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Abstract

The raster model is widely used in Geographic Information Systems to represent
data that vary continuously in space, such as temperatures, precipitations, elevation,
among other spatial attributes. In applications like weather forecast systems, not
just a single raster, but a sequence of rasters covering the same region at different
timestamps, known as a raster time series, needs to be stored and queried. Compact
data structures have proven successful to provide space-efficient representations of
rasters with query capabilities. Hence, a naive approach to save space is to use such
a representation for each raster in a time series. However, in this paper we show that
it is possible to take advantage of the temporal locality that exists in a raster time
series to reduce the space necessary to store it while keeping competitive query times
for several types of queries.

Introduction

Geographic Information Systems (GIS) [1] facilitate the management of spatial data
in digital format, which allow representing features of a certain surface at a time
instant, such as rainfall, temperature, population density, among others. Vector
and raster are the two main models used in GIS, each of them tailored for different
applications. The latter consists in dividing a surface in a regular set of cells, forming
a two-dimensional matrix with numeric values that represent some feature of such
surface at a given timestamp (e.g. temperature in Snowbird at 2019-03-26 9 am).

The raster model allows representing large areas of land, thus generating huge
spatial data volumes. Two factors affect the space needed to store a raster. One is
the spatial resolution, the smaller the cell size of a raster, the higher the precision
of the model, but also the larger the space consumption. In several domains, not
just a single raster, but a sequence of rasters covering the same region at different
timestamps has to be stored and queried. This sequence is known in the literature
as a raster time series and it is used, for example, in weather forecast systems and
in data mining on Satellite Image Time Series [2]. The temporal resolution, defined
as the distance in time between two consecutive rasters in the series also impacts the
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space consumption. For example, going up from a precision of days to a precision of
hours requires 24 times more space.

Data compression has been used to reduce the storage and transmission time
of raster data [3, 4]. Even the widely used format to represent rasters, GeoTIFF,
supports compression techniques based on Lempel-Ziv-Welch [5]. Recently, compact
data structures [6] that not only reduce the space, but also provide index capabilities
on the rasters, have been proposed [7–9]. Although they do not reduce the space as
much as compression techniques, they support several interesting operations without
decompression, such as the retrieval of a specific zone or filtering the cells in a zone
which values are restricted to a range. These operations are useful in many domains,
for example, to zoom-in to a specific area or to detect zones with high flood risk.

A naive approach to store and query raster time series is to use one of the afore-
mentioned compact data structures for each raster in the series. However, in [9] we
hypothesized that more compact solutions were possible because of the temporal lo-
cality existing in raster time series. Temporal locality produces that the same cell,
which represents a spatial region, has similar values in consecutive rasters. For ex-
ample, the temperature in Snowbird at 14 pm and at 15 pm is often similar. This is
even more evident if we increase the temporal resolution, for example, to blocks of
15 minutes. In this paper, we propose a compact data structure that validates the
hypothesis in [9]. Our solution is based on the 3D2D mapping described in [9] and a
k3-tree [10], which is a 3D version of the k2-tree [11].

Background and Related Work

We refer to [6] for an overview of compact data structures and to the SDSL library [12]
for practical implementations of many of them. Our proposal is based on a 3D
version of the k2-tree [11], called the k3-tree [10]. This data structure has been used
in several domains, being the most related to our work the representation of time-
evolving region data, a.k.a. moving regions. The k2-tree is a compact representation
of a quadtree [13] that stores a sparse binary matrix in compact space by subdividing
it into k2 submatrices, which are processed in Morton order storing a 1-bit for non-
empty submatrices and a 0-bit, otherwise. This procedure is recursive, but just
on non-empty submatrices and up to a minimum submatrix size. This partitioning
strategy is generalized by the k3-tree, for 3D, and by the kn-tree, in general. It is
important to notice that each 1-bit in the compact representation produces a new
(implicit) node with kn-bits, hence degrading compactness with the dimensionality.
In a nutshell, both the k2-tree and the k3-tree use few space when the ones in the
binary grid are clustered, but non-clustered ones have a more negative impact in the
k3-tree than in the k2-tree. This is one of the reasons why there are more examples
of success for the k2-tree than for its 3D version.

