
Improving Marlin’s Compression Ratio
with Partially Overlapping Codewords

Manuel Martinez∗, Kai Sandfort, Danny Dubé† and Joan Serra-Sagristà‡

∗Karlsruhe Institute of Technology †Université Laval
Karlsruhe, 76131, Germany Ville de Québec, Canada
manuel.martinez@kit.edu Danny.Dube@ift.ulaval.ca

‡Universitat Autònoma de Barcelona
Cerdanyola del Vallès, 08193, Spain

Joan.Serra@uab.cat

Abstract

Marlin [1] is a Variable-to-Fixed (VF) codec optimized for decoding speed. To achieve its
speed, Marlin does not encode the current state of the input source, penalyzing compression
ratio. In this paper we address this penalty by partially encoding the current state of the
input in the lower bits of the codeword. Those bits select which chapter in the dictionary
must be used to decode the next codeword. Each chapter is specialized for a subset of states,
improving compression ratio. At the same time, we use one victim chapter to encode all rare
symbols, increasing the efficiency of the rest of them. The decoding algorithm remains the
same, only now codewords have overlapping bits. Mapping techniques allow us to combine
common chapters and thus keep an efficient use of the L1 cache. We evaluate our approach
with both synthetic and real data sets, and show significant improvements in low entropy
sources, where compression efficiency can improve from 93.9% to 98.6%.

1 Introduction

In High Throughput (HT) compression, compression efficiency is secondary to coding
speed. Current lossless HT algorithms are based on LZ77 [2], and there is active
research investigating novel ways to find matches in the LZ77 dictionary that offer a
compelling tradeoff between coding speed and efficiency [3, 4]. Snappy [5], LZ4 [6],
and LZO [7] are the popular implementations of this trend. In HT, the entropy stage
from LZ77 is either dropped, e.g., as in Snappy and LZ4, or greatly simplified, e.g.,
as employed in LZO and Gipfeli [8]. This is because entropy codecs like Huffman [9],
arithmetic [10] and range encoding [11] are considered too slow for HT.

Of all entropy codec variations, VF codes have the ability of being decompressed
with a branchless loop and do not require expensive bit mangling operations. For
this reason, they are promising candidates for HT coding. However, there are two
more factors that affect their decoding speed. First, the decoding process must be
efficiently pipelined. This is achieved by banning temporal dependencies between

JSS acknowledges support from Spanish Ministry of Economy and Competitiveness (MINE-
CO) and European Regional Development Fund (FEDER) under Grant TIN2015-71126-R, and
from Catalan Government under Grant 2014SGR-691. This work is also partially supported by the
German Federal Ministry of Education and Research (BMBF) within the KonsensOP project.

words, i.e., a codeword must always represent the same dictionary word. Second, the
size of the dictionary should fit into the L1 cache of the CPU.

For optimal codecs these two requirements are mutually exclusive. For one, Tun-
stall [12] proposed VF dictionaries can be pipelined, but the dictionary must be large
to be efficient. Opposed to this, plurally parsable dictionaries [13, 14, 15, 16] are
compact, but have temporal dependencies and thus can not be pipelined.

In 2017, Marlin [1] was introduced. Marlin is a VF codec based on plurally
parsable dictionaries that achieves compelling compression ratios while being faster
than most HT codecs. Marlin leverages the compactness of plurally parsable dic-
tionaries to make them fit into the L1 cache, but eschews temporal dependencies
between codewords to achieve fast decoding speeds, sacrificing compression ratio.

In this paper, we address this limitation by proposing a method to partially encode
the dependencies between codewords named Partially Overlapping Codewords.

Usually, the bits used to encode the codewords merely act as indexes, and are
arbitrarily chosen. This makes sense as one can always store all necessary information
related to a codeword in a lookup table, and the codeword just needs to point to the
corresponding entry. The cost of this technique is an extra memory access, which we
must avoid to achieve state-of-the-art performance.

We suggest to sort the table indexes in a way that the least significant bits of
the codeword are used to communicate dependency information between consecutive
words, and thus the next codeword will be retrieved from a better fitting section of
the dictionary, which we name chapter.

