the trends (variation of 

success rate with sampling ratio, variation of success rate with sparsity level) are similar 

to the ones obtained for the linear case.  

We apply these algorithms to the problem of speckle denoising in ultrasound images. The 

results show that the proposed techniques yield better results than state-of-the-art 

methods compared against. Denoising is a simple problem considering the fact that the 

problem is fully determined. Our algorithms are capable of solving under-determined 

problems as well. 
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