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Abstract

In many quantization problems, the distortion function is given by the Euclidean metric to measure

the distance of a source sample to any given reproduction point of the quantizer. We will in this work

regard distortion functions, which are additively and multiplicatively weighted for each reproduction

point resulting in a heterogeneous quantization problem, as used for example in deployment problems

of sensor networks. Whereas, normally in such problems, the average distortion is minimized for given

weights (parameters), we will optimize the quantization problem over all weights, i.e., we tune or

control the distortion functions in our favor. For a uniform source distribution in one-dimension, we

derive the unique minimizer, given as the uniform scalar quantizer with an optimal common weight. By

numerical simulations, we demonstrate that this result extends to two-dimensions where asymptotically

the parameter optimized quantizer is the hexagonal lattice with common weights. As an application,

we will determine the optimal deployment of unmanned aerial vehicles (UAVs) to provide a wireless

communication to ground terminals under a minimal communication power cost. Here, the optimal

weights relate to the optimal flight heights of the UAVs.

I. INTRODUCTION

For a set Ω ⊂ Rd in d = 1, 2 dimensions, a quantizer is given by N reproduction or

quantization points Q = {q1, . . . ,qN} ⊂ Ω associated with N quantization regions R =

{R1, . . . ,RN} ⊂ Ω, defining a partition of Ω. To measure the quality of a given quantizer,

the Euclidean distance between the source samples and reproduction points is commonly used

as the distortion function. We will study quantizers with parameter depending distortion functions
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which minimize the average distortion over Ω for a given continuous source sample distribution

λ : Ω→ [0, 1], as investigated for example in [1]–[3] with a fixed set of parameters. Contrary to a

fixed parameter selection, we will assign to each quantization point variable parameters to control

the distortion function of the each quantization point individually. Such controllable distortion

functions widens the scope of quantization theory and allows one to apply quantization techniques

to many parameter dependent network and locational problems. In this work, we will consider

for the distortion function of qn a Euclidean square-distance, which is multiplicatively weighted

by some an > 0 and additively weighted by some bn > 0. Furthermore, we exponentially weight

all distortion functions by some fixed exponent γ ≥ 1. To minimize the average distortion,

the optimal quantization regions are known to be generalized Voronoi (Möbius) regions, which

can be non-convex and disconnected sets [4]. In many applications, as in sensor or vehicle

deployments, the optimal weights and parameters are usually unknown, but adjustable, and

one wishes therefore to optimize the deployment over all admissible parameter values, see

for example [5]. We will characterize such quantizers with parameterized distortion measures

over one-dimensional convex target regions, i.e., over closed intervals. As a motivation, we will

demonstrate such a parameter driven quantizer for an unmanned aerial vehicle (UAV) deployment

to provide energy-efficient communication to ground terminals in a given target region Ω. Here,

the parameters relate to the UAVs flight heights.

a) Notation: By [N ] = {1, 2, . . . , N} we denote the first N natural numbers, N. We will

write real numbers in R by small letters and row vectors by bold letters. The Euclidean norm

of x is given by ‖x‖ =
√∑

n x
2
n. The open ball in Rd centered at c ∈ Rd with radius r ≥ 0

is denoted by B (c, r) = {ω | ‖ω − c‖2 ≤ r}. We denote by Vc the complement of the set

V ⊂ Rd. The positive real numbers are denoted by R+ := {a ∈ R | a > 0}. Moreover, for two

points a,b ∈ Rd, we denote the generated half space between them, which contains a ∈ Rd, as

H(a,b).

II. SYSTEM MODEL

To motivate the concept of parameterized distortion measures, we will investigate the de-

ployment of N UAVs positioned at P = {p1, . . . ,pN} ⊂ (Ω × R+)N to provide a wireless

communication link to ground terminals (GTs) in a given target region Ω ⊂ Rd. Here, the nth

UAV’s position, pn = (qn, hn), is given by its ground position qn = (xn, yn) ∈ Ω, representing

the quantization point, and its flight height hn, representing its distortion parameter. The optimal
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UAV deployment is then defined by the minimum average communication power (distortion) to

serve GTs distributed by a density function λ in Ω with a minimum given data rate Rb. Hereby,

each GT will select the UAV which requires the smallest communication power, resulting in

so called generalized Voronoi (quantization) regions of Ω, as used in [1]–[3], [5]–[9]. We also

assume that the communication between all users and UAVs is orthogonal, i.e., separated in

frequency or time (slotted protocols).

