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Abstract

Due to differences in frame structure, existing multi-rate video encoding algorithms cannot
be directly adapted to encoders utilizing special reference frames such as AV1 without
introducing substantial rate-distortion loss. To tackle this problem, we propose a novel
bayesian block structure inference model inspired by a modification to an HEVC-based
algorithm. It estimates the posterior probabilistic distributions of block partitioning, and
adapts early terminations in the RDO procedure accordingly. Experimental results show
that the proposed method provides flexibility for controlling the tradeoff between speed
and coding efficiency, and can achieve an average time saving of 36.1% (up to 50.6%) with
negligible bitrate cost.

Introduction

Video content accounts for the majority of all internet traffic, and has been grow-
ing steadily [1]. Due to the dynamic nature of public network conditions, adaptive
streaming is widely used by video content providers [2], where the same video is en-
coded to different rates (and correspondingly qualities, denote as a variable Q), with
a client-side algorithm adaptively requests a version based on network conditions.

On the other hand, AOMedia Video 1 (AV1 for short) is an open, royalty-free
video coding format developed by the Alliance for Open Media [3][4]. Based on its
predecessor VP9, AV1 utilizes numerous new coding tools to achieve cutting-edge
coding efficiency. As the coding complexity increases, real time encoding becomes a
challenge for adaptive live streaming, and it is thus of great interest to reduce the
overall complexity without substantial degradation to the coding efficiency.

In addition to the challenges inherent in real time encoding a single AV1 stream,
encoding an input video to multiple rates in parallel is another challenge of great inter-
ests to adaptive video streaming. Given that the rate-distortion optimizations (RDO)
in multiple encodings of the same video is correlated, parameters and intermediate
results from the different RDO procedures can be shared among the processes. Such
parameters and intermediate results include prediction modes, motion vectors/intra
modes, and block structures [5]. It has been shown [5][6][7] that the encoder com-
plexity can be significantly reduced by considering block structures alone.

In this paper, we propose a bayesian inference model for block structures in video
codecs using special long-term reference frames. It exploits the statistical correlation
between encoding processes for the same video input with different target quality
levels and identical input/output spatial resolutions. The AV1 codec is used as a
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benchmark tool to demonstrate the effectiveness of our model without loss of gener-
ality, since the proposed model can be applied to other codecs of similar principles.

The rest of the paper is organized as follows. Related work is presented in Section
II. A study on the statistical behavior of block structure decisions of the AV1 codec is
given in Section III. Adaptation of an existing algorithm from HEVC to AV1 and its
improvement are discussed in Section IV, based on which, a detailed description and
analysis of our proposed bayesian inference model are given in Section V, followed by
experimental results in Section VI. Finally, Section VII concludes the paper.

Related Work

Many efforts have been dedicated to reduce the complexity of video encoding. [8][9]
proposed a wavefront parallel processing method that exploits spatial independencies
in H.264/AVC, which have since been adopted by the x264 open source H.264 encoder
[10]. [11] improves it by jointly considering temporal independencies. These methods
accelerate video encoding on multi-core systems without reducing its complexity.
Another approach [12][13] is to use transcoding [14] for multiple encoding of the
same input. Because the RDO mode decisions and motion estimation processes are
bitrate dependent, and different video coding formats such as H.264 and H.265 are
very different, transcoding by simply re-quantizating the residual calculated using the
mode and motion information obtained from the RDO for a encoding format and a
different rate may introduce significant quality losses, both from not fully utilizing
encoding tools in a target format, and from sub-optimal RDO decisions.

Simultaneous encoding of the same input, also called multi-rate encoding [15],
reduces the overall complexity while retaining high fidelity. The encoder performs
full encoding on a chosen instance as a reference instance, while other instances
(referred to as local instances) consult the reference instance to infer their optimal
RDO decisions. [16] proposed a preliminary framework which merely copies decisions
from the reference instance, resulting in considerable rate-distortion (RD) loss. [5][7]
refined this framework by searching in a pruned RDO recursion tree, reducing the RD
loss to a negligible level. However, as shown later in this paper, this method cannot be
directly migrated to AV1 without introducing substantial performance degradation.
[6] proposed an ensemble learning method to predict optimal block structures in
HEVC multi-rate encoding.

