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Abstract

This paper provides a technical overview of a deep-learning-based encoder method aiming
at optimizing next generation hybrid video encoders for driving the block partitioning in
intra slices. An encoding approach based on Convolutional Neural Networks is explored
to partly substitute classical heuristics-based encoder speed-ups by a systematic and auto-
matic process. The solution allows controlling the trade-off between complexity and coding
gains, in intra slices, with one single parameter. This algorithm was proposed at the Call
for Proposals of the Joint Video Exploration Team (JVET) on video compression with ca-
pability beyond HEVC. In All Intra configuration, for a given allowed topology of splits, a
speed-up of ×2 is obtained without BD-rate loss, or a speed-up above ×4 with a loss below
1% in BD-rate.

1 Introduction

Neural Networks (NN) have recently shown promising results, when designed to partly
or fully replace image codecs. As the introduction of NN-based techniques currently
represent a huge challenge regarding computer complexity issues, this paper focuses
on the optimization of the encoder side only. In particular, this work tackles the
partitioning of images into blocks of different sizes for optimizing their compression.

Considering the evolution of the last video compression standards, one can ob-
serve that an increased coding efficiency has been obtained by extending the picture
partitioning options. In HEVC/H.265 [1], the basic partitioning of a non-overlapping
64× 64 Coding Tree Units (CTU) is based on a recursive quad-tree (QT) decomposi-
tion into smaller CUs. In the Joint Exploration Model (JEM) developed by the Joint
Video Exploration Team (JVET), the concept was extended by the introduction of
Binary Tree splitting (BT) that allows splitting a Coding Unit (CU) into two sym-
metric rectangular sub-CUs. Although the standards only specify the syntax that
signals the partitioning of these CUs, encoders require an efficient way to choose and
optimize the sizes of blocks over the images, depending on its ability to compress the
different regions. This process is included into the so-called Rate-Distortion Opti-
mization (RDO) that aims at finding the best compromise between a target quality
of a reconstructed region and the required bits to be transmitted.

Classical encoder speed-ups, usually based on the analysis of the behavior of a full
RDO, are used to avoid a fully exhaustive search over all possible combinations of
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CU partition, coding mode, prediction mode and transform type. These fast methods
are applied at the cost of approximations. Deep-learning based algorithms offer a
complementary way to address the combinatorics issue, with the possibility to develop
automatically trained engines.

An approach relying on Convolutional Neural Networks (CNN) was proposed by
Liu et al. in [2] to drive the encoder for deciding on whether to split a given block,
within the framework of HEVC. All blocks from 8× 8 to 32× 32 are first sampled to
an 8× 8 matrix by averaging, providing an 8× 8 matrix as input to the CNN, which
outputs a duplet of values indicating to split a current block into four smaller blocks
or not (quadtree). A deeper approach was proposed in [3] to optimize the partitioning
of HEVC CUs using a partially convolutional approach on the Luma component only.
More recently, classical machine learning based approaches [4] also reach competitive
results for intra splits prediction on HEVC. Results of these approaches are further
discussed in section 5.

This paper describes a deep-learning-based approach implemented within the pro-
posed encoder of [5], submitted as a response to the call for proposal [6] on video com-
pression with capability beyond HEVC [1], organized by the Joint Video Exploration
Team (JVET). This approach aims at driving the encoder by estimating probabilities
of blocks or Coding Units (CU) splitting in intra slices using the content of these
blocks. The approach is primarily based on a texture analysis of the original blocks,
and partly replaces the costly RDO potentially involved for testing all potential par-
titioning configurations. Compared to other methods, the proposed approach enables
to consider multiple types of splits: QT, BT and introduced Asymmetric Binary Tree
(ABT). It also considers the introduced dual tree, which separate tree structures for
the luma and chroma components.

The remainder of this paper is organized as follows. The overview of the proposed
method is presented in section 2. Section 3 details the CNN architecture and training.
Then, the processing of split probabilities is explained in section 4.1. Finally, the
implementation and results of the proposed method are discussed in section 5.

