
Lempel-Ziv Computation In Compressed Space (LZ-CICSo)

Dominik Köppl1 and Kunihiko Sadakane2

1Department of Computer Science, TU Dortmund, Germany
2Graduate School of Information Science and Technology, University of Tokyo, Japan

Abstract

We show that both the Lempel-Ziv-77 and the Lempel-Ziv-78 factorization of a text of
length n on an integer alphabet of size σ can be computed in O(n lg lg σ) time (linear time
if we allow randomization) using O(n lg σ) bits of working space. Given that a compressed
representation of the suffix tree is loaded into RAM, we can compute both factorizations in
O(n) time using z lg n+O(n) bits of space, where z is the number of factors.

1 Introduction

The Lempel-Ziv-77 (LZ77) [1] and the Lempel-Ziv-78 (LZ78) [2] factorization divide a
text into factors that capture repetitions in the text. Although both factorizations are
found in major text processing tools like compressors or full text indices, computing
any of the two factorizations is a bottleneck in terms of space and time. In practice,
compressors still use a sliding window or discarding techniques to avoid high resource
consumption. Hence, one might ask whether it is possible to lower the space bound
in the light of recent approaches in the field of succinct data structures, while still
allowing linear running time.

In this article, we show that the LZ77 and the LZ78 factorization of a text of
length n on an integer alphabet of size σ can be computed

• with O(n lg σ) bits of working space in either O(n) randomized or O(n lg lg σ)
deterministic time, and

• with z lg n+O(n) additional bits of working space in linear time, given that we
have access to the compressed suffix tree of the text.

2 Related Work

We are aware of the following results for LZ77: The currently most space efficient
algorithm is due to Kosolobov [3] whose algorithm runs in O(n(lg σ + lg lg n)) time
and uses only εn bits of working space, provided that we have read-access to the
text. A trade-off algorithm is given by Kärkkäinen et al. [4], using O(n/d) words
of working space and O(dn) time. By setting d ← logσ n we get O(n lg σ) bits of
working space and O(n logσ n) time. The algorithm of Belazzougui and Puglisi [5]
derives its dominant terms in space and time from the same data structure [6] as we
do; the LZ77 factorization algorithms of both papers work with the same space and
time bounds. Their algorithm uses only the Burrows-Wheeler transform (BWT) [7]
construction algorithm from [6]. By exchanging it with an improved version [8], we
expect that their algorithm will run in deterministic linear time.

ar
X

iv
:1

51
0.

02
88

2v
5

 [
cs

.D
S]

 2
8

M
ay

 2
01

6

Since LZ78 factors are naturally represented in a trie, the so-called LZ trie,
improving LZ78 computation can be done, among others, by using sophisticated trie
implementations [9, 10], or by superimposing the suffix tree with the suffix trie [11, 12].
We follow the latter approach. There, both Nakashima et al. [11] and Fischer et al. [12]
presented a linear time algorithm, using O(n lg n) and (1 + ε)n lg n + O(n) bits of
space, respectively.

Based on the data structures of the compressed suffix tree, we derive our tech-
niques from an approach [12] using the suffix tree topology with succinct representa-
tions of the suffix array, its inverse and the longest common prefix array. For both
factorization variants, Fischer et al. [12] store the inverse suffix array and parts of the
enhanced suffix array in (1 + ε)n lg n +O(n) bits of space such that they can access
leaves of the suffix tree in text order, and can compute the string depth of internal
nodes, both in constant time. Unlike the here presented approach, their algorithms
overwrite the working space multiple times, and use a complicated counting for the
LZ78 trie nodes.

3 Preliminaries

Our computational model is the word RAM model with word size Ω(lg n) for some
natural number n. Accessing a word costs O(1) time. We assume that the function
popcount(w), counting the set bits in a word w, can be computed in constant time.
Otherwise, we build a lookup-table [13] supporting popcount with two rank queries
in constant time. The lookup-table fits into our working space.

Let Σ denote an integer alphabet of size σ = |Σ| ≤ n. We call an element T ∈ Σ∗

a string or text. Its length is denoted by |T |. The empty string is ε with |ε| = 0.
We access the j-th character of T with T [j] for 1 ≤ j ≤ |T |. Given x, y, z ∈ Σ∗ with
T = xyz, we call x, y, and z a prefix, a substring, and a suffix of T , respectively.
In particular, the suffix starting at position j of T is called the j-th suffix of T .

We call strings on the binary alphabet {0, 1} bit vectors. For a bit vector B, we
are interested in answering the following queries for c ∈ {0, 1} ∪ {0, 1}2:

• B. rankc(j) counts the number of ‘c’s in B[1, j], and

• B. selectc(j) gives the position of the j-th ‘c’ in B.

We can answer both types of queries due to a result of Raman et al. [14]: There is a
data structure taking o(|B|) extra bits of space to answer rank and select queries in
constant time. It can be constructed in time linear to |B|. We say that a bit vector
has a rank-support and a select-support if it provides constant time access to
rank and select, respectively.

The zero-order entropy H0(n, z) of a bit vector of length n storing z ones is defined
by H0(n, z)n = z lg(n/z)+(n−z) lg (n/(n− z)). Such a bit vector can be compressed
such that it consumes H0(n, z)n+ o(n) bits, supporting access and rank in constant
time (e.g., [14]).

In the rest of this paper, we take a read-only text T of length n, which is subject
to the LZ77 or the LZ78 factorization. Let T [n] be a special character appearing

nowhere else in T , so that no suffix of T is a prefix of another suffix of T . Without
loss of generality, we assume that Σ is the effective alphabet of T , i.e., each character
of Σ appears in T at least once. Otherwise, we can reduce the alphabet to the effective
alphabet by sorting the characters with a linear time integer sorting algorithm using
n lg σ + O(1) working space [15], and an array with σ lg σ bits to reconstruct the
former alphabet.