Our other main building block is one of the compact data structures for rasters
presented in [9], specifically the 3D2D-mapping. This mapping is based on space-
filling curves, which are mathematical functions providing a mapping from a mul-
tidimensional space to one dimension [14]. The 3D2D-mapping uses the Morton or
Z-order [15] curve, which preserves spatial locality and it is suitable for efficient com-



putations based on bit interleaving. Next, we briefly describe this data structure.
Let < x, y, z > be a 3D tuple, with (x, y) a cell in the raster and z its value. These

tuples are mapped into a 2D binary grid, in which one axis represents Morton order
and the other represents values. Hence, a tuple < x, y, z > induces a 1-bit at row
Z(x, y) and column z, where Z(x, y) represents the Morton code of cell (x, y). Then,
this binary grid is stored using a k2-tree, which exploits the clustering of the 1-bits
that is produced by the locality of the Morton order. Three types of queries, access ,
windowQuery and rangeQuery , are supported by this data structure by reduction to
primitives of the k2-tree, mainly range queries. However, some of them also require
a decomposition of a query into maximal quadboxes [16, 17].

Besides the 3D2D-mapping there are some other compact representations of rasters.
For example, in the same paper [9], another structure based on space-filling curves
and succinct trees is proposed, which usually achieves slightly better performance
than the 3D2D-mapping, however, it is generalization to raster time series is not
easy. Previously, in [7] several variants of the k2-tree [11] were also proposed and
proved successful to outperform classical approaches such as GeoTIFF. A more re-
cent work [8] proposed the k2-raster, which is based on an augmented k2-tree that
scales better with the number of different values in the raster. Earlier this year [18],
a generalization of such structure to temporal rasters was also proposed.

Our solution

In this section we describe our compact representation of raster time series with
support for the following operations:

• access(x, y, t) retrieves the value of the cell (x, y) at t-th time instant. E.g.
temperature in Snowbird1 at 2019-03-26 9 am.

• windowQuery(x1, y1, x2, y2, t1, t2) retrieves all the values (a 3D submatrix) reg-
istered in a rectangular zone defined by its corners (x1, y1) and (x2, y2) during
a time interval [t1, t2]. E.g. temperatures in Utah from march to may.

• rangeQuery(x1 , y1 , x2 , y2 , t1 , t2 , rMin, rMax) retrieves all the cells contained in
a rectangular zone defined by (x1, y1) and (x2, y2) during a time interval [t1, t2]
which values are in the range [rMin, rMax]. E.g. zones (cells) in Utah from
march to may with moderate rain, i.e. greater than 0.5 mm per hour, but less
than 4.0 mm per hour.

• valuesRangeQuery(rMin, rMax) retrieves all the cells which values are in the
range [rMin, rMax]. Although this is a particular case of the previous type, we
study it independently given its application in several domains, for example, to
detect zones with high flood risk.

As we mentioned above, our solution is based on the 3D2D-mapping proposed
in [9]. Let TS = [R1, R2, . . . , Rn] be a raster time series composed of n rasters. We

1In our examples, we use a toponym for easy readability, but queries actually receive geographic
coordinates as parameters, either to define a point or a window.



first read each raster Ri in Morton order, which produces a sequence Ti. Then, we
transform each Ti to a binary grid Bi that contains a 1-bit at cell Bi[x][y] if Ti[x] = y
and a 0-bit, otherwise. Finally, we concatenate all these binary grids into a 3D cube
{B1, B2, . . . , Bn} and store it using a k3-tree. Figure 1 shows an example of the
mappings used by our method.

Figure 1: Mappings to construct the data structure

In the example, let us focus on the first raster R1, which is transformed into the
binary grid B1. The first four values of R1 in Morton order are 1, 0, 3, and 1, which
induce a 1-bit at row 1 of the first column, at row 0 of the second column, at row 3
of the third column, and at row 1 of the fourth column, respectively. All the other
bits in these four columns are 0-bits. Similarly, the first value in R2 is also a 1, which
induces a 1-bit at B2[1][1].