2 Algorithm overview

A Convolutional Neural Network (CNN) based analysis is proposed to speed-up the
intra slices encoding process. The method is based on texture analysis of original
64 × 64 root blocks, luma or chroma, for predicting the most probable splits inside
each potential sub-block. The method aims at enabling the encoder to leverage the
gains of BT and ABT partitioning, while reducing the combinations for the RDO
checks. The solution described in [5] considers CTUs of size 256 × 256. In intra
slices, the encoder always applies a quadtree split to the CTU as a first splitting
depth, leading to four 128× 128 blocks in luma and 64× 64 blocks in chroma. In the
luma case, the second splitting depth only allows quadtree split, evaluated through a
classical RDO process, leading to one 128×128 or four 64×64 blocks. Root blocks for
CNN based analysis then correspond to the third level of depth in luma, respectively
the second level in chroma. 64 × 64 blocks are considered in both cases. In fact,
65× 65 samples patches, luma or chroma, are considered as input to the CNN stage.



They consist in the original texture of root blocks plus their causal neighboring top
and left boundary samples, as they participate to split decisions in classical RDO.

Figure 1: Overview of the split prediction process.

Fig. 1 depicts the overall process of the split prediction module. This module
precedes the usual RDO process, and pre-selects the split configurations to be tested
by the RDO. It is composed of the following 3 steps:

1. CNN-based analysis – In the first step, each input 65×65 patch is analyzed by
a CNN-based texture analyzer. The output consists of a vector of probabilities
associated to each elementary boundary that separate elementary sub-blocks.
Fig. 2 illustrates the mapping between elementary boundary locations and the
vector of probabilities. The size of elementary blocks being 4 × 4, the vector
contains n = 480 probability values. The CNN is described in section 3.
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Figure 2: Mapping of the boundary locations onto a vector n× 1.

2. Probable split selection – The second step takes as input the probability of
each elementary boundary and outputs a first set of splitting modes among all
possible options, which are: no split, QT, BT (vertical, horizontal), ABT (top,
bottom, left, right). This step is further detailed in section 4.1.

3. Encoder constraints and speed-ups – The third step selects the final set
of splitting modes to be checked by classical RDO, depending on the first set
provided by step 2, the contextual split constraints and the encoder speed-ups
described in [5]. This step is further detailed in section 4.2.



3 CNN-based analysis

3.1 CNN architecture

Two CNNs are used, one dedicated to the luma component and one for the chroma
components. They are trained and inferred independently, since luma and chroma
blocks may have separate partitions in intra slices.

The CNN is loosely based on a small ResNet as described in [7], composed of a
set of convolutional layers with several skip connections. The main differences with
a small ResNet (i.e. 18-layer version with 2 building blocks) are:

- the adaptation of the number of filters (e.g. up to 48 filters instead of 512) and
layers (13 layers instead of 18),

- the absence of batch norm, average pooling and double fully connected layers,
- the pooling at the end of each scaling block,
- the absence of stride during convolution.
- the model contains ∼ 225k parameters (compared to ∼ 10M for ResNet-18).
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Figure 3: Overview of the CNN layout for boundary prediction.

The luma CNN takes as inputs a block of luma samples of size 65 × 65, as well
as a normalized luma Quantization step (Qstep) at the very end during the fully
connected layer. The chroma CNN considers a chroma block 65 × 65 × 2 and a
normalized chroma Qstep at the very end during the fully connected layer.

It outputs a vector describing the probability of the 480 elementary boundary
locations in the input root block as described in Fig. 2.

3.2 CNN training

The training set was created by encoding a set of images in intra mode with the codec
proposed in [5], using a classical RDO. A training set containing a large number of
source images, excluding the JVET test sequences, was created. It is composed mainly
of images from the Div2K dataset and some other internal database. It contains more
than 10M patches, encoded with QPs ranging from 19 to 41.

The ground truth corresponds to the split choices made by the RDO. During this
encoding, several speed-ups, based on heuristics, were disabled, leading to a higher



Figure 4: Dataset creation for CNN training.

number of potential partitions compared to the actual codec version used in [5]. For
each block 64×64, a patch of size 65×65 containing the 64×64 block + 1 pixel-wide
causal border was extracted, as depicted in Fig. 4. The Qstep used for encoding was
also extracted for each block and normalized to consider a value ranging between
0 and 1 for the whole Qstep range. Finally, the ground truth of each elementary
boundary was extracted from the decoded bitstream and mapped onto a vector of
size 480 using the inverse process as shown in Fig.4.