3.1 Lempel-Ziv Factorization

A factorization of T with size z partitions T into z substrings T = f1 · · · fz. These
substrings are called factors. In particular, we have:

Definition 3.1. A factorization f1 · · · fz = T is called the LZ77 factorization of T
iff fx = argmaxS∈Sj(T)∪Σ |S| for all 1 ≤ x ≤ z with j = |f1 · · · fx−1|+ 1, where Sj(T)
denotes the set of substrings of T that start strictly before j (for 1 ≤ j ≤ |T |).

Different to the LZ77 factorization, the classic-LZ77 factorization adds an addi-
tional character to the referencing factors:

Definition 3.2. A factorization f1 · · · fz = T is called the classic-LZ77 factoriza-
tion of T iff fx is the shortest prefix of fx · · · fz that occurs exactly once in f1 · · · fx.

Definition 3.3. A factorization f1 · · · fz = T is called the LZ78 factorization of
T iff fx = f ′x · c with f ′x = argmaxS∈{fy :y<x}∪{ε} |S| and c ∈ Σ for all 1 ≤ x ≤ z.

3.2 Suffix Tree

The suffix trie of T is the trie of all suffixes of T . The suffix tree (ST) of T ,
denoted by ST, is the tree obtained by compacting the suffix trie of T . We denote
the root node of ST by root. Our approach uses a compressed representation of ST,
consisting of

• the ψ-array [16] with SA[i] = SA[ψ(i)] − 1 for 1 ≤ i ≤ n with SA[i] 6= n (and
ψ(i) = SA−1[1] for SA[i] = n), and

• a 4n+ o(n)-bit balanced parenthesis representation (BP) [17] of the tree topol-
ogy [18], equipped with the minmax tree [19] for navigation.

By employing the algorithm of Belazzougui [6] on the text, we can build the com-
pressed suffix tree consuming O(n lg σ) bits of space in either O(n) randomized time
or O(n lg lg σ) deterministic time.

Due to the BP representation, each node of the suffix tree is uniquely identified by
its pre-order number. A rank- and a select-support on the BP representation enable
us to address a node by its pre-order number in constant time. If the context is clear,
we implicitly convert an ST node to its pre-order number, and vice versa.

Each leaf is labeled conceptually by the text position where its corresponding suffix
starts (see Figure 1). We write label(`) for the label of a leaf `. Reading the leaf
labels in depth first order returns the suffix array, which we denote by SA. We do
neither store SA nor the leaf labels.

1

15
$

3

a

14
$

5

a

6

a

b

a

7

a

b

a

$

1

b

a

a

a

b

a

a

b

a

$

9

b

a

11
$

8

a

b

a

$

2

b

a

a

a

b

a

a

b

a

$

13

b

a

12
$

15

a

5

a

b

a

a

b

a

$

9

b

a

$

3

b

a

a

a

b

a

a

b

a

$

19

b

a

13
$

21

a

6

a

b

a

a

b

a

$

10

b

a

$

4

b

a

a

a

b

a

a

b

a

$

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T a a a b a b a a a b a a b a $

SA 15 14 7 1 11 8 2 12 5 9 3 13 6 10 4

SA−1 4 7 11 15 9 13 3 6 10 14 5 8 12 2 1

ψ 4 1 6 7 8 10 11 12 13 14 15 2 3 5 9

BP (()(()((()())(()()()))(()(()())()))(()(()())()))

leaves 010010001010001010100001001010010000100101001000

Figure 1: The suffix tree of T = aaababaaabaaba$. Internal nodes are labeled by their
pre-order numbers, leaves by the text position where their respective suffix starts. The
number of letters on an edge e is c(e). Nodes and leaves are represented by ‘(’ and ‘()’,
respectively, in the BP representation. By creating rank- and select-supports on ‘()’ and
‘(’, we can access internal nodes and leaves separately.

For descriptive purposes, we define the conceptional function c(e) returning, for
each edge e, the length of e.

We use the following methods on the ST topology that are well known to be
computable in constant time after suitable preprocessing (see [19]):

• parent(v) selects the parent of the node v,

• depth(v) returns the depth of the node v,

• level anc(`, d) selects the ancestor of the leaf ` at depth d,

• lmost leaf(v) and rmost leaf(v) selects the leftmost and rightmost leaf of node v,
respectively,

• leaf select(i) selects the i-th leaf,

• leaf rank(`) returns the number of preceding leaves of the leaf `,

• child rank(v) returns the number of preceding siblings of the node v, and

• v. child(i) selects the i-th child of the node v.

Besides those basic tools, we need the following supplementary functions whose
implementation details follow their descriptions:

Algorithm 1 Implementation of str depth

Require: suffix tree node v
1: if v is an internal node then
2: `← lmost leaf(v. child(1))
3: `′ ← lmost leaf(v. child(2)) {v. child(2) exists since v is an internal node}
4: m← 0
5: while head(`) = head(`′) do
6: `← next leaf(`)
7: `′ ← next leaf(`′)
8: incr m
9: end while

10: return m
11: else if v is a leaf then {works only if label(v) is available}
12: return n+ 1− label(v)
13: end if

• head(`) retrieves the first character of the suffix whose starting position coincides
with the label of the leaf `. Since Σ is the effective alphabet of T , each character
of Σ occurs in T . So root has σ children, each corresponding to a different
character. Besides, the order of root’s children and of the characters of Σ is the
same. Hence, child rank(level anc(`, depth(root) + 1)) = head(`) holds, and the
left hand side can be computed in constant time.

• smallest leaf selects the leaf with the label 1. By a linear scan over the ψ-array,
we can find the value α := SA−1[1], so that ψk[α] = SA−1[k+1] for 0 ≤ k ≤ n−1.
We store α to answer smallest leaf by leaf select(α).