Bayesian inference is widely used in video encoding. [17][18] used bayesian models
to accelerate skip mode and CU size decisions in HEVC. [19] uses a bayesian model
to accelerate prediction mode decisions in x265 multi-rate encoding. There has been
very little reported work that has considered block structure decisions with RDO of
both the reference instance and the local instance in multi-rate encoding.

As its main contribution, the current paper proposes a joint probabilistic model
to infer optimal block structure decisions. For a particular local instance, its past
block structure decisions will be recorded to update the inference model, which in
turn computes the probabilistic distribution of its optimal block structure decisions
with the aid of the reference instance.



Table 1: Common configurations of the AV1 encoder

Parameter Value Parameter Value Parameter Value
cpu-used 0 kf-min-dist 0 bit-depth 8
end-usage q kf-max-dist 9999 auto-altref 1

pass 1 kf-mode 1 drop-frame 0

Block Structures in AV1

We introduce some terms that will be used throughout this paper. The depth of a
w×h block is defined to be min(log2 64/w, log2 64/h), i.e. the difference between the
base 2 logarithms of 64 and the length of the longer edge. A block is prime if it is
not split in the optimal block structure. Two blocks overlap if they have non-empty
intersection, regardless of their parent frames. A block B has a split degree of df in

frame f , if df is the maximum depth of the prime blocks in frame f that overlap with
B. The remote frame of a block B refers to the frame in the reference instance that
is identical to the parent frame of B.

In AV1, the block structure optimization starts from 64×64 blocks. A 2N×2N
block can be partitioned into four N×N blocks (referred to as 4-split), two N×2N
blocks, two 2N×N blocks, or no partition at all. A non-square block does not split.
Each frame is associated with a q-index that indicates the position of the frame’s base
quantization parameter (QP) in the lookup table. Periodically some special frames

are selected for long-term reference and are given relatively lower QP’s, namely intra-
frames, golden-frames, and altref-frames, to improve quality.

Common Test Settings

In this paper we use the AV1 codec v0.1.0 [20] running on Ubuntu 15.04 with a 2.40
GHz Intel Xeon E5-2695v2 CPU and 64GB RAM. The common configuration that
will be used throughout this paper is given in Table 1. A set of eight test sequences
with different spatial resolutions was selected (see Table 2). RD performance and
encoding time is measured by BD-rate [21][22] and CPU time.

Statistical Behavior

Fig. 1(a) shows the percentage of total area for prime blocks as a function of their
max depths, averaged across all non-special frames with identical q-indices. Note that
we use q-indices rather than the actual QP’s for better regression. 50 frames of the
sequence BasketballDrill were tested with quality levels set to even values from 22 to
40. Observe that prime blocks in frames with larger q-indices tend to have smaller
depths, in other words, partitions occur less often, as expected.

The linear approximations, shown as dotted lines in the figure, give the prior prob-
ability of 4-splitting a square block. Denote the linear approximations as ad(q), d =
1, ..., 4 that map q-indices to area percentages. For a square block B in frame f whose
depth is d, let df ′ be the split degree of B in an arbitrary frame f ′ with q-index q.
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Figure 1: Statistical behavior of optimal block structures

We roughly estimate P (df ′ < d) with ad(q), by the definition of df ′ , we have

P (df ′ > d | df ′ > d− 1) =







1− ad+1(q)

1− ad(q)
if d > 0,

1− ad+1(q) if d = 0.
(1)

Now let f ′ = f . We see that df ′ = df ≥ d, thus (1) is exactly the probability of
B 4-splitting. We will see later that this prior, although established using a single
sequence, is robust and applicable to various different sequences for the purpose of
this paper.

We now turn to the correlation of optimal block structures between the reference
and local instances. Using the same test settings in Fig. 1(a), the instance with the
best Q = 22 is selected as the reference instance. Let dL be the depth of an arbitrary
prime block B in frame fL of a local instance, fR be the remote frame of B, and dR
be the split degree of B in frame fR. Fig. 1(b) shows the percentage in total area of
prime blocks that satisfy dR < dL, dR = dL or dR > dL, averaged across all encoder
instances with identical Q’s. As expected, when Q = 22 all blocks have dR = dL,
since the local instance is identical to the reference instance. The proportion of the
case dR < dL is always below 10%, and is even lower as Q increases, while other
cases are of notable proportions. This confirms a result for HEVC as reported in [7].