By storing the dependency information in the compressed message instead of using
a lookup table, we are able to decode the message using a single memory access per
codeword. More importantly, the process of decoding a codeword is stateless, hence
decoding one codeword does not depend on the decoding process of the previous one,
and thus it can be efficiently pipelined.

By using the least significant bits of the previous codeword to carry information
about the chapter, the decoder sees the stream as a concatenation of independent
codewords, just that there are a few bits overlapping between codewords, as seen in
Fig. 1, hence we name this technique Partially Overlapping Codewords. The decoding
algorithm which we used in [1] can be straightforwardly modified to cope with the
overlap without any speed penalty.

Our technique allows Marlin to improve its compression ratio, but storing several
chapters makes the dictionary larger, and thus slower, than in the original Marlin.
However, we keep the dictionary small by mapping identical chapters into the same
physical memory range using the Translation Lookaside Buffer of the CPU.

We have evaluated our technique with both synthetic and real data sets, where it
shows a significant improvement in compression efficiency (i.e., the ratio between the
Shannon entropy [17] of the source and the mean length of the compressed message).
This improvement is particularly visible for low entropy sources, where we can reach
a compression efficiency of 98.6% while the original Marlin can only reach 93.9%.

As a result, the overlapping codewords technique allows to improve the compres-
sion efficiency of Marlin at a small speed penalty, thus making it a better HT entropy
codec.

2 Proposed Code Format

The VF codec presented has two unique characteristics. To illustrate them we describe
the proposed code format as well as the decoding process. As with most VF codecs,
we have a dictionary of 2N words known to both the encoder and decoder, where
N is the size of the codewords in bits. A normal VF codec would consume N bits
from the compressed feed, find the corresponding word in the dictionary, and emit
such word. Conversely, our method peeks N bits from the compressed feed and emits
the corresponding word, but it only consumes N −O bits from the compressed feed.
Here, O represents the number of overlapping bits between codewords. For the case
O = 0, the format is identical to that of the original Marlin [1].

The overlap is the first unique characteristic of this codec. The second unique
characteristic is that, in some cases, more than one codeword may be required to
encode a single input symbol (i.e., the dictionary may contain empty words). An
example of this happening can be seen on the encoding of the symbol g in Fig. 1.

Chapter 0:
a a ∗ 2 (0000)
∗ ∗ ∗ 0 (0001)
a b ∗ 2 (0010)
b ∗ ∗ 1 (0011)
b a ∗ 2 (0100)
c ∗ ∗ 1 (0101)
c a ∗ 2 (0110)
a ∗ ∗ 1 (0111)

Chapter 1:
c ∗ ∗ 1 (1000)
∗ ∗ ∗ 0 (1001)
b ∗ ∗ 1 (1010)
f ∗ ∗ 1 (1011)
d ∗ ∗ 1 (1100)
g ∗ ∗ 1 (1101)
e ∗ ∗ 1 (1110)
a ∗ ∗ 1 (1111)

(a) Decoding Table

Decoding 1000110001101:
c ∗ ∗ 1 ∗ ∗ ∗ · · ·

Decoding 1000110001101:
c c a ∗ 2 ∗ ∗ · · ·

Decoding 1000110001101:
c c a ∗ ∗ ∗ 0 · · ·

Decoding 1000110001101:
c c a g ∗ ∗ 1 · · ·

(b) Decoding Process

Figure 1: Decoding example for the message 000110001101 using the table (a) where the
word length is stored in the last byte. We use a word overlap of 1 bit, hence the dictionary is
split in 21 chapters. The grayed bit corresponds to the initialization, and points to chapter
1. At each iteration, a 4-bit codeword is read and its corresponding table entry is copied to
the output stream, while the input advances 3 bits. Empty words are allowed, thus not all
chapters are required to contain all symbols.

3 Encoding Technique

The compression format allows for considerable freedom of how to create and encode
the dictionary. We suggest an incremental technique to generate the dictionary that
we have shown empirically to outperform the state of the art.