• next leaf(`) selects the leaf labeled with label(`) + 1. We can compute it in
constant time, since next leaf(`) = leaf select(ψ[leaf rank(`)]).

• str depth(v) returns the string depth of an internal node. We use the ψ-array
and the head-function to compute str depth(v) in time proportional to the string
depth (see Algorithm 1). Therefore, we take two different children of v (they
exist since v is an internal node), and choose an arbitrary leaf in the subtree
of each child. So we have two leaves representing two suffixes whose longest
common prefix is the string read from the edge labels on the path from the root
to the lowest common ancestor (LCA) of both leaves. Our task is to compute
the length of this prefix. To this end, we match the first characters of both
suffixes by the head-function. If they match, we use ψ to move to the next pair
of suffixes, and apply the head-function again. Informally, applying ψ strips the
first character of both suffixes (like taking a suffix link). On a mismatch, we
find the first pair of characters that does not belong to the path from the root
to v (reading the labels of the edges along this path). We return the number of
matched characters as the string depth.

LZ77

1 2 3 4 5 6 7

Factor a aa b aba aaba aba $

Coding a 1,2 b 3,3 2,4 3,3 $

classic-LZ77

1 2 3 4 5

Factor a aab abaa abaab a$

Coding a 1,2,b 3,3,a 5,4,b 1,1,$

LZ78

1 2 3 4 5 6 7 8

Factor a aa b ab aaa ba aba $

Coding a 1,a b 1,b 2,a 3,a 4,a $

Figure 2: We parse the text aaababaaabaaba$ by both factorizations. The coding represents
a fresh factor by a single character, and a referencing factor by a tuple with two entries.
For LZ77, this tuple consists of the referred position and the number of characters to copy.
For classic-LZ77, the tuple additionally contains a new character. For LZ78, it consists of
the referred index and a new character.

4 Common Settings

We identify factors by text positions, i.e., we call a text position j the factor posi-
tion of fx (1 ≤ x ≤ z) iff the factor fx starts at position j. A factor fx may refer to
either (LZ77) a previous text position j (called fx’s referred position), or (LZ78)
to a previous factor fy (called fx’s referred factor—in this case y is also called the
referred index of fx). If there is no suitable reference found for a given factor fx
with factor position j, then fx consists of just the single letter T [j]. We call such a
factor a fresh factor. The other factors are called referencing factors. Let zR

denote the number of referencing factors. An example is given in Figure 2.

4.1 Scaffold of the Algorithms

Common to our LZ77- and LZ78-factorization algorithms is the traversal of the com-
pressed suffix tree. In more detail, they share a common framework, which we describe
in the following by introducing some new keywords:

Witnesses. Witnesses are internal nodes that act as signposts for finding
(LZ77) the referred position or (LZ78) the referred index of a factor. The number of
witnesses zW is at most the number of referencing factors zR. We will enumerate the
witnesses from 1 to zW by a bit vector BW on the BP of ST with a rank1-support.
So each witness has, along with its pre-order number, a so-called witness id (its
BW-rank).

Passes. Like the LZ77 algorithm in [12], we divide our algorithms in several
passes. In a pass, we visit the leaves of ST in text position order. This is done by
using smallest leaf and then calling next leaf successively. The passes differ in how a

leaf is processed. While processing a leaf `, we want to access label(`). We can track
the label of the current leaf with a counter variable, since we start at the leaf with
the label 1.

Corresponding Leaves. We say that a leaf ` corresponds to the factor f if
label(`) is the factor position of f . During a pass, we keep track of whether a visited
leaf corresponds to a factor. To this end, for each leaf ` corresponding to a factor f ,
we compute the length of f while processing `. This length tells us the number of
leaves after ` (in text order) that do not correspond to a factor. By noting the next
corresponding leaf, we know whether the current leaf is corresponding to a factor —
remember that a pass selects leaves successively in text order, and smallest leaf is
always corresponding to the first factor.

Output Space. Given ST and ψ, we analyze our algorithms for both factoriza-
tions with respect to time and working space. We analyze both factorizations under
the assumptions that either the output has to be stored explicitly in RAM, or that
the algorithm must stream the output sequentially.

4.2 Loaded Data Structures in RAM

We need the ψ-array taking O(n lg σ) bits, and ST’s topology consuming 4n + o(n)
bits. We spend o(n) additional bits to create a rank()-support, a select()-support,
and a rank(-support on the BP sequence of ST for ranking and selecting leaves and
internal nodes separately (nodes and leaves in the BP representation are given by the
sequence ‘(’ and ‘()’, respectively). Our algorithms do not access the text T .

5 LZ77

Given that the above stated data structures are loaded into RAM, we show that the
LZ77 factorization can be computed with (1 + H0(n, z))n + z lg n + o(n) additional
bits of working space when streaming. It is easy to show that we can store the output
in RAM with additionaly z lg n bits.

LZ77 Passes. Common to all passes is the following procedure: For each visited
leaf `, we perform a leaf-to-root traversal, i.e., we visit every node on the path from `
to root. But we visit every node at most once, i.e., we stop the leaf-to-root traversal
on visiting an already visited node. Therefore, we create a bit vector BV with which
we mark a visited node. This bit vector is cleared before a pass starts. Since ST
contains at most n− 1 internal nodes, a pass can be conducted in linear time.

We perform two passes:

(a) create BW in order to determine the witnesses (see Algorithm 2), and

(b) stream the output by using an array mapping witness ids to text positions (see
Algorithm 3).