In the recent decade, UAVs with directional antennas have been widely studied in the literature

[10]–[15], to increase the efficiency of wireless links. However, in [10]–[15], the antenna gain

was approximated by a constant within a 3dB beamwidth and set to zero outside. This ignores

the strong angle-dependent gain of directional antennas, notably for low-altitude UAVs. To obtain

a more realistic model, we will consider an antenna gain which depends on the actual radiation

angle θn ∈ [0, π
2
] from the nth UAV at pn to a GT at ω, see Fig. 1. To capture the power falloff

versus the line-of-sight distance dn along with the random attenuation and the path-loss, we

adopt the following propagation model [16, (2.51)]

PLdB = 10 log10K − 10α log10(dn/d0)− ψdB, (1)

where K is a unitless constant depending on the antenna characteristics, d0 is a reference distance,

α ≥ 1 is the terrestrial path-loss exponent, and ψdB is a Gaussian random variable following

N
(
0, σ2

ψdB

)
. This air-to-ground or terrestrial path-loss model is widely used for UAV basestations

path-loss models [17]. Practical values of α are between 2 and 6 and depend on the Euclidean

distance of GT ω and UAV pn

dn(ω) = d(pn, (ω, 0)) =
√
‖qn − ω‖2 + h2

n =
√

(xn − x)2 + (yn − y)2 + h2
n. (2)

For common practical measurements, see for example [18]. Typically maximal heights for UAVs

are < 1000m, due to flight zone restrictions of aircrafts. Hence, the received power at UAV

n can be represented as PRX = PTXGTXGRXKd
α
0d
−α
n (ω)10−

ψdB
10 , where GTX and GRX are

the antenna gains of the transmitter and the receiver, respectively. Here, we assume perfect

omnidirectional transmitter GT antennas with an isotropic gain and directional receiver UAV

antennas. The angle dependent antenna gains are

GGT > 0 , GUAV = cos (θn) = hn/dn(ω), (3)
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Fig. 1: UAV deployment with directed antenna beam and associated GT cells for α = 2 and
N = 2 for a uniform GT distribution.

see [19, p.52]. The combined antenna intensity is then proportional to G = GUAVGGTK, see

Fig. 1. Accordingly, the received power can be rewritten as

PRX = PTXhnGGTKd
α
0d
−α−1
n (ω)10−

ψdB
10 . (4)

To achieve a reliable communication between GT and UAV with bit-rate at least Rb for a channel

bandwidth B and noise power density N0, the Shannon formula requires B log2

(
1 + PRX

BN0

)
≥ Rb.

The minimum transmission power to UAV pn is then given by

PTX =
(
2
Rb
B −1

)
BN0d(pn, (ω, 0))α+110

ψdB
10 (hnGGTKd

α
0 )−1 (5)

with expectation

E[PTX ]=
(2

Rb
B − 1)N0

hnGGTKdα0

dα+1
n (ω)√
2πσψdB

∫
R

exp

(
− ψ2

dB

2σ2
ψdB

+ln(10)
ψdB
10

)
dψdB =

β

hn
d2γ
n (ω) (6)

where the independent and fixed parameters are given by

β = (2
Rb
B − 1)BN0 exp

(
−
σ2
ψdB

(ln 10)2

200

)
(GGTK)−1d−α0 and γ =

α + 1

2
. (7)

Since our goal is to minimize the average transmission power (6) we define the nth parameter



5

distortion function as

D(ω,qn, an, bn) = β ·
(
an ‖qn − ω‖2

2 + bn
)γ

(8)

where an = h
−1/γ
n and bn = h

2−1/γ
n . As can be seen from (8), the distortion is a function of the

parameter hn in addition to the distance between the reproduction point qn and the represented

point ω. From a quantization point of view, one can start with the distortion function (8) without

knowing the UAV power consumption formulas in this section. This is what we will do in the

next section. For simplicity, we will set from here on β = 1, since it will not affect the quantizer.