Table 2: Experimental results of the RDO pruning algorithms

BD-rate ∆T

Sequence original improved original improved
BasketballPass (412×240) 2.47% 0.15% -31.3% -18.9%
BlowingBubbles (412×240) 3.80% 0.25% -32.3% -21.1%
BQSquare (412×240) 2.04% 0.05% -27.2% -17.6%
BasketballDrill (832×480) 3.75% 0.16% -47.8% -30.6%
PartyScene (832×480) 2.32% 0.08% -30.5% -19.8%
FourPeople (1280×720) 4.09% 0.10% -58.6% -40.2%
Johnny (1280×720) 4.13% 0.09% -60.9% -42.4%
Kimono (1920×1080) 1.61% 0.24% -50.9% -37.5%
Average 3.03% 0.14% -42.4% -28.5%

For future reference, the average depths of prime blocks for each Q and each spatial
resolution are also recorded and shown in Fig. 1(c).

Improved RDO Pruning

We showed in the previous section that by choosing the instance with the best quality
as the reference instance, the depth of a prime block rarely exceeds its split degree
in its remote frame. [7] proposed a multi-rate encoding algorithm based on a similar
observation in HEVC. Specifically, when the depth of a block has reached its split
degree in its remote frame, the local instance executes early termination, i.e. 4-split is
not searched in RDO for the current block, as it is unlikely to be the optimal choice.
We implemented this algorithm in the AV1 codec, whose results are shown in Table 2
as original. 200 frames of each test sequence were run with Q = 22, 27, 32, 37, 42,
choosing Q = 22 as the reference instance. The time saving is measured by the
average time saving of all local instances, with the time cost of the reference instance
excluded in the calculations so as to avoid strong dependency on the number of local
instances. This is reasonable as the time cost of a single reference instance will become
insignificant when the number of local instances is sufficiently large.

[7] reported a time saving of 46%, and a 0.62% BD-rate on BasketballPass, a
significant better tradeoff than our results for AV1. We believe that the difference
resulted from the structural difference between AV1 and HEVC on the frame level.
The special frames in AV1 play a major role in improving its coding efficiency, as
shown in our next experiment. When skipping part of the RDO recursion tree and
opting for suboptimal decisions, the overall coding efficiency severely deteriorated. To
mitigate this problem, we propose to improve the algorithm by fully encoding special
frames in local instances. Using the same settings specified above, the results are
shown in Table 2 as improved. As a trade-off between speed and quality, the coding
efficiency in terms of BD-rate is much more plausible.

A Bayesian Inference Model

The last experiment has demonstrated the necessity for keeping block structures
of special frames optimal when conducting expedited AV1 encoding. As we run



exhaustive search on special frames, their optimal block structures become reliable
evidence for inference, which will be thoroughly discussed in this section.

Let us assume that f is a non-special frame in a local instance L, B is a block in f
that has a depth d and can be 4-split, fL is the latest special frame in L preceding f ,
and fR is the remote frame of B. Let df ′ denote the split degree of B in any arbitrary
frame f ′. Since fL and fR are both fully encoded, dfL and dfR are available.

The key in our multi-rate encoding algorithm is estimating the probability that B
is 4-split in the optimal block structure, knowing dfL and dfR, i.e. P (df > d |dfL, dfR),
as f , fL and fR exhibit strong similarities. Since (1) gives the prior probability
p0 = P (df > d), by way of Bayes’ theorem

P (df > d | dfL, dfR) =
P (dfL, dfR | df > d)p0

P (dfL, dfR | df > d)p0 + P (dfL, dfR | df = d)(1− p0)
. (2)

Note that df ≥ d is always true. This bayesian model allows us to incorporate our
prior knowledge about p0 into inference. For each depth d, we create two 2D tables,
namely T+

d and T−
d , which record the number of occurrences for the pair (dfL, dfR)

when df > d and df = d, respectively. P (dfL, dfR | df) is therefore approximated by

P (dfL, dfR | df > d) =
T+

d (dfL, dfR)
∑

i,j

T+

d (i, j)
, P (dfL, dfR | df = d) =

T−
d (dfL, dfR)
∑

i,j

T−
d (i, j)

. (3)

We substitute (3) into (2) to obtain the posterior probability p. Given τ1, τ2 ∈ (0, 1)
and a uniform random variable X ∼ U(0, 1), the RDO procedure with regard to
B is described by the pseudocode. Intuitively, τ1 is a threshold determining if p is
sufficiently small, and τ2 is the sampling frequency for running exhaustive search even
if p is small. Early termination is not used if p is not sufficiently small. Even when it
is used, we shall still occasionally run full encoding to keep the likelihoods unbiased.