We employ the following formulation: codewords have a size of N bits, K is the
number of non-overlapping bits of the codeword, and O is the number of overlapping
bits, hence K+O = N . The dictionary, denoted byW , has 2N entries, and we divide
it into 2O consecutive chapters, Wc with running index c, of 2K words each.

By this formulation, each codeword selects uniquely a chapter in which the next
codeword will be decoded.

3.1 Chapter generation

To generate the chapters, we extend the algorithm used to create dictionaries in [1].
We define A = {a1, a2, · · · , aN} as an alphabet of input symbols sorted in order of
non-increasing probability (i.e., P (an) ≥ P (an+1),∀n). We generate a chapter Wc in
the form of a tree where each node corresponds to an input symbol.

We build Wc as follows: First, we initialize the tree with a leaf for each input
symbol. Then, while |Wc| is smaller than 2K , we add a single child to the most prob-
able node. The new node will contain the symbol ai+1 where i is the current number
of leaves of the parent node. Each node with a non-zero probability corresponds to
a word in Wc, and for practical reasons the empty word is always included, ensuring
that each chapter forms an exhaustive code.

The code defined by a chapter needs not to be prefix free and, as such, it is said
to be plurally parsable. As a consequence, the compression process is not steady, and
the input can be left in one of N − 1 possible states in S = s1, s2, · · · , sN−1. On si,
words can not start with symbols with an index smaller than i.

The probability of a word w being selected given that we are in the state si and
in the chapter Wc is computed by

P (w | si ∩Wc) =
1

ΣN
n=iP (an)

·
|w|∏
n=1

P (wn) ·
N∑

n=1+ch(w)

P (an),

where wn is the n-th symbol of w, and ch(w) is the number of children of the last node
of w. In other words, P (· | si ∩Wc) is the steady probability of the input being in the
state si and the compressed feed being in the chapterWc. Thus, the non-conditioned
probability of w equals

Pc(w) =
N−1∑
i=1

P (si ∩Wc) · P (w | si ∩Wc). (1)

3.2 Dictionary generation

As previously stated, the dictionaryW is built by concatenating 2O consecutive chap-
ters Wc. We start with a naive initialization for the state/chapter probabilities,
P̂0(si ∩ Wc), that we will then refine iteratively. In all tested cases, the proposed
method converges in just a few iterations and is extremely robust to different initial-
ization conditions, thus we choose a simple initialization:

P̂0(si ∩Wc) =

{
1/2O if i = 1

0 if i > 1

Using this initialization we create 2O chapters, arrange the words in some partic-
ular order, and then concatenate the chapters to form the dictionary.

Given a dictionary, we can calculate the steady probability of each state using a
Markov model, as described in [1], but due to the fast convergence rate of the process
this is unnecessary. We simply estimate P̂l(w) for each w in W using Eqn. (1).

Then, we estimate the state/chapter probabilities iteratively by:

P̂l+1(si ∩Wc) =
w∈W∑

ch(w)=i
ov(w)=c

P̂l(w)

where ch(w) is again the number of children of the last node of w, and ov(w) is the
number represented by the O lower bits of the codeword corresponding to w.

3.3 Specialized chapters

A main source of inefficiency in the original Marlin is that one dictionary must be
able of encoding the input, independently of its current state. As an example, let us
suppose a single chapter dictionary where half of the words start with the symbol a1.
Now imagine that the source is currently in state s2. As we know that the following
word can not begin with a1, the codeword emitted will be 1 bit larger than necessary.

By having overlapping codewords, we have several chapters, and we can specialize
each chapter towards a specific state. Unlike previous multi-dictionary approaches [13,
14, 15, 16], we can not match perfectly one chapter to each state. This is because all
chapters must have the same number of words, but the number of words that end in
any particular state is variable.