Pass (a). We follow the approach from [12]. Determining the witnesses is
done in the following way: Reaching the root from a leaf corresponding to a factor
(while visiting only non-marked nodes) means that we found a fresh factor. Oth-
erwise, assume that we visit an already visited node u 6= root from a leaf `. If `

Algorithm 2 LZ77 Pass (a)

1: `← smallest leaf
2: p← 1 {tracks next leaf corresponding to a factor}
3: repeat
4: v ← parent(`)
5: while v 6= root do
6: if BV[v] = 1 then {already visited?}
7: if label(`) = p then {if the current leaf corresponds to a factor}
8: BW[v]← 1 {then this node is a witness}
9: p← p+ str depth(v) {determine next starting factor}

10: end if
11: break{on finding a visited node we stop}
12: end if
13: BV[v]← 1 {visit the node}
14: v ← parent(v) {move upwards}
15: end while
16: if v = root then {` corresponds to a fresh factor}
17: incr p {factor is a single character}
18: end if
19: `← next leaf(`)
20: until ` = smallest leaf

corresponds to a factor f , u witnesses the referred position of f . This means that
there is a suffix starting before label(`) having a prefix equal to the string read from
the edge labels on the path from the root to u. Moreover, u is the lowest node in the
set {LCA of ` and `′ : label(`′) < label(`)} comprising the lowest common ancestors
of ` with all already visited leaves. So the factor corresponding to ` has to refer to
a text position coinciding with the label of a leaf belonging to u’s subtree. In order
to find the referred position in the next pass, we mark u in BW. Additionally, we
compute the length of f with str depth(u), and note the next factor position.

After this pass, we have determined the zW witnesses by the ‘1’s stored in BW. We
use the witnesses in the next pass to compute the referred positions (see Figure 3).

Pass (b). We clear BV, create a rank-support on BW and allocate an array W
consuming zW lg n bits. We use W to map a witness id to a text position (referred
positions). Having this array as a working space, W [w] becomes the label of the
leaf from which we visited the witness w in the first place. So we find the referred
position of a referencing factor f in W [w] when visiting w again from a different
leaf corresponding to f . The length of f is the string depth of w. Since fresh factors
consist of single characters, we can output a fresh factor by applying the head-function
to its corresponding leaf.

Compressing BW. Instead of directly marking nodes in BW, we can allocate
z lg n bits (we can use the space later for the array W) storing the pre-order numbers
of all witnesses during Pass (a). Afterwards, we can create a compressed bit vector
with constant time rank-support, representing BW.

Algorithm 3 LZ77 Pass (b)

1: BV.clear
2: BW.add rank support
3: p← 1 {tracks next leaf corresponding to a factor}
4: zW ← BW. rank1(n)
5: W ← array of size zW lg n {maps witness ids to text positions}
6: `← smallest leaf
7: repeat
8: v ← parent(`)
9: while v 6= root do

10: if BV[v] = 1 then {Invariant: BV[v] = 1 ∧ p = label(`)⇒ BW(v) = 1}
11: if label(`) = p then {` corresponds to a factor}
12: output text position W [BW. rank1(v)]
13: output factor length str depth(v)
14: p← p+ str depth(v) {determine next starting factor}
15: end if
16: break
17: end if
18: if BW[v] = 1 then
19: W [BW. rank1(v)]← label(`)
20: end if
21: BV[v]← 1
22: v ← parent(v)
23: end while
24: if label(`) = p then {We are currently processing a leaf of a fresh factor}
25: output character head(`)
26: output factor length 1
27: incr p
28: end if
29: `← next leaf(`)
30: until ` = smallest leaf

5.1 Trade-Off Variant

We can reduce W to εz lg z by performing both passes 1/ε times. Therefore, we
prematurely stop Pass (a) after counting ε many witnesses. We store the label j of
the last visited leaf in order to resume Pass (a) after outputting the found factors.
Since zW is now ε, we need not modify Pass (b). When running Pass (a) again to
capture the next ε witnesses (some may be the same), we suppress the marking in
BW when visiting leaves corresponding to referencing factors whose factor positions
are at most j.

Since we run both passes 1/ε times we get O(n/ε) time overall.

1

15
$

3

a

14
$

5

a

6

a

b

a

7

a

b

a

$

1

b

a

a

a

b

a

a

b

a

$

9

b

a

11
$

8

a

b

a

$

2

b

a

a

a

b

a

a

b

a

$

13

b

a

12
$

15

a

5

a

b

a

a

b

a

$

9

b

a

$

3

b

a

a

a

b

a

a

b

a

$

19

b

a

13
$

21

a

6

a

b

a

a

b

a

$

10

b

a

$

4

b

a

a

a

b

a

a

b

a

$

5

9

13

15

1

8

2

12

5

4

pre-order 1 3 5 6 9 13 15 19 21

BW 0 0 1 0 1 1 0 0 0

witness id 1 2 3

W 1 2 3

Figure 3: Our LZ77 algorithm determines the witness nodes and the leaves corresponding
to factors in Pass (a). Considering our running example T = aaababaaabaaba$, the witness
nodes are the nodes with the pre-order numbers 5, 10, and 14, and the leaves corresponding
to factors have the labels 1, 2, 4, 5, 8, 12, and 15. Each witness w is the lowest ancestor of
a leaf corresponding to a factor f with the property that the referred position of f is the
label of a leaf contained in w’s subtree. For instance, the leaf corresponding to the 4-th
factor has the label 5. Its witness has pre-order number 13, leading to the leaf with the
label 3. So the referred position of the 4-th factor is 3. The length of the 4-th factor is the
string depth of its witness. We show W and BW after Pass (b). In this example, zW = 3
and zR = 4.

5.2 Classic LZ77 factorization

The LZ77 and the classic-LZ77 factorization differ in the fact that a factor introduces
always a new character at its end in the classic flavor. We can easily adopt our LZ77
factorization algorithm to the classic flavor. To this end, when processing a corre-
sponding leaf, we skip additionally to the string depth of its witness one character,
making the currently processed factor longer by one character. Like in the LZ78 part,
we can get the new character of a referencing factor with factor index x by accessing
the leaf `′ whose label is one text position smaller than the label of the leaf corre-
sponding to the (x+1)-th factor. We conducted the classic LZ77 factorization on our
running example in Figure 4.