III. OPTIMIZING QUANTIZERS WITH PARAMETERIZED DISTORTION MEASURES

The communication power cost (8) defines, with hn and fixed γ ≥ 1, a parameter-dependent

distortion function for qn. For a given source sample GT density λ in Ω and UAV deployment, the

average power is the average distortion for given quantization and parameter points (Q,h) with

quantization sets R = {Rn}, which is called the average distortion of the quantizer (Q,h,R)

D̄(Q,h,R) =
N∑
n=1

∫
Rn
D(ω,qn, hn)λ(ω)dω. (9)

The N quantization sets, which minimize the average distortion for given quantization and

parameter points (Q,h), define a generalized Voronoi tessellation V = {Vn(Q,h)}

D̄(Q,h,V) :=

∫
Ω

min
n∈[N ]

{D(ω,qn, hn)}λ(ω)dω =
N∑
n=1

∫
Vn(Q,h)

D(ω,qn, hn)λ(ω)dω, (10)

where the generalized Voronoi regions Vn(Q,h) are defined as the set of sample points ω with

smallest distortion to the nth quantization point qn with parameter hn. Minimizing the average

distortion D̄(Q,h,V) over all parameter and quantization points can be seen as an N−facility

locational-parameter optimization problem [6]–[8], [20]. By the definition of the Voronoi regions

(10), this is equivalent to the minimum average distortion over all N−level parameter quantizers

D̄(Q∗,h∗,V∗) = min
(Q,h)∈ΩN×RN+

D̄(Q,h,V) = min
(Q,h)∈ΩN×RN+

min
R={Rn}⊂Ω

D̄(Q,h,R), (11)

which we call the N−level parameter optimized quantizer. To find local extrema of (10) ana-

lytically, we will need that the objective function D̄ be continuously differentiable at any point

in ΩN × RN
+ , i.e., the gradient should exist and be a continuous function. Such a property was

shown to be true for piecewise continuous non-decreasing distortion functions in the Euclidean
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metric over ΩN [21, Thm.2.2] and weighted Euclidean metric [6]. Then the necessary condition

for a local extremum is the vanishing of the gradient at a critical point1. First, we will derive the

generalized Voronoi regions for convex sets Ω in d dimensions for any parameters hn ∈ R+ for

the quantization points qn, which are special cases of Möbius diagrams (tessellations), introduced

in [4].

Lemma 1. Let Q = {q1,q2, . . . ,qN} ⊂ ΩN ⊂ (Rd)N for d ∈ {1, 2} be the quantization points

and h = (h1, . . . , hN) ∈ RN
+ the associated parameters. Then the average distortion of (Q,h)

over all samples in Ω distributed by λ for some exponent γ ≥ 1

D̄ (Q,h,V) =
N∑
n=1

∫
Vn

(‖qn − ω‖2 + h2
n)γ

hn
λ(ω)dω (12)

has generalized Voronoi regions Vn = Vn(Q,h) =
⋂
m 6=n Vnm, where the dominance regions of

quantization point n over m are given by

Vnm = Ω ∩


H(qn,qm) , hm = hn

B(cnm, rnm) , hn < hm

Bc(cnm, rnm) , hn > hm

(13)

and center and radii of the balls are given by

cnm=
qn − hnmqm

1− hnm
and rnm=

(
hnm

(1− hnm)2 ‖qn − qm‖2 + h2
n

h1−2γ
nm − 1

1− hnm

) 1
2

. (14)

Here, we introduced the parameter ratio of the nth and mth quantization point as

hnm = (hn/hm)
1
γ . (15)

Remark. It is also possible that two quantization points are equal, but have different parameters.

If the parameter ratio is very small or very large, one quantization point can become redundant,

i.e., if its optimal quantization set is empty. In fact, if we optimize over all quantizer points,

such a case will be excluded, which we will show for one-dimension in Lemma 3.

Proof. The minimization of the distortion functions over Ω defines an assignment rule for a

1Note, if ∇P̄ is not continuous in PN than any jump-point is a potential critical point and has to be checked individually.
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generalized Voronoi diagram V(Q,h) = {V1,V2, . . . ,VN} where

Vn = Vn(Q,h) :=
{
ω ∈ Ω

∣∣ an ‖qn − ω‖2 + bn ≤ am ‖qm − ω‖2 + bm,m 6= n
}

(16)

is the nth generalized Voronoi region, see for example [20, Cha.3]. Here we denoted the weights

by the positive numbers

an = h
− 1
γ

n , bn = h
2− 1

γ
n (17)

which define a Möbius diagram [4], [22]. The bisectors of Möbius diagrams are circles or lines

in R2 as we will show below. The nth Voronoi region is defined by N − 1 inequalities, which

can be written as the intersection of the N − 1 dominance regions of qn over qm, given by