The problem of optimally matching words to chapters is non-trivial, therefore we
suggest a heuristic matching strategy. We build the chapters as described previously,
and, to manipulate their indexes, we sort their words in ascending order by state, and
within the words that belong to the same state, we sort them in descending order of
probability. Then, we arrange the codewords such that the first words (lower state,
higher probability) are assigned to the first chapter, the following words to the second
chapter, and so on. As a result, it happens often that the first chapters will always
receive the input in the s1 state, while the last chapters would rarely need to represent
the first symbols of the alphabet at the beginning of the word. An example of the
distribution in specialized chapters is given in Fig. 2.

3.4 The victim chapter

The victim chapter is the second method we use to take advantage of having multiple
dictionaries. The victim chapter is the only chapter that is designed to provide a non-
empty match with the input no matter its contents. Thanks to the victim chapter, the
other chapters do not waste words on symbols that have little chances of appearing.

If the current chapter can not produce a non-empty match for the input, it will
emit the code for the empty word whose overlap bits reference the victim chapter.
As a result, rare symbols will require at most two codewords to be encoded.

We select as a victim the least probable chapter (i.e., the one that already contains
the rarest words), this way we maximize the benefit of the other chapters. While
building non-victim chapters, words whose probability is below a fixed threshold do
not count towards the word limit of the chapter, and are discarded. The compression
efficiency is not very sensitive to this threshold, and we use a value of Pth = 0.01 ·2−K .

K = 3. O = 2. A = {a, b, c, d, e, f, g}. P (A) =
{

0.4998, 0.2499, 0.2499, 10−4, 10−4, 10−4, 10−4
}

.

Initialization:

×10−3 W1 W2 W3 W4

s1 250 250 250 250
s2 0 0 0 0
s3 0 0 0 0
· · · 0 0 0 0

(a) State Probabilities

∅→ s1,W1

b→ s1,W2

d→ s1,W3

f → s1,W4

a→ s1,W1

c→ s1,W2

e→ s1,W3

g → s1,W4

(b) W1

∅→ s1,W1

ab→ s1,W2

ca→ s1,W3

c→ s2,W4

aa→ s1,W1

ba→ s1,W2

b→ s2,W3

a→ s3,W4

(c) W2

∅→ s1,W1

ab→ s1,W2

ca→ s1,W3

c→ s2,W4

aa→ s1,W1

ba→ s1,W2

b→ s2,W3

a→ s3,W4

(d) W3

∅→ s1,W1

ab→ s1,W2

ca→ s1,W3

c→ s2,W4

aa→ s1,W1

ba→ s1,W2

b→ s2,W3

a→ s3,W4

(e) W4

First (and final) iteration:

×10−3 W1 W2 W3 W4

s1 312 312 94 0
s2 0 0 94 94
s3 0 0 0 94
· · · 0 0 0 0

(f) State Probabilities

aa→ s1,W1

ba→ s1,W2

∅→ s1,W3

c→ s2,W4

ab→ s1,W1

ca→ s1,W2

b→ s2,W3

a→ s3,W4

(g) W1

aa→ s1,W1

ba→ s1,W2

∅→ s1,W3

c→ s2,W4

ab→ s1,W1

ca→ s1,W2

b→ s2,W3

a→ s3,W4

(h) W2

b→ s1,W1

a→ s1,W2

∅→ s1,W3

f → s1,W4

c→ s1,W1

d→ s1,W2

e→ s1,W3

g → s1,W4

(i) W3

cb→ s1,W1

caa→ s1,W2

∅→ s1,W3

b→ s2,W4

cc→ s1,W1

ba→ s1,W2

cab→ s1,W3

ca→ s3,W4

(j) W4

Figure 2: Naive state probabilities (a) are used to create the initial chapters (b-e). Then
state probability estimates are updated (f), and new chapters are created (g-j). Words are
represented pointing to the state they leave the input, and the next chapter. (b) and (i) are
the victim chapters. Words leaving the input in state 2 point to chapters 3 or 4. Words
leaving the input in state 3 point to chapter 4. No words leaving the input in state 1 point
to chapter 4, therefore chapter 4 has no words starting with ’a’. (g) and (h) are the same.