To verify that (3) is a good estimation, suppose we have processed N blocks with
depth d. Notice that T+

d is updated when df > d, if we further consider p and X (Cf.
line 5-9 in the pseudocode), writing k1 = 1 and k2 = τ−1

2 , we have

E(T+

d (dfL, dfR)) = Nk1P (dfL, dfR, df > d | p > τ1)P (p > τ1) +

Nk2P (dfL, dfR, df > d | p ≤ τ1, X < τ2)P (p ≤ τ1 |X < τ2)P (X < τ2)

= NP (dfL, dfR, df > d)

as X is indepedent and k2P (X < τ2) = 1. Then the first part of (3) holds assuming
N is sufficiently large. The second part of (3) can be proved in a similar fashion.

To see how τ1, τ2 affect the performance, we treat the posterior probability p as a
random variable with density g(p). Let t0 and b0 be the expected time and bitrate
cost of fully encoding a block with depth d, while the reduced expected time cost
with early termination is t, and the increased expected bitrate cost is b if it should
be 4-split. Assuming independence between p, t, and b, the expected time saving and
bitrate cost increment (in percentage) of encoding N blocks with depth d comparing



Algorithm 1 Proposed RDO procedure

Require: B, τ1, τ2, X , T+

d , T−

d , dfL , dfR
1: compute p = P (df > d | dfL , dfR) by (2)(3)
2: if p ≤ τ1 and X ≥ τ2 then

3: do not attempt to 4-split B (early termination)
4: else

5: if p > τ1 then

6: k ← 1
7: else {p ≤ τ1, X < τ2}
8: k ← τ−1

2

9: end if

10: run ordinary RDO to determine if 4-splitting B is optimal
11: if 4-splitting B is optimal then
12: T+

d (dfL , dfR)← T+

d (dfL , dfR) + k

13: else

14: T−

d (dfL , dfR)← T−

d (dfL , dfR) + k

15: end if

16: end if

to the original encoder is

∆T =
Nt(t− t0)

Nt0
, ∆B =

Nb(b− b0)

Nb0
, (4)

where Nt is the expected number of blocks that are not fully encoded, and Nb is the
expected number of blocks that are not optimally partitioned:

Nt = N

∫ τ1

0

g(p)(1− τ2)dp, Nb = N

∫ τ1

0

pg(p)(1− τ2)dp < τ1Nt, (5)

define ∆t = (t− t0)/t0 < 0 and ∆b = (b− b0)/b0 > 0, (4)(5) imply that

∆T = ∆t(1 − τ2)

∫ τ1

0

g(p)dp,
∆B

∆b
< τ1

∆T

∆t
= τ1(1− τ2)

∫ τ1

0

g(p)dp. (6)

We see from (6) that a larger τ1 and/or smaller τ2 gives better time saving, and the
bitrate penalty is bounded above by the time saving, with a multiplier of τ1. It also
implies that a smaller τ1 results in less coding efficiency deterioration.

Finally, to see the effect of τ2 on (3), consider the case p ≤ τ1. The increment to
T+

d (or T−
d ) is a Bernoulli random variable δ ∼ τ−1

2 Bern(τ2). We see that E(δ) = 1
and Var(δ) = τ−1

2 − 1. In conclusion, τ1, τ2 should be chosen carefully to achieve a
good balance between time saving, bitrate penalty, and statistical stabilization.

Experimental Results

Table 3 shows the encoding results of our proposed bayesian method, using the same
test setup as Table 2. We set τ2 = 0.05 as the analysis in the previous section shows
that smaller (but non-zero) τ2 is preferred for better time savings. We varied the
value of τ1 to examine its impact on the performances. Fig. 2(a) compares the RD