Vnm =
{
ω ∈ Ω

∣∣ an ‖qn − ω‖2 + bn ≤ am ‖qm − ω‖2 + bm
}
. (18)

If hn = hm then an = am and bn = bm, such that Vnm = H(qn,qm), the left half-space between

qn and qm. For an > am we can rewrite the inequality as

‖ω‖2 − 2 〈cnm,ω〉+
a2
n ‖qn‖

2+a2
m ‖qm‖

2−anam(‖qn‖2+‖qm‖2)

(an − am)2
+
bn − bm
an − am

≤0

where the center point is given by

cnm =
anqn − amqm
an − am

= an
qn − hnmqm
an − am

=
qn − hnmqm

1− hnm
(19)

where we introduced the parameter ratio of the nth and mth quantization point as

hnm := am/an = (hn/hm)
1
γ > 0. (20)

If 0 < an− am, which is equivalent to hn < hm, then this defines a ball (disc) and for hn > hm

its complement. Hence we get

Vnm =


B(cnm, rnm) = {ω ∈ Ω | ‖ω − cnm‖ < rnm} , hn < hm

H(qn,qm) = {ω ∈ Ω | ‖ω − qn‖ ≤ ‖ω − qm‖} , hn = hm

Bc(cnm, rnm) = {ω ∈ Ω | ‖ω − cnm‖ > rnm} , hn > hm

(21)
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where the radius square is given by

r2
nm = anam

‖qn − qm‖2

(an − am)2
+
bm − bn
an − am

=
an
am

‖qn − qm‖2

(1− an
am

)2
+
bm − bn
an − am

. (22)

The second summand can be written as

bm − bn
an − am

=
h

2− 1
γ

m − h
2− 1

γ
n

h
− 1
γ

n − h
− 1
γ

m

=
h2
n

(
(hn/hm)

1
γ
−2 − 1

)
1− (hn/hm)

1
γ

= h2
n

h−αnm − 1

1− hnm
. (23)

For any γ ≥ 1, we have hnm = (hn/hm)1/γ < 1 if hn < hm and hnm ≥ 1 else. In both cases

(23) is positive, which implies a radius rnm > 0 whenever qn 6= qm. Inserting (23) in (22) yields

the result.

Example 1. We plotted in Fig. 1, for N = 2 and Ω = [0, 1]2, the GT regions for a uniform

distribution with UAVs placed on

q1 = (0.1, 0.2), h1 = 0.5, and q2 = (0.6, 0.6), h2 = 1. (24)

If the second UAV reaches an altitude of h2 ≥ 2.3, its Voronoi region V2 = V2,1 will be empty

and hence become “inactive“.

A. Local optimality conditions

To find the optimal N−level parameter quantizer (10), we have to minimize the average

distortion (9) over all possible quantization-parameter points, i.e., we have to solve a non-convex

N−facility locational-parameter optimization problem,

D̄(Q∗,h∗,V∗) = min
Q∈ΩN ,h∈RN+

N∑
n=1

∫
Vn(Q,h)

h−1
n (‖qn − ω‖2 + h2

n)γλ(ω)dω (25)

where Vn(Q,h) are the Möbius regions given in (13) for each fixed (Q,h). A point (Q∗,h∗)

with Möbius diagram V∗ = V(Q∗,h∗) = {V∗1 , . . . ,V∗N} is a critical point of (25) if all partial

derivatives of D̄ are vanishing, i.e., if for each n ∈ [N ] it holds

0 =

∫
V∗
n

(q∗n − ω)(‖q∗n − ω‖2 + h∗2n )γ−1λ(ω)dω (26)

0 =

∫
V∗
n

(‖q∗n − ω‖2 + h∗2n )γ−1 · (‖q∗n − ω‖2 − (2γ − 1)h∗2n )λ(ω)dω. (27)
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For N = 1 the integral regions will not depend on Q or h and since the integral kernel is

continuous differentiable, the partial derivatives will only apply to the integral kernel. For N > 1,

the conservation-of-mass law, can be used to show that the derivatives of the integral domains

will cancel each other out, see also [21].

Remark. The shape of the regions depend on the parameters, which if different for each quanti-

zation point (heterogeneous), generate spherical and not polyhedral regions. We will show later,

that homogeneous parameter selection with polyhedral regions will be the optimal regions for

d = 1.