3.5 Leveraging repeated chapters

The main drawback of using overlap is that the dictionary is larger than if no overlap
were used, and larger means slower as a smaller portion of it will fit into the L1 cache.
Hence the question whether it is better to use codewords with overlapping or a single
large dictionary. The simple answer is that it depends: low entropy sources benefit
significantly from overlapping, but high entropy sources prefer one large dictionary.

However, simply comparing dictionary sizes is not fair. In a single large dictionary,
all words are different. On the other hand, in an overlapping dictionary organized in
chapters, many of the words are repeated. In fact, it often occurs that entire chapters
are just the same. We can leverage this fact to map different chapters to the same
physical memory addresses. This mapping can be performed for free by utilizing the
Translation Lookaside Buffer (TLB) integrated in all modern CPUs, as seen in Fig. 3.
However, the size of the TLB (typically 128 entries) limits the number of chapters
and thus the amount of overlap that can be used in practical terms.

In Fig. 4 we can see how overlapping has better efficiency per word for low entropy
sources, while it is as efficient as a large dictionary for high entropy sources.

W1 W2 W3 W4

W1, W2 W3 W4

Memory Caches

W1, W2 W3 W4

TLB

Translation
Lookaside

Buffer

Virtual Address Space:

Physical Adress Space:

Physical Memory:

Figure 3: Chapters W1 and W2 in Fig. 2 are the same and they can be stored in the same
region of physical memory. Marlin sees the entire dictionary as a single table with all
chapters concatenated (in the virtual address space). The Translation Lookaside Buffer
(TLB) is a hardware component in CPUs that translates virtual addresses into physical
addresses where the data is stored in memory, and it can be used to provide deduplication at
no additional cost. As the TLB acts before the memory caches, the deduplication increases
the effectiveness of the L1 cache.

29 210 211 212 213 214 215 216

80

90

100

Unique Words in W

E
ffi

ci
en

cy
(%

)

Baseline
O = 1
O = 2
O = 3
O = 4

(a) Efficiency vs. Size. Laplacian. H = 25%.

29 210 211 212 213 214 215 216

80

90

100

Unique Words in W

E
ffi

ci
en

cy
(%

)

Baseline
O = 1
O = 2
O = 3
O = 4

(b) Efficiency vs. Size. Laplacian. H = 75%.

Figure 4: Low entropy sources benefit more from overlapping than high entropy sources.
However, compared to having a single large dictionary, overlapping never wastes space.

4 Evaluation

We implemented Marlin using the presented overlapping codewords approach, and
the code is made publicly available1. Evaluation is performed on a i5-6600K CPU at
3.5GHz with 64GB of DDR4-2133 RAM running Ubuntu 16.04 and compiled using
GCC v5.4.0 with the -O3 flag. To ensure reproducible performance measurements,
we perform each test once without measuring it, and then we test it again as many
times as possible during (at least) one second and we report the average time per
test. Standard deviation is not significant (σ < 1%). Unless stated otherwise, the
test data blobs are 220 symbols from a 8 bit Laplacian source with an entropy of 50%.

Our main evaluation metric is the compression efficiency defined as the ratio
between the information entropy of the source and the average bit rate achieved:
ηX = H(X)/ABR(X). To evaluate coding throughput we use the unit GiB/s.

1Git repository: https://github.com/MartinezTorres/marlin (branch:dcc2018)

We suggest to use K = 12. This value hits a double sweet spot, as |W| = 212 is
small enough for the entire dictionary to fit into the L1 cache, and the least common
multiple between 12 bits and 1 byte is just 3 bytes, allowing us to unroll the entire
decoding loop in a branch-less fashion. Therefore, K = 12 is almost twice as fast when
compared to other values of K, as seen in Fig. 5a. Regarding overlap, we recommend
O = 4, as larger values affect the decoding throughput, as seen in Fig. 5b.

80 85 90 95 100
0

2

4

6

9 10 11

12

16 18

Efficiency (%)

D
ec

od
in

g
S

pe
ed

(G
iB

/
s)

(a) Speed vs. Efficiency. Baseline.