The loss function corresponds to a L2 norm between the ground truth vector V1,
which contains values 1 or 0 depending on whether a boundary exists or not, and the
output of the network Vi, plus a regularization term corresponding to the L2 norm of
the weights of the convolution ck:

L =
∑
i

‖V1 − Vi‖+ λ
∑
k

‖ck‖ (1)

The CNN is classically trained using the deep learning framework Tensorflow [8].
Specifically, the Adam minimizer was used with a learning rate of 10−3, a regulariza-
tion weight of 10−5 and a batch size of 256. The model was trained on 4 epochs in a
few hours on a single recent GPU (GTX-1070).

4 Probable split selection

4.1 Split selection

From the output vector of the CNN, an image of boundaries is constructed, as shown
in Fig. 5 (a). For each sub-block potentially explored by the RDO, the relevant
boundaries are extracted, represented as segments in Fig. 5 (b, c). At each location
of possible splits, the average value of elementary boundaries corresponding to each
half-split boundary is computed, as depicted in yellow in Fig. 5 (c). These values
are then compared to pre-determined thresholds for each split choice. A decision to
explore or not each choice is finally made. Fig. 5 (d) provides an example where, at
this step, i.e. before performing the third step, QT, BT horizontal, and ABT bottom
will be considered by the classical RDO. The thresholds depend on the depth and a
speed-control parameter described in section 5.3.

The decision logic on each split depends on the type of partitioning choice. For
example, when only QT is considered, either no split is explored if all corresponding
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Figure 5: From boundaries to split selection.

boundary probabilities are lower than a pre-determined threshold, or Quadtree split
is explored if at least one vertical and one horizontal half boundary probabilities
are higher than a pre-determined threshold. The remaining combinations, for RDO
exploration, directly depend on the above thresholds. Note that the thresholds can
be different for the luma tree and the chroma tree, enabling the encoder to make
different trade-offs for each tree.

4.2 Encoder constraints and speed-ups

This last step selects the final set of splitting modes to be checked by classical RDO.
Some splitting modes may be removed to be consistent with encoder heuristics, for
example when they are not compatible with the current tree structure, e.g. quadtree
emulation with an horizontal and a vertical split, when a splitting mode has already
been explored in a previous configuration, or when no remaining splitting mode is
available, the RDO falls back to the no-split mode exploration.

5 Speed-control parameter and results

This section details the combinations reduction of the RDO and describes how it is
driven by a single parameter. It also provides results in terms of BD-rate gains versus
encoder complexity.

5.1 Raw trade-off speed/performance

Fig 6 shows an example of trade-off obtained using the proposed method. In this
example, the codec tree structure capabilities have been fixed to the following:

- the maximum QT depth is 3 (32× 32),
- the ABT/BT depth at depth 2 (64× 64) is 2,
- the ABT/BT depth at depth 3 (32× 32) is 8.
The anchor to compare speed and performance is the codec without activating the

CNN but activating standard codec heuristics for speed-up. The decision threshold
is then changed and for each point it gives a BD-rate loss and a speed-up compared
to anchor. One can see that a ×2 speed-up is possible without BD-rate loss. For
a loss below 1% in BD-rate, the speed-up is above ×4, while for a ×10 speed-up,



the BD-rate loss is about 3.8%. The table 1 summarizes some of related state-of-

Table 1: Results on HM.
Method algo. ∆ bdrate ∆T

Liu 2016[2] CNN ∼ 1.1% 27.9%
Lu 2017 [9] heuristics ∼ 2% 57.2%
Xu 2017[3] CNN ∼ 1.4% ∼ 66%
Sun 2018[4] Canny+SVM ∼ 1.1% 48.6%
Proposed CNN 0.005% 54%

the-art results, although implemented for HEVC where the combinations are quite
reduced compared to next generation codec. The comparison is then difficult with
the presented approach. Moreover, the results presented here are taking into account
all processing including the CNN run-time (no GPU used, see section 6), whereas it
is not always specified in previous state-of-the-art methods.
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Figure 6: BD-rate loss as a function of the encoding speed-up for a fix configuration.