B. The optimal N−level parameter quantizer in one-dimension for uniform density

In this section, we discuss the parameter optimized quantizer for a one-dimensional convex

source Ω ⊂ R, i.e., for an interval Ω = [s, t] given by some real numbers s < t. Under such

circumstances, the quantization points are degenerated to scalars, i.e., qn = xn ∈ [s, t], ∀ n ∈

[N ]. If we shift the interval Ω by an arbitrary a ∈ R, then the average distortion, i.e., the objective

function, will not change if we shift all quantization points by the same number a. Hence, if

we set a = −s, we can shift any quantizer for [s, t] to [0, A] where A = t − s without loss of

generality. Let us assume a uniform distribution on Ω, i.e. λ(ω) = 1/A. To derive the unique

N−level parameter optimized quantizer for any N , we will first investigate the case N = 1.

Lemma 2. Let A > 0 and γ ≥ 1. The unique 1−level parameter optimized quantizer (x∗, h∗)

with distortion function (8) is given for a uniform source density in [0, A] by

x∗=
A

2
, h∗=

A

2
g(γ) and the minimum average distortion D̄(x∗, h∗)=

(
A

2

)2γ−1

g(γ)

where g(γ) = arg minu>0 F (u, γ) < 1/
√

2γ − 1 is the unique minimizer of

F (u, γ) =

∫ 1

0

f(ω, u, γ)dω with f(ω, u, γ) =
(ω2 + u2)γ

u
(28)

which is for fixed γ a continuous and convex function over R+. For γ ∈ {1, 2, 3} the minimizer

can be derived in closed form as

g(1) =
√

1/3, g(2) =

√
(
√

32/5− 1)/9, g(3) =

√(
(32/7)1/3 − 1

)
/5. (29)

Proof. See Appendix A.
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Remark. The convexity of F (·, γ) can be also shown by using extensions of the Hermite-

Hadamard inequality [23], which allows to show convexity over any interval. Let us note here

that for any fixed parameter hn > 0, the average distortion D̄(x∗n ± ε, hn) is strictly monotone

increasing in ε > 0. Hence, x∗n is the unique minimizer for any hn > 0. We will use this

decoupling property repeatedly in the proofs [24].

To derive our main result, we need some general properties of the optimal regions.

Lemma 3. Let Ω = [0, A] for some A > 0. The N−level parameter optimized quantizer

(Q∗,h∗) ∈ ΩN × RN
+ for a uniform source density in Ω has optimal quantization regions

Vn(Q∗,h∗) = [b∗n−1, b
∗
n] with 0 ≤ b∗n−1 < b∗n ≤ A and optimal quantization points x∗n =

(b∗n + b∗n−1)/2 for n ∈ [N ], i.e., each region is a closed interval with positive measure and

centroidal quantization points.

Proof. See Appendix B.

Remark. Hence, for an N−level parameter optimized quantizer, all quantization points are used,

which is intuitively, since each additional quantization point should reduce the distortion of the

quantizer by partitioning the source in non-zero regions.

Theorem 1. Let N ∈ N, Ω = [0, A] for some A > 0, and γ ≥ 1. The unique N−level parameter

optimized quantizer (Q∗,h∗,R∗) is the uniform scalar quantizer with identical parameter values,

given for n ∈ [N ] by

q∗n = x∗n =
A

2N
(2n− 1), h∗ = h∗n =

A

2N
g(γ), R∗n =

[
A

N
(n− 1),

A

N
n

]
(30)

with minimum average distortion

D̄(Q∗,h∗,R∗) =

(
A

2N

)2γ−1 ∫ 1

0

(
ω2 + g2(γ)

)γ
g(γ)

dω. (31)

For γ ∈ {1, 2, 3}, the closed form g(γ) is provided in (29).

Proof. See Appendix C.

Example 2. We plot the optimal heights and optimal average distortion for a uniform GT density

in [0, 1] over various α and N = 2 in Fig. 2. Note that the factor A/2N = 1/4 will play a crucial
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1, α = 1 and N = 2, 4 over a uniform GT density by (30).

role for the height and distortion scaling. Moreover, the distortion decreases exponentially in α

if A/2N < 1.