92 94 96 98 100
0

2

4

6

Efficiency (%)

D
ec

od
in

g
S

pe
ed

G
iB

/
s

Baseline
Overlap with TLB
Overlap w/o TLB

(b) Speed vs. Efficiency. Impact of TLB.

Figure 5: Laplacian source of H = 50%. Left: Speed vs. Efficiency curve of non-overlapping
Marlin for different values of K. K = 12 is the sweet spot. Right: we show the performance
of Marlin with K = 12 and different values of overlapping (0 ≤ O ≤ 6). We see how TLB
based deduplication helps to obtain a faster operation.

4.1 Synthetic data results

In Fig. 6 we evaluate the two mechanisms we use to provide compression gains from
overlapping: the chapter specialization and the victim chapter.

0 20 40 60 80 100
85

90

95

100

Entropy (%)

E
ffi

ci
en

cy
(%

)

Baseline Victim only
Specialized only Victim + Specialized

(a) Efficiency on Laplacian distributions

0 20 40 60 80 100
85

90

95

100

Entropy (%)

E
ffi

ci
en

cy
(%

)

Baseline Victim only
Specialized only Victim + Specialized

(b) Efficiency on Gaussian distributions

Figure 6: K = 12 and O = 4. Efficiency of overlapping on Laplacian and Gaussian
distributions. The largest benefit comes from using specialized chapters.

Chapter specialization offers the largest performance improvement and allows to
raise the efficiency of Marlin above 95% for the lower entropy sources. The victim

chapter allows us not to waste words in rare symbols in all but one chapter, there-
fore, its benefit is proportional to the ratio between the number of rare symbols in
the alphabet and the chapter size. For K = 12 its effect is not pronounced, but
nevertheless it increases compression efficiency by approximately an extra 0.5%.

4.2 Real data results

Lossless image compression is a natural application for entropy codecs. We evaluate
the impact of overlapping codewords on the Rawzor [18] image set using blocks of
64× 64 pixels (4096 bytes) which are processed independently. The prediction model
uses the pixel above, and we compress the residuals. The Marlin compressor uses 11
predefined dictionaries, as explained in detail in [1].

We can see how Marlin compares to several state-of-the-art codecs in Fig. 7a. In
this dataset, naive Marlin [1] achieves a compression ratio of 1.937. Using an overlap
of 4 bits shifts the compression ratio to 1.980, which corresponds to an improvement
of 2.22%. As expected, the encoding speed drops from 114.6 MiB/s to 82.6 MiB/s
and is still faster than gzip [19] that encodes at 64.2 MiB/s. More importantly, the
decoding speed drops from 3171.52 MiB/s to 2597 MiB/s, and still Marlin remains
faster than Snappy [5], a reference HT algorithm that achieves 2220 MiB/s here.

This drop in decoding speed is larger than the one observed on our experiments
using synthetic data in Fig. 5b. This is because here we used a smaller block size (4
KiB vs. 1 MiB), thus the TLB initialization process that happens once per block has
a larger impact. We will investigate methods to alleviate this penalty.

In Fig. 7b we can see how using the TLB boosts the decoding speed by 24.7%.
We can also see how simply increasing the dictionary size to 216 instead of using
overlapping has a larger penalty in speed, while not achieving corresponding gains in
compression efficiency.

1 1.5 2 2.5
0

2

4

Rice

Snappy

Nibble

FSEGipfeli
Gzip

Lz4

Zstd
CharLS

Marlin(12,0)

Marlin(12,4)

Compression Ratio

D
ec

od
in

g
S

pe
ed

(G
iB

/
s)

(a) RAW Image Compression

1.9 1.95 2 2.05 2.1
0

1

2

3
Marlin(12,0)

Marlin(12,2)
Marlin(12,4)

Marlin(16,0)

Rice
FSEZstd

Marlin(12,4), no TLB

Compression Ratio

D
ec

od
in

g
S

pe
ed

(G
iB

/
s)

(b) RAW Image Compression (detail)

Figure 7: Evaluation on the Rawzor image compression dataset. Notation: Marlin(K,O).
Left: Overlap affects the throughput of Marlin, but it is still faster than Snappy, a reputable
HT algorithm. Right: Detailed view. Overlap provides better compression ratio and less
decoding speed penalty than using larger dictionaries. Note how the utilization of the TLB
creates a significant benefit for the throughput.