5.2 Encoder constraints and speed-ups

Table 2 depicts the estimate of the combinatorics for coding a single luma block of
size 32× 32, using the full combinations for each tree structure using three software
versions of the codec.

Table 2: Number of luma sub-blocks checked at the encoder side.

Tree structure (almost) no heuristics with heuristics with CNN
QT 8340 8181 (-2%) not tested
BT 186932 (×22/QT) 58388 (-69%) 49769 (-73%)

BT+ABT 577689 (×3/QTBT) 416281 (-28%) 182156 (-68%)

The first version corresponds to the encoding with almost no heuristics. The
second version activates classical encoding heuristics (as described in [5]). The third
version, in addition, implements the CNN-based algorithm. The benefit in terms of
reduction of number of RD checks, resulting from the CNN approach, is observed in
Table 2, e.g. −68% instead of −28% with heuristics for BT+ABT.



5.3 Tree exploration trade-offs

A single control parameter called speed-control has been added to the encoder. This
parameter is a floating value. It drives the structure of the tree used for the luma
and chroma: (maximum and minimum QT level and BT /ABT levels, as well as the
thresholds used to prune the tree before the RDO. Table 3 reports the link between
the speed-control parameter and the maximum QT depth and the maximum number
of BT/ABT splits.

Table 3: Tree structures explored depending on the speed-control parameter.
speed-control

parameter
Max

QT depth
ABT/BT

depth[2](64× 64)
ABT/BT

depth[3](32× 32)
ABT/BT

depth[4](16× 16)
[0.65, 1.04[ 2 (64× 64) 8 0 0
[1.04, 1.7[ 3 (32× 32) 2 8 0
[1.7, 3.2[ 4 (16× 16) 0 4 8
[3.2,−[ 3 (32× 32) 0 8 0

In the following, some results are reported using the CfP test set, in AI mode, using
the codec of [5] including the ABT mode. Encoding and performance measurements
were made on the first frame of each sequence.
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Figure 7: BD-rate gains as a function of the relative encoding time (in % of JEM7). Left:
depending on the tree structure, Right: with dynamic tree structure.

The left graph of Fig. 7 shows the trade-off between speed ratio (in %) and BD-rate
gain, over JEM7, for different tree structures, as explained below. One can notice the
behavior of the encoder when the tree structure is kept and does not depend on the
speed-control factor. For low complexity tuning, the QTBT mode is slightly faster at
similar BD-rate performance. At similar compression efficiency, the encoding runtime
of the codec of [5], configured with QTBT only, is approximately 21% of the JEM7
runtime, while the QTBT+ABT is around 23%. On the other hand, QTBT+ABT
offers a better trade-off than the QTBT when the speed ratio is above 50% of the
JEM7 speed. It is also observed in Fig. 7 that the maximum gain over JEM is around



4.8% with QTBT only configuration, while it can increase to a maximum gain of
∼ 7.3% when extending the partitioning to the QTBT+ABT configuration.

On the right graph of Fig. 7, the speed-control parameter varies from 0.65 to
3.4 and the tree structure is adapted per range of speed-control values, as can be
seen in the varying colors of the plotted line, each color corresponding to a specific
tree structure. For example, for the legend tree 028 (in green), corresponding to a
speed-up range between 25% and 60%:

- levels 0,1 and 2 (QT size 256 to 64) do not allow BT splits (maximum level 0),
this does not appear in the legend.

- level 3 (QT size 32) allows a BT tree with a depth of 2; this is indicated by “2”.
- level 4 (QT size 16) allows a BT tree with a maximum depth of 8, marked “8”.
- level 5 and 6 (QT size 8 and 4) are not explored by QT. The other tree types

consist of other configurations that can be derived using this nomenclature and the
above example.