Table 3: Experimental results of the bayesian method

BD-rate ∆T

Sequence τ1 = 0.1 τ1 = 0.2 τ1 = 0.4 τ1 = 0.1 τ1 = 0.2 τ1 = 0.4
BasketballPass (412×240) 0.13% 0.20% 0.74% -22.5% -24.7% -26.7%
BlowingBubbles (412×240) 0.16% 0.24% 0.37% -24.9% -26.3% -29.1%
BQSquare (412×240) 0.00% 0.13% 0.46% -18.0% -23.7% -25.7%
BasketballDrill (832×480) 0.15% 0.22% 0.58% -30.5% -37.8% -38.4%
PartyScene (832×480) 0.03% 0.20% 0.73% -20.2% -24.0% -28.8%
FourPeople (1280×720) 0.03% 0.06% 0.07% -18.6% -42.8% -48.2%
Johnny (1280×720) 0.09% 0.10% 0.25% -18.8% -37.0% -50.6%
Kimono (1920×1080) 0.04% 0.07% 0.14% -10.4% -25.4% -41.5%
Average 0.08% 0.15% 0.46% -20.5% -30.2% -36.1%

Table 4: Controlled study of two proposed methods

BD-rate ∆T

Sequence τ1 improved bayesian improved bayesian
BasketballPass (412×240) 0.1 0.15% 0.13% -18.9% -22.5%
BlowingBubbles (412×240) 0.1 0.25% 0.16% -21.1% -24.9%
BQSquare (412×240) 0.1 0.05% 0.00% -17.6% -18.0%
BasketballDrill (832×480) 0.2 0.16% 0.22% -30.6% -37.8%
PartyScene (832×480) 0.2 0.08% 0.20% -19.8% -24.0%
FourPeople (1280×720) 0.4 0.10% 0.07% -40.2% -48.2%
Johnny (1280×720) 0.4 0.09% 0.25% -42.4% -50.6%
Kimono (1920×1080) 0.4 0.24% 0.14% -37.5% -41.5%

Average 0.14% 0.14% -28.5% -33.4%

performances of the original pruning algorithm and our bayesian method regarding
the sequence BasketballDrill where τ1 is set to 0.2.

We see from the results that our proposed method achieves significant time savings
(up to 50.6%) without substantial degradation to coding efficiencies. An interesting
pattern is that, sequences with higher spatial resolution can tolerate a larger τ1 in
terms of BD-rate cost, in exchange of a significant margin in time savings, while for
sequences with lower spatial resolutions this no longer holds, as a smaller τ1 is clearly
more favorable. This can be explained by the depths of prime blocks in high resolution
sequences being relatively lower (Cf. Fig. 1(c)), encouraging early terminations in the
RDO procedure. Nevertheless, setting a constant τ1 = 0.4 for all sequences yields an
average time saving of 36.1% (and even higher for high resolution sequences), with
an average BD-rate cost of 0.46%, which is negligible for most practical applications.

The bayesian approach offers the flexibility to control the tradeoff between time
savings and bitrate cost, as shown in Table 3. Furthermore, Table 4 shows the advan-
tage of the joint inference model over the improved pruning method, for controlling
the BD-rate cost. Larger τ1 values are chosen for higher resolution sequences, as
explained in the previous paragraph. In many cases both BD-rate costs and time
savings are improved, without having to trade one for another, and on average time
saving can be achieved without BD-rate loss.
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Figure 2: RD curves and the posterior distribution

Finally, we briefly discuss the statistical behavior of the posterior, previously
defined as g(p). Fig. 2(b) shows an estimated g(p) when encoding BasketballDrill

under Q = 32. The bayesian method essentially classifies blocks according to their
computed posteriors. According to (6), the portion of g(p) where p < τ1 is eligible for
RDO early termination. This implies that a posterior admitting bimodal distribution
is ideal for our purpose. Many aspects can be incorporated into the posterior model
for further optimization, including spatial resolution, quality levels, RD information,
etc, which however, is beyond the scope of this paper.

Conclusions

In this paper, we propose a novel bayesian block structure inference framework in-
spired by a modification to an existing HEVC-based multi-rate encoding algorithm.
The proposed method is effective, flexible and especially suitable for codecs utiliz-
ing special reference frames like AV1. Experimental results show that the proposed
bayesian algorithm can achieve 36.1% time savings in average and up to 50.6%, while
keeping the bitrate cost below negligible level.

Future work includes optimizations to the posterior model, dynamic adaptation of
τ1, adopting the bayesian approach to prediction mode inference, motion vector/intra
mode inference, as well as multi-resolution encoding.

Acknowledgements

This work was supported by the Natural Science Foundation of China (Project Num-
ber 61521002).