We additionally have to check in Algorithm 2 line 16 that we reach the root from
a corresponding leaf. This is no longer an invariant: If this condition does not hold,
then the previous factor consumed the new character that would be used as a fresh
factor in our standard variant.

1

15
$

3

a

14
$

5

a

6

a

b

a

7

a

b

a

$

1

b

a

a

a

b

a

a

b

a

$

9

b

a

11
$

8

a

b

a

$

2

b

a

a

a

b

a

a

b

a

$

13

b

a

12
$

15

a

5

a

b

a

a

b

a

$

9

b

a

$

3

b

a

a

a

b

a

a

b

a

$

19

b

a

13
$

21

a

6

a

b

a

a

b

a

$

10

b

a

$

4

b

a

a

a

b

a

a

b

a

$

3

5

13

15

14

1

2

5

9

pre-order 1 3 5 6 9 13 15 19 21

BW 0 1 1 0 0 1 1 0 0

witness id 1 2 3 4

W 1 1 3 5

Figure 4: Applying the LZ77-classic algorithm to our running example T =
aaababaaabaaba$, the witness nodes have the pre-order numbers 3, 5, 13, and 15, and the
leaves corresponding to factors have the labels 1, 2, 5, 9, and 14. In this example, we have
zW = zR = 4.

6 LZ78

A natural representation of the LZ78 factors is a trie, the so-called LZ trie. Each
node in the trie represents a factor and is labeled by its index. If the x-th factor refers
to the y-th factor, then there is a node u having a child v such that u and v have the
unique labels y and x, respectively. The edge (u, v) is labeled by the last character
of the x-th factor (the newly introduced character). A node with the label x is the
child of the root iff the x-th factor is a fresh factor.

The LZ trie representation is used in the algorithms presented below. While
the streaming algorithm computes the topology of the LZ trie, the storing variant
explicitly creates the LZ trie for querying. We can compute the factorization with
5n+z lg z+o(n) additional bits of working space when streaming the output, or with
6n + z(lg σ + lg z + 3) + o(n) additional bits of working space when storing the LZ
trie explicitly, labeling each node of the trie by a factor index.

6.1 Superimposition

The main idea is the superimposition of the suffix trie on the suffix tree, borrowed
from Nakashima et al. [11]: The LZ trie is a connected subgraph of the suffix trie
containing its root (see Figure 6). Regarding the suffix tree, the LZ nodes are either
already represented by an ST node (explicit), or lie on an ST edge (implicit). To ease
explanation, we identify each edge e = (u, v) of ST uniquely with its ending node v,

i.e., we implicitly convert between the edge e and its in-going node v (each node except
root is associated with an edge). In order to address all LZ nodes, we keep track of
how far an edge on the suffix tree got explored during the parsing. To this end, for
an edge e = (u, v), we define the exploration counter 0 ≤ nv ≤ c(e) storing how
far e is explored. If nv = 0, then the factorization has not (yet) explored e, whereas
nv = c(e) tells us that we have already reached v. Unfortunately, storing nv in an
integer array for all edges costs us 2n lg n bits.

Our idea is to choose different representations of the exploration counters depen-
dent on the state (not, partially or fully explored) and the number of descendants of
a node. First, we mark the fully explored edges in a bit vector BV (dynamically) such
that we do not need to store their exploration counters. Further, we do not represent
nv for a node v with parent u until nu got fully explored. Now let us focus on the rest
of the nodes. We classify each node v based on the number of descendants of v, and
select an explicit representation if this number is large, otherwise we maintain nv im-
plicitly. The classification of v is based on the following definitions borrow from [20]:
If v’s subtree has at most lg n nodes, we call v micro. If v is not a micro node, but
all its children are micro, then we call v a jump node. So a subtree rooted at a jump
node contains at least lg n nodes, and the subtrees rooted at different jump nodes
are pairwise disjoint (they do not share a node). This means that there are at most
n/ lg n jump nodes. We mark each jump node v in a bit vector BJ, and store nv in
an integer array J . The array J has at most n/ lg n entries and therefore consumes
at most (n/ lg n) lg n = n bits. Let us consider a node v that is not micro and whose
in-going edge did get partially explored. If v is a jump node, then we look-up nv in J .
Otherwise, v has at least one descendant that is a jump node. Since v’s in-going edge
is not fully explored, the exploration counters of all edges in the subtree rooted at v
are zero. So we can abuse an exploration counter of a jump node belonging to this
subtree to represent nv until nv gets full. For instance, we can always use the leftmost
jump node of v that can be accessed by BJ. select1(BJ. rank1(v) + 1).

The exploration counters of the micro nodes are maintained implicitly by a bit
vector marking visited corresponding leaves: During a pass, when exploring a new
factor on the in-going edge of a micro node v, we mark the currently accessed leaf
(which will always be a leaf in the subtree rooted at v) in a bit vector BC. By applying
popcount to BC, we can count how many leaves had been accessed belonging to the
subtree rooted at v. This number is exactly nv. We can compute nv in constant time,
since there are at most lg n leaves in the subtree rooted at v. After fully exploring the
edge of v, we clear the area in BC belonging to the leaves contained in v’s subtree.
By doing so, the counter nu of every micro child u of v is reset.

Dividing suffix tree nodes in explored/unexplored and not-micro/micro creates
two boundaries, as illustrated in Figure 5.

Applying this procedure during a pass, we can determine the fully explored edges
and collect nv of each node v whose in-going edge got partially explored (by the
definition of the jump nodes, and since we clear parts of BC after full exploration).

6.2 Streaming Variant

We do two passes:

Algorithm 4 Function find edge finds the first edge (u, v) on the path from the root
to ` that is not yet fully explored.