It is observed in Fig. 7 that the proposed split prediction and dynamic tree struc-
ture allows the encoder to cover a wide range of trade-offs. For the same BD-rate
as JEM7, the encoder runtime is 23% of the JEM runtime, which corresponds to a
speed-up of factor 4.3. At the same speed as JEM7, the BD-rate gain is around 6%,
and for a speed of approximately 850% of JEM7, the BD-rate gain reaches 9.1%.

6 CNN implementation and discussion on the results

As this algorithm was developed in the context of JVET, some choices were done
because of the particular constraints of JVET. First, the CNN was trained using
a data set produced using an encoder optimized for the PSNR, as opposed to a
perceptually optimized data set. Second, the trade-off between quality and speed
is evaluated using a mono-thread, CPU only, stand-alone software, as opposed to a
multi-threads or GPU/FPGA based implementation. It means that the trade-off is
evaluated by comparing the speed of running a CNN to decide the splits of a block,
compared to the speed of running the classical RDO, in the same conditions. Hence,
the size of the chosen CNN model is quite small to run on CPU in a single thread.

In this context, a stand-alone C++ version of the above CNN software has been
developed to obtain the presented computer timing results. The code is available on
the JVET web-site as part of the response to the JVET CfP [5]. It can be used as
an inference engine by the encoder, without any dependency to external library.

As a comparison, for a single HD frame, the implemented GPU version requires
around 180ms/frame (on a GTX 1070), the optimized CPU version of Tensorflow
on one core around 2s/frame, and our module around 3.4s/frame. In the encoder,
for each new block 64 × 64 of an intra slice, the model is inferred, taking as inputs:
the block 64× 64, its causal border and the normalized QP. The resulting boundary
probability vector is saved for processing the sub-blocks inside the root-block.



7 Conclusion

A deep-learning-based method for driving the partitioning of CTUs, supporting so-
phisticated structures, has been described. Operating independently on luma and
chroma 64×64 root blocks in intra slice, it determines a subset of most probable split
decisions to be explored by the classical RDO, speeding-up the encoder. A single pa-
rameter drives the proper thresholds and tree structure to find the targeted trade-off
between encoder complexity (speed-up) and efficiency (BD-rate gain). Tested on the
encoder of the CfP response presented in [5], for a given allowed topology of splits,
a speed-up of ×2 is obtained without BD-rate loss, or a speed-up above ×4 with a
loss below 1% in BD-rate, in All Intra configuration. As advanced structures enable
solid compression gains, while impacting the complexity at the encoder side only,
deep learning offers new perspectives for developing video codecs supporting more
elaborated partitioning structures.
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F. Urban, T. Viellard (Technicolor), Y. Chen, W.-J. Chien, H.-C. Chuang, M. Coban,
J. Dong, H. E. Egilmez, N. Hu, M. Karczewicz, A. Ramasubramonian, D. Rusanovskyy,
A. Said, V. Seregin, G. Van Der Auwera, K. Zhang, and L. Zhang (Qualcomm), “JVET-
J0022 Description of SDR, HDR and 360° video coding technology proposal by Qual-
comm and Technicolor – medium complexity version,” Apr. 2018.

[6] A. Segall, V. Baroncini, J. Boyce, J. Chen, and T. Suzuki, “JVET-H1002 Joint Call for
Proposals on Video Compression with Capability beyond HEVC,” Oct. 2017.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

[8] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al., “Tensorflow:
a system for large-scale machine learning.,” in OSDI, 2016, vol. 16, pp. 265–283.

[9] Xin Lu, Nan Xiao, Graham Martin, Yue Hu, and Xuesong Jin, “Fast intra coding im-
plementation for high efficiency video coding (hevc),” in Data Compression Conference
(DCC), 2017.


	1 Introduction
	2 Algorithm overview
	3 CNN-based analysis
	3.1 CNN architecture
	3.2 CNN training

	4 Probable split selection
	4.1 Split selection
	4.2 Encoder constraints and speed-ups

	5 Speed-control parameter and results
	5.1 Raw trade-off speed/performance
	5.2 Encoder constraints and speed-ups
	5.3 Tree exploration trade-offs

	6 CNN implementation and discussion on the results
	7 Conclusion