There are two important characteristics in the domain for the k3-tree to perform
well, which are the spatial and the temporal locality. Spatial locality is due to Tobler’s
first law of geography [19] “everything is related to everything else, but near things
are more related than distant things”, and to the use of space-filling curves in the
mapping, which preserve such property. In other words, Tobler’s law implies that
cells that are close in a raster of the time series should contain similar values. In our
transformation to a binary grid, we use Morton order, and thus cells that are close
in the original raster are also close in one of the axis of the grid (w.l.o.g. let us say
x-axis). For each of such cells, we set a 1-bit in the row corresponding to its value.
As their values are similar, these 1-bits will be close in the binary grid. Hence, the
1-bits in each binary grid are clustered.

Temporal locality is not related to a specific raster, but to consecutive rasters.
This property states that if Ri[x][y] = v and Ri+1[x][y] = v′, then v and v′ should
be similar. Given our mapping, both Bi and Bi+1 will have a 1-bit set in column
Z(x, y), and row v and v′, respectively. Hence, the 1-bits are not only clustered in
each binary grid, but also through consecutive binary grids. The temporal resolution
of the raster time series has a great impact on this property, in most domains. This can
be easily explained with the following example. Consider two temporal resolutions,



one of 1-hour blocks and another of 6-hours blocks, and the domain of temperatures.
Obviously, the temperature in Snowbird at 9 am is similar to the temperature at 10
am, but not necessarily similar to the temperature at 3 pm. In the next section, we
illustrate this influence with some experiments.

To complete the description of our proposal, we explain the query algorithms to
solve the four types of queries explained above. The k3-tree supports operations
getCell , which checks the value of a cell, and generalRange, which performs a 3-
dimensional range query, as explained in [10, Section 6.2.1]. Then, access can be
easily implemented using getCell , and all the other queries using generalRange. An
important consideration is about the spatial dimension of the queries which, due to
the use of Morton order, can not be directly transformed to a contiguous range in
one dimension of the k3-tree. However, a maximal quadbox decomposition [16, 17]
can be used to convert a general spatial query, to a set of maximal quadboxes, and
each of them becomes a contiguous range in the k3-tree, hence allowing the use of
generalRange. This is the same solution used in [9].

Experiments

In this section, we present our preliminary experiments that show the viability of the
proposal. We compare the solution described above, with a baseline based on the use
of the 3D2D-mapping for each raster of the time series using a k2-tree. This baseline is
a representative of the compact data structures existing for rasters [7–9], which exploit
the spatial locality but not the temporal one. All the experiments presented here were
performed in an Intel Core i7-3820@3.60GHz, 32GB RAM, running Ubuntu server
(kernel 3.13.0-35). We compiled with gnu/g++ version 4.6.3 using -O3 directive as
both the baseline and the proposed data structure were implemented in C++.

Regarding the datasets, we created several real datasets of temperatures from the
data provided by the National Weather Service [20]. Among other products, this ser-
vice provides hourly information of temperatures for Guam, Hawaii and Puerto Rico.
As these data are just available for 48 hours, we downloaded them for two months
from September to October 2017. Also, we cropped some parts of these datasets
to experiment with datasets of different sizes. Finally, to evaluate the precision of
the temporal resolution, we averaged the daily temperatures of the Guam dataset.
Table 1 summarizes the characteristics of all the datasets we collected. Also, to illus-
trate how data vary with time, we prepared a video for two days of the Guam dataset
(http://www.inf.udec.cl/~dseco/guam.mp4).

We first present a space comparison of our proposal and the baseline, which is
summarized in Table 2. The first column shows the size of the dataset. We show
both total space in MB, including the size of the original dataset, and the bits per
cell required by both our proposal and the baseline.