Require: leaf `
1: v ← root
2: d← 0 {node depth}
3: repeat {find first edge on path from root to ` that is not fully explored}
4: incr d
5: v ← level anc(`, d)
6: until v = ` or BV[v] = 0
7: u← parent(v) {new factor is on the edge (u, v)}
8: return (u, v)

u

v

Figure 5: Our LZ78 algorithm divides ST by two boundaries: Nodes having at least lg n
nodes in their subtree (hatched upper cone), and (partially) explored edges belonging to the
LZ trie (colored upper cone). The nodes whose exploration counters are stored implicitly
are directly below the fringe of the LZ trie. During the passes, we always search for an ST
edge (u, v) crossing the boundary of the already discovered part.

(a) create BW so we can address the witnesses (see Algorithm 6), and

(b) stream the output by using a helper array mapping witness ids to factor in-
dices (see Algorithm 7).

We explain the passes in detail, after introducing their commonality and a helpful
lemma:

LZ78 Passes. Since referencing factors address factor indices (z options) instead
of text positions (n options), we are only interested in the leaves corresponding to
a factor. Starting with smallest leaf, which corresponds to the first factor, we can
compute the length of the factor corresponding to the currently accessed leaf so that
we know the distance (in text positions) to the next corresponding leaf.

Lemma 6.1 ([12, Lemma 4]). Let e = (u, v) be an ST edge, and u the parent of the
node v. Then nv ≤ min (c(e), s), where s is the number of leaves of the subtree rooted
at v.

Pass (a). The main goal of this pass is to determine the topology of the LZ
trie with respect to the superimposition. Starting with an LZ trie consisting only of
the root, we build the LZ trie successively by filling up the exploration counters. If
the exploration counter of an edge is filled up, we mark its in-going node in the bit
vector BV.

Algorithm 5 Function explore post-increments nv, returning its previous value.

Ensure: BJ[v]← 1 for every jump node v
Ensure: J ← integer array with n/ lg n entries, i.e., n bits.
Require: node v, s = str depth(v)

1: if v is a jump node then
2: m← J [BJ. rank1(v)]
3: else if v is not micro then
4: m← J [BJ. select1(BJ. rank1(v) + 1)]
5: else
6: m← popcount(BC[lmost leaf(v) , rmost leaf(v)])
7: end if
8: Let `, `′ be two leaf whose LCA is v
9: ` = (next leaf)m+s+1[`]

10: `′ = (next leaf)m+s+1[`′]
11: if head(`) 6= head(`′) then {edge (u, v) now fully explored}
12: BV[v]← 1 {set v as fully explored}
13: BC.clear[lmost leaf(v), rmost leaf(v)] {reset the counting so that we can work

with the children of v}
14: else if v is micro then {edge (u, v) has at least one character unexplored}
15: BC[`]← 1 {increment ne for the micro node v}
16: end if
17: if BJ[v] = 1 then {increment ne for the jump node v}
18: incr J [BJ. rank1(v)]
19: else if v is not micro then
20: incr J [BJ. select1(BJ. rank1(v) + 1)]
21: end if
22: return m

Assume that we visit a leaf `. We want to find the first edge on the path from
root to ` that is either unexplored or partially explored. By invoking level ancestor
queries, we traverse from the root to an edge e = (u, v), where nv < c(e) and u is
(already) represented as a node in the LZ trie. If v is an internal node with nv = 0,
we make v a witness by marking v in BW (the idea is that the edge e is superimposed
by some LZ nodes).

Regardless that, we add a new factor by incrementing nv. If the edge e now got
fully explored, we additionally mark v in BV. Whether the edge e got fully explored,
can be determined with the next leaf function: First, if v is a leaf, the edge (u, v) can
be explored at most once (by Lemma 6.1). Otherwise, we choose a leaf `′ such that
the LCA of ` and `′ is v. The idea is that str depth(v) is the length of the longest
common prefix of two suffixes corresponding to two leaves (e.g., ` and `′) having v
as their LCA. So we can compare the m-th character of both respective suffixes
by applying next leaf m-times on both leaves before using the head-function. With
m := str depth(u) + nv + 1 we can check whether the edge (u, v) got fully explored.
Additionally, we can determine the label of the next corresponding factor. Although

Algorithm 6 LZ78 Pass (a)

1: `← smallest leaf
2: repeat
3: (u, v)← find edge(`)
4: s← str depth(u)
5: if v = ` then
6: ` = (next leaf)s+1[`]
7: continue
8: end if
9: BW[v]← 1 {v is a witness}

10: m← explore(v, `) {m← nv;nv ← nv + 1}
11: ` = (next leaf)m+s+1(`)
12: until ` = smallest leaf

we apply next leaf as many times as the factor length, we still get linear time overall,
because concatenating all factors yields the text T .

Pass (b). This pass is nearly identical to Pass (a). We explore the LZ trie
nodes again, but this time we already have the witnesses. So we keep BW, but reset
the exploration counters and BV.

For finding the referred indices, we create an array W with zW lg z bits to store a
factor index for each witness id. The witness ids are determined by BW. The factor
indices are given by a counter variable tracking the number of visited corresponding
leaves, i.e., the number of processed factors.

Assume that we visit the leaf ` corresponding to the x-th factor, i.e., ` is the
x-th visited corresponding leaf. Again by level ancestor queries, we determine the
edge e = (u, v) on the path from the root to `, where u is in BV and v not.

If v is an internal node, then v is a witness. In this case, we retrieve y :=
W [BW. rank1(v)]. If y is defined, then the x-th factor refers to the y-th factor.

If y is undefined (i.e., its value has not yet been initialized), or if v is a leaf (i.e.,
v = `), then the x-th factor is either a fresh factor if v is a child of root, or the x-th
factor refers to W [BW. rank1(parent(v))].

If v is an internal node, we set W [Bw. rank1(v)] ← x, and increment nv (thus
exploring the LZ trie like before). Like before, when v’s in-going edge gets fully
explored, we mark v in BV.