References

[1] Cisco. Cisco visual networking index: Forecast and methodology, 2016-
2021. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html



[2] O. Oyman and S. Singh, “Quality of experience for http adaptive streaming services,”
IEEE Communications Magazine, vol. 50, no. 4, pp. 20–27, April 2012.

[3] Wikipedia. Aomedia video 1. [Online]. Available: https://en.wikipedia.org/wiki/
AOMedia Video 1

[4] AOM. Av1 codec library. [Online]. Available: https://aomedia.googlesource.com/aom/
[5] D. Schroeder, A. Ilangovan, M. Reisslein, and E. Steinbach, “Efficient multi-rate video

encoding for hevc-based adaptive http streaming,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. PP, no. 99, pp. 1–1, 2017.

[6] J. D. Praeter, A. J. Daz-Honrubia, N. V. Kets, G. V. Wallendael, J. D. Cock, P. Lam-
bert, and R. V. de Walle, “Fast simultaneous video encoder for adaptive streaming,”
in 2015 IEEE 17th International Workshop on Multimedia Signal Processing (MMSP),
Oct 2015, pp. 1–6.

[7] D. Schroeder, P. Rehm, and E. Steinbach, “Block structure reuse for multi-rate high
efficiency video coding,” in 2015 IEEE International Conference on Image Processing
(ICIP), Sept 2015, pp. 3972–3976.

[8] Z. Zhao and P. Liang, “A highly efficient parallel algorithm for h.264 video encoder,”
in 2006 IEEE International Conference on Acoustics Speech and Signal Processing
Proceedings, vol. 5, May 2006, pp. V–V.

[9] ——, “Data partition for wavefront parallelization of h.264 video encoder,” in 2006
IEEE International Symposium on Circuits and Systems, May 2006, pp. 4 pp.–2672.

[10] VideoLAN. x264. [Online]. Available: https://www.videolan.org/developers/x264.html
[11] Z. Wen, B. Guo, J. Liu, J. Li, Y. Lu, and J. Wen, “Novel 3d-wpp algorithms for

parallel hevc encoding,” in 2016 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), March 2016, pp. 1471–1475.

[12] T. Shen, Y. Lu, Z. Wen, L. Zou, Y. Chen, and J. Wen, “Ultra fast h.264/avc to hevc
transcoder,” in 2013 Data Compression Conference, March 2013, pp. 241–250.

[13] Y. Chen, Z. Wen, J. Wen, M. Tang, and P. Tao, “Efficient software h.264/avc to hevc
transcoding on distributed multicore processors,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 25, no. 8, pp. 1423–1434, Aug 2015.

[14] I. Ahmad, X. Wei, Y. Sun, and Y.-Q. Zhang, “Video transcoding: an overview of
various techniques and research issues,” IEEE Transactions on Multimedia, vol. 7,
no. 5, pp. 793–804, Oct 2005.

[15] B. Li and J. Liu, “Multirate video multicast over the internet: an overview,” IEEE
Network, vol. 17, no. 1, pp. 24–29, Jan 2003.

[16] D. H. Finstad, H. K. Stensland, H. Espeland, and P. Halvorsen, “Improved multi-rate
video encoding,” in 2011 IEEE International Symposium on Multimedia, Dec 2011,
pp. 293–300.

[17] Q. Hu, Z. Shi, X. Zhang, and Z. Gao, “Early skip mode decision based on bayesian
model for hevc,” in 2015 Visual Communications and Image Processing (VCIP), Dec
2015, pp. 1–4.

[18] X. Shen, L. Yu, and J. Chen, “Fast coding unit size selection for hevc based on bayesian
decision rule,” in 2012 Picture Coding Symposium, May 2012, pp. 453–456.

[19] C. Cai, S. Yin, X. Zhang, and Z. Gao, “An efficient hevc multi-rate encoding system
based on x265,” in 2016 Visual Communications and Image Processing (VCIP), Nov
2016, pp. 1–4.

[20] AOM. v0.1.0, aom, git at google. [Online]. Available: https://aomedia.googlesource.
com/aom/+/v0.1.0

[21] G.Bjontegaard, “Calculation of average psnr differences between rd curves,” in Doc.
VCEG-M33 ITU-T Q6/16, 2001.

[22] ——, “Improvements of the bd-psnr model,” in ITU-T SG16 Q, vol. 6, 2008, p. 35.