The main conclusion of this evaluation is that our proposal usually requires less
than half the space of the baseline, thus validating the hypothesis that it is possible to
exploit the temporal locality in raster time series to design more space-efficient data
structures for them. A second conclusion is the influence of the temporal resolution in
our proposal, which can be observed in the last two rows. The original Guam dataset



Dataset Columns Rows #Rasters Resolution

Guam-64 64 64 456 3-hours
Hawaii-64 64 64 1,368 Hourly
Puerto-Rico-64 64 64 1,368 Hourly
Guam-128 128 128 456 3-hours
Hawaii-128 128 128 1,368 Hourly
Puerto-Rico-128 128 128 1,368 Hourly
Guam-193 193 193 456 3-hours
Guam-daily-193 193 193 62 Daily

Table 1: Characteristics of the datasets

Dataset
Total space (MB) Bits per cell

plain baseline proposal baseline proposal

Guam-64 5.44 0.65 0.17 2.9 0.8
Hawaii-64 16.33 2.90 1.12 4.3 1.7
Puerto-Rico-64 16.34 4.70 2.20 7.0 3.3
Guam-128 21.50 1.33 0.65 1.5 0.7
Hawaii-128 64.50 7.24 4.01 2.7 1.5
Puerto-Rico-128 64.52 8.29 4.82 3.1 1.8
Guam-193 48.77 2.46 2.09 1.6 1.4
Guam-daily-193 5.37 0.75 0.81 2.7 2.9

Table 2: Space evaluation

has a temporal resolution of blocks of 3 hours, unlike the others that provide an hourly
resolution. Despite this lower resolution, our proposal still slightly outperforms the
baseline in this dataset. However, in the last dataset, we averaged the temperatures
of each day, generating a dataset with daily resolution. As it can be seen in the last
row, our proposal requires slightly more space than the baseline in this case, which is
due to the lower temporal locality.

We now present an evaluation of the query time performance for the queries
introduced above. First, Figure 2 shows the results for access . We show average
time per query for a set of 10,000 random queries.

Results are consistent through the different datasets and show that the proposal is
about 4 times slower than the baseline, but still in the order of few microseconds per
query. This is not a surprising result as the underlying data structure of the proposal
is more complex than that of the baseline, and this type of query just involves one
raster in the baseline.

For the other types of queries, we just show the results for one of the datasets, as
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Figure 2: Query time for access

results are similar in all of them and, in this way, we can focus on the influence of the
parameters of such query types. We selected Hawaii-128 as a representative dataset.
Recall that this dataset has a spatial extent of 128 × 128 with 1, 368 snapshots and
an hourly temporal resolution. Figure 3 illustrates the results of windowQuery for
different window sizes. These results show that the proposal is also competitive for
this type of queries as the differences between the proposal and the baseline are not
significant, being our proposal slightly faster than the baseline for most window sizes
(note the logarithmic scale).
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Figure 3: Query time for windowQuery

For the most general type of queries, rangeQuery , we show the influence of both
the query size, given a fixed range size of 10, and the influence of the range size, given
a fixed size of query of 10× 10× 10. Figures 4 and 5 show these results.

Similar to previous experiments, the proposal is slightly faster than the baseline.
Another conclusion is that the range size has less influence in the query time than the
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window size (note the logarithmic scale in Figure 4). This is not only because range
size represents just one of the dimensions of the k3-tree, but also because it does not
require the maximal quadbox decomposition needed for the spatial dimension.

Conclusions

We proposed a new space-efficient data structure that takes advantage of the spatial
and temporal locality existing in a raster time series. Our experimental evaluation,
performed using a real dataset of temperatures that has both spatial and temporal
locality, shows that our structure requires half the space of a baseline that uses a
compact representation for each raster in the time series but does not take advan-
tage of the temporal locality in the time series. However, we also showed that our
proposal is dependant on the temporal resolution and, in the case of temperatures,
it requires similar space than the baseline for daily averaged datasets. Regarding



query times, our structure is competitive, and even slightly faster, than the baseline
for several types of queries. As future work, a more detailed experimental evaluation
is necessary to compare with all the compact data structures for rasters existing in
the literature [7–9]. Also, our work has to be evaluated against a recent proposal for
temporal rasters presented in [18]. Finally, to deal with the curse of dimensionality of
the k3-tree a 3D version of the heavy path tree in [21] may improve the space usage.
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wards a compact representation of temporal rasters,” in Proc. 25th SPIRE, 2018, pp.
117–130.

[19] W. R. Tobler, “A computer model simulation of urban growth in the detroit region,”
1970, economic Geography. p.236.

[20] N. C. Operations. (2017) Real-time mesoscale analysis (RTMA) products.
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