So far, we can output the referred index of the x-th factor, if it exists. We get
the new character of the x-th factor (i.e., the last letter of the factor) by accessing
the leaf `′ that is (with respect to text order) before the leaf corresponding to the
(x+ 1)-th factor; then we can output the new character by head(`′).

6.3 Explicitly storing the LZ trie

Our goal is to represent the LZ78 factorization by three data structures: The first one
is a balanced parenthesis sequence storing the LZ trie topology. It is accompanied by
an array storing the factor index and an array storing the ending character, for each
LZ node. We can build the balanced parenthesis sequence directly after Pass (a): To

Algorithm 7 LZ78 Pass (b)

1: BW.add rank support
2: zW ← BW. rank1(n)
3: W ← array of size zW lg z bits
4: x← 0
5: `← smallest leaf
6: repeat
7: (u, v)← find edge(`)
8: s← str depth(u)
9: if BW[v] = 0 then

10: if v is a child of root then
11: the x-th factor is a fresh factor
12: else
13: the x-th factor refers to W [BW. rank1(parent(`))]
14: end if
15: else
16: the x-th factor refers to W [BW. rank1(v)]
17: end if
18: incr x
19: if v = ` then
20: ` = (next leaf)s+1[`]
21: continue
22: end if
23: m← explore(v, `) {m← nv;nv ← nv + 1}
24: ` = (next leaf)m+s(`)
25: output character head(`) belonging to the (x− 1)-th factor
26: ` = next leaf(`)
27: until ` = smallest leaf

this end, we traverse the suffix tree with a depth first search starting at the root.
While traversing ST we create c(e) LZ nodes for each edge e = (u, v) if v belongs
to BV, or create nv LZ nodes otherwise. We can retrieve the value of nv or c(e)
because of the following: For the former, we know the exploration counters of all
partial discovered edges during Pass (a). For the latter, we can recompute the c(·)
values of the fully discovered edges with str depth without worsening the linear time
bound.

During the traversal of ST we can build the z lg σ-bits array storing the ending
characters: Assume that we create the LZ nodes u′ and v′ on the ST edge (u, v),
where u′ is the parent of v′. We can obtain the label of the edge (u′, v′) consisting of
a character by invoking next leaf and head: Given that s is the string depth of v′ in
the LZ trie, applying next leaf s times to a leaf ` in the subtree rooted at v returns
a leaf `′ whose head(`′)-value is the label in question.

Overall, we can compute the LZ trie in O(n) time, storing its BP representation
along with the edge labels in 2z + z lg σ + o(z) bits.

1

15
$

3

a

14
$

5

a

6

a

b

a

7

a

b

a

$

1

b

a

a

a

b

a

a

b

a

$

9

b

a

11
$

8

a

b

a

$

2

b

a

a

a

b

a

a

b

a

$

13

b

a

12
$

15

a

5

a

b

a

a

b

a

$

9

b

a

$

3

b

a

a

a

b

a

a

b

a

$

19

b

a

13
$

21

a

6

a

b

a

a

b

a

$

10

b

a

$

4

b

a

a

a

b

a

a

b

a

$

1

3

5

13

19

15

SA 15 14 7 1 11 8 2 12 5 9 3 13 6 10 4

BC 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

pre-order 1 3 5 6 9 13 15 19 21

BV 0 1 1 0 0 1 0 1 0

BW 0 1 1 1 0 1 0 1 0

Figure 6: We can get the suffix trie (conceptually) by exchanging every ST edge e with
c(e) − 1 new suffix trie nodes superimposing e. These new suffix trie nodes are the small
rounded nodes in the depicted tree. They represent the implicit suffix trie nodes, while
the remaining ST nodes represent the explicit suffix trie nodes. Dark colored and hatched
nodes represent the nodes of the LZ78 trie. We show BC, BV, and BW after Pass (a).

Annotating the LZ nodes with the factor indices cannot be done in linear time
without a pre-computation step, which is topic of this paragraph. Here, we want to
compute a mapping between suffix tree nodes and LZ nodes such that we can access
the LZ node corresponding to the currently explored factor during a pass in constant
time. To this end we create a bit vector BU marking suffix tree nodes and a bit
vector BE marking LZ nodes. The former marks all suffix tree nodes v with nv > 0,
the latter marks all LZ trie children of every explicit LZ node. The last thing we do is
adding a rank -support to BU, and a select-support to BE. Now assume that there is a
suffix tree node v marked in BU. The LZ trie contains a node v′ marked with BE such
that v′ = BE. select1(BU. rank1(v)) (conceptually BE. rank1(v′) = BU. rank1(v)). The
node v′ has the following properties: First, the LZ trie parent of v′ is an explicit LZ
node that is represented by the suffix tree parent of v (v has a parent since the root is
not marked in BU). Second, there are nv−1 nodes below v′ forming a unary tree (also
called linear graph or path graph). Due to the balanced parenthesis representation
of the LZ trie, the query v′. descendant(j) returning the descendant of v′ at depth
depth(v′) + j for 0 ≤ j ≤ nv − 1 can be answered in constant time.

Now we explain the final pass. We exchange Pass (b) with

(c) store the factor index and the ending character of each LZ node in an array W .

Pass (c). We create an array W with z lg z bits to store a factor index. We
recompute BV and the exploration counters. We count the current factor index with a

variable x. Assume that we visit the leaf ` corresponding to the x-th factor. By level
ancestor queries, we find the edge e = (u, v) in ST on the path from root to `, where u
belongs to BV, but v not. We set W [BE. select1(BU. rank1(u)). descendant(nv)]← x.

Acknowledgements

We thank Veli Mäkinen for outlining us the differences between [6] and [8], and
Johannes Fischer for some helpful comments. Most parts of this work was done during
a visit at the graduate school of information science and technology of the university
of Tokyo, supported by the Studienwerk für Deutsch-Japanischen Kulturaustausch in
NRW e.V.