5 Conclusions

We have presented a method named Partially Overlapping Codewords that allows us
to encode information regarding the state of the input source in Variable-to-Fixed
codes within the codeword bits. Combined with plurally parsable dictionaries, whose
compression efficiency depends on knowing the current state of the input, it allows
us to create an entropy codec that is both efficient and fast. We have applied this
technique on the Marlin codec, boosting its efficiency in low entropy distributions up
to 98.6%, thus improving its performance as a High Throughput entropy codec.

References

[1] M. Martinez, M. Haurilet, R. Stiefelhagen, and J. Serra-Sagristà, “Marlin: A high
throughput variable-to-fixed codec using plurally parsable dictionaries,” in Proceedings
of Data Compression Conference. IEEE, 2017, pp. 161–170.

[2] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE
Transactions on Information Theory, vol. 23, no. 3, pp. 337–343, 1977.

[3] R. N. Williams, “An extremely fast Ziv-Lempel data compression algorithm,” in Pro-
ceedings of Data Compression Conference. IEEE, 1991, pp. 362–371.

[4] D. Harnik, E. Khaitzin, D. Sotnikov, and S. Taharlev, “A fast implementation of
Deflate,” in Proceedings of Data Compression Conference. IEEE, 2014, pp. 223–232.

[5] Z. Tarantov and S. Gunderson, “Snappy,” google.github.io/snappy, 2011, [Accessed
28-October-2017].

[6] Y. Collet, “LZ4,” lz4.github.io/lz4, 2011, [Accessed 28-October-2017].
[7] M. Oberhumer, “LZO: Lempel Zip Oberhumer,” www.oberhumer.com/opensource/lzo,

1996, [Accessed 28-October-2017].
[8] R. Lenhardt and J. Alakuijala, “Gipfeli-high speed compression algorithm,” in Pro-

ceedings of Data Compression Conference. IEEE, 2012, pp. 109–118.
[9] D. A. Huffman et al., “A method for the construction of minimum-redundancy codes,”

Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.
[10] J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM Journal of

Research and Development, vol. 20, no. 3, pp. 198–203, 1976.
[11] G. N. N. Martin, “Range encoding: an algorithm for removing redundancy from a

digitised message,” in Proc. Institution of Electronic and Radio Engineers International
Conference on Video and Data Recording, 1979.

[12] B. P. Tunstall, “Synthesis of noiseless compression codes,” Ph.D. dissertation, Georgia
Institute of Technology, 1967.

[13] S. A. Savari, “Variable-to-fixed length codes and plurally parsable dictionaries,” in
Proceedings of Data Compression Conference. IEEE, 1999, pp. 453–462.

[14] A. Al-Rababa’a and D. Dubé, “Using bit recycling to reduce the redundancy in plurally
parsable dictionaries,” in 14th Canadian Workshop on Information Theory. IEEE,
2015, pp. 62–65.

[15] S. Yoshida and T. Kida, “An efficient algorithm for almost instantaneous VF code using
multiplexed parse tree,” in Proceedings of Data Compression Conference. IEEE, 2010,
pp. 219–228.

[16] H. Yamamoto and H. Yokoo, “Average-sense optimality and competitive optimality for
almost instantaneous VF codes,” IEEE Transactions on Information Theory, vol. 47,
no. 6, pp. 2174–2184, 2001.

[17] C. E. Shannon and W. Weaver, “The mathematical theory of communication,” The
University of Illinois Press, 1949.

[18] S. Garg, “The new test images,” www.imagecompression.info/test images, 2011, [Ac-
cessed 28-October-2017].

[19] J.-l. Gailly, “Gzip,” www.gnu.org/software/gzip, 1992, [Accessed 28-October-2017].