References

[1] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Compression,”
IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 337–343, 1977.

[2] ——, “Compression of Individual Sequences via Variable-Rate Coding,” IEEE
Transactions on Information Theory, vol. 24, no. 5, pp. 530–536, 1978.

[3] D. Kosolobov, “Faster Lightweight Lempel-Ziv Parsing,” in MFCS. Springer
Berlin Heidelberg, 2015, vol. 9235, pp. 432–444.

[4] J. Kärkkäinen, D. Kempa, and S. J. Puglisi, “Lightweight Lempel-Ziv Parsing,”
in Experimental Algorithms, 2013, pp. 139–150.

[5] D. Belazzougui and S. J. Puglisi, “Range Predecessor and Lempel-Ziv Parsing,”
SODA, pp. 2053–2071, 2016.

[6] D. Belazzougui, “Linear Time Construction of Compressed Text Indices in Com-
pact Space,” in STOC. ACM, 2014, pp. 148–193.

[7] M. Burrows and D. J. Wheeler, “A Block-sorting Lossless Data Compression
Algorithm,” Digital Equipment Corporation, Tech. Rep., 1994.

[8] D. Belazzougui, “Linear time construction of compressed text indices in compact
space,” ArXiv CoRR, vol. abs/1401.0936, 2015.

[9] J. Fischer and P. Gawrychowski, “Alphabet-Dependent String Searching with
Wexponential Search Trees,” in CPM, 2015, pp. 160–171.

[10] J. Jansson, K. Sadakane, and W. Sung, “Linked Dynamic Tries with Applications
to LZ-Compression in Sublinear Time and Space,” Algorithmica, vol. 71, no. 4,
pp. 969–988, 2015.

[11] Y. Nakashima, T. I, S. Inenaga, H. Bannai, and M. Takeda, “Constructing LZ78
Tries and Position Heaps in Linear Time for Large Alphabets,” Inform. Process.
Lett., vol. 115, no. 9, pp. 655 – 659, 2015.

[12] J. Fischer, T. I, and D. Köppl, “Lempel-Ziv Computation in Small Space (LZ-
CISS),” in CPM, 2015, pp. 172–184.

[13] J. I. Munro, “Tables,” in Proc. FSTTCS, ser. LNCS, vol. 1180. Springer, 1996,
pp. 37–42.

[14] R. Raman, V. Raman, and S. R. Satti, “Succinct Indexable Dictionaries with
Applications to Encoding K-ary Trees, Prefix Sums and Multisets,” ACM Trans.
Algorithms, vol. 3, no. 4, 2007.

[15] G. Franceschini, S. Muthukrishnan, and M. Pǎtraşcu, “Radix Sorting with No
Extra Space,” in ESA. Springer, 2007, vol. 4698, pp. 194–205.

[16] R. Grossi and J. S. Vitter, “Compressed Suffix Arrays and Suffix Trees with Ap-
plications to Text Indexing and String Matching,” SIAM Journal on Computing,
vol. 35, no. 2, pp. 378–407, 2005.

[17] G. J. Jacobson, “Space-efficient static trees and graphs,” in Proc. FOCS. IEEE
Computer Society, 1989, pp. 549–554.

[18] K. Sadakane, “Compressed Suffix Trees with Full Functionality,” Theory of Com-
puting Systems, vol. 41, no. 4, pp. 589–607, 2007.

[19] G. Navarro and K. Sadakane, “Fully Functional Static and Dynamic Succinct
Trees,” ACM Trans. Algorithms, vol. 10, no. 3, pp. 16:1–16:39, 2014.

[20] K. Sadakane and R. Grossi, “Squeezing succinct data structures into entropy
bounds,” in Proc. SODA. ACM/SIAM, 2006, pp. 1230–1239.

A Appendix

A.1 Overview of used data structures

While describing both factorization algorithms, we used several data structures,
among others bit vectors, some with rank or select-support, to achieve the small
space bounds. We give here an overview (see also Table 1). We denote bit vectors
with Bα for some letter α.

We use for both factorizations

• BW marking all witness nodes,

• the array W mapping witness ids to

– (LZ77) text positions, or

– (LZ78) factor indices.

In LZ77 we use

• BV marking visited nodes, and

In LZ78 we use

• BC marking corresponding leaves (is used as a counter),

• BJ marking jump nodes

• BV marking suffix tree nodes represented in the LZ trie (their ingoing edges got
fully explored),

• the array J storing n/ lg n numbers binary,

• BE marking explicit LZ trie nodes, and

• BU as a copy of BV.

Common

Name bits rank select compress

BW H0(n, z)n+ o(n) © ©

ST 4n+ o(n)

ψ O(n lg σ)

LZ77

Name bits (a) (b) rank select compress

BV © ©

W z lg n © ©

LZ78

Name bits (a) (b) (c) rank select

BC © © ©

BJ n+ o(n) © © © © ©

BV © © ©

BE z + o(z) © ©

BU ©

J © © ©

W z lg z © © ©

Table 1: Additional data structures used while computing a LZ77/78 factorization. The
letters written in brackets represent a pass (e.g., (a) refers to Pass (a)). The number of bits
is omitted if it is exactly n. Circles symbolize that the data structure is used during a pass,
or that it is used with a rank or select structure, or that the data structure is compressible.

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Lempel-Ziv Factorization
	3.2 Suffix Tree

	4 Common Settings
	4.1 Scaffold of the Algorithms
	4.2 Loaded Data Structures in RAM

	5 LZ77
	5.1 Trade-Off Variant
	5.2 Classic LZ77 factorization

	6 LZ78
	6.1 Superimposition
	6.2 Streaming Variant
	6.3 Explicitly storing the LZ trie

	A Appendix
	A.1 Overview of used data structures