Let us set β = 1 = A. Then, the optimal UAV deployment is pictured in Fig. 3 for N = 2

and N = 4. The maximum elevation angle θmax is hereby constant for each UAV and does not

change if the number of UAVs, N , increases. Moreover, it is also independent of A and β, since

with (30) we have µ∗n = x∗n − x∗n−1 = A/N and

cos(θmax) = cos(θn) =
h∗

µ∗n/2
=

2N

A

A

2N
g(1) =

1√
3
. (32)

IV. LLYOD-LIKE ALGORITHMS AND SIMULATION RESULTS

In this section, we introduce two Lloyd-like algorithms, Lloyd-A and Lloyd-B, to optimize the

quantizer for two-dimensional scenarios. The proposed algorithms iterate between two steps: (1)

The reproduction points are optimized through gradient descent while the partitioning is fixed;

(ii) The partitioning is optimized while the reproduction points are fixed. In Lloyd-A, all UAVs

(or reproduction points) share the common flight height while Lloyd-B allows UAVs at different

flight heights.

In what follows, we provide the simulation results over the two-dimensional target region Ω =

[0, 10]2 with uniform and non-uniform density functions. The non-uniform density function is a

Gaussian mixture of the form
∑3

k=1
Ak√
2πσ2

k

exp
(
−‖ω−ck‖

2

2σk

)
, where the weights, Ak, k = 1, 2, 3

are 0.5, 0.25, 0.25, the means, ck, are (3, 3), (6, 7), (7.5, 2.5), the standard deviations, σk, are

1.5, 1, and 2, respectively.
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Fig. 4: The performance comparison of Lloyd-A, Lloyd-B and Random Deployment (RD). (a) Uniform density.
(b) Non-uniform density.

To evaluate the performance of the proposed algorithms, we compare them with the average

distortion of 100 random deployments (RDs). Figs. 4a and 4b, show that the proposed algorithms

outperform the random deployment on both uniform and non-uniform distributed target regions.

From Fig. 4a, one can also find that the distortion achieved by Lloyd-A and Lloyd-B are very

close, indicating that the optimality of the common height, as proved for the one-dimensional

case in Section III, might be extended to the two-dimensional case when the density function is

uniform. However, one can find a non-negligible gap between Lloyd-A and Lloyd-B in Fig. 4b

where the density function is non-uniform. For instance, given 16 UAVs and the path-loss

exponent α = 6, Lloyd-A’s distortion is 40.17 while Lloyd-B obtains a smaller distortion, 28.25,

by placing UAVs at different heights. Figs. 5a and 5b illustrate the UAV ground projections and

their partitions on a uniform distributed square region. As the number of UAVs increases, the

UAV partitions approximate hexagons which implies that the optimality of congruent partition

(Theorem 1) might be extended to uniformly distributed users for two-dimensional sources.

However, the UAV projections in Figs. 6a and 6b show that congruent partition is no longer a

necessary condition for the optimal quantizer when distribution is non-uniform.

V. CONCLUSION

We studied quantizers with parameterized distortion measures for an application to UAV

deployments. Instead of using the traditional mean distance square as the distortion, we introduce

a distortion function which models the energy consumption of UAVs in dependence of their
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(a) (b)
Fig. 5: The UAV projections on the ground with generalized Voronoi Diagrams where α = 2 and the source
distribution is uniform. (a) 32 UAVs. (b) 100 UAVs.

(a) (b)
Fig. 6: The UAV projections on the ground with generalized Voronoi Diagrams where α = 2 and the source
distribution is non-uniform. (a) 32 UAVs. (b) 100 UAVs.

heights. We derived the unique parameter optimized quantizer – a uniform scalar quantizer

with an optimal common parameter – for uniform source density in one-dimensional space. In

addition, two Lloyd-like algorithms are designed to minimize the distortion in two-dimensional

space. Numerical simulations demonstrate that the common weight property extends to two-

dimensional space for a uniform density.
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APPENDIX A

PROOF OF LEMMA 2

To find the optimal 1−level parameter quantizer (x∗, h∗) for a uniform density λ(ω) = 1/A,

we need to satisfy (27), i.e., for2 Ω = V1 = V∗1 = [0, A]

0 =

∫ A

0

(x∗ − ω)
(
(x∗ − ω)2 + h∗2

)γ−1
dω. (33)

Substituting x∗ − ω by ω we get

0 =

∫ x∗

x∗−A
ω
(
ω2 + h∗2

)γ−1
dω. (34)

Since the integral kernel is an odd function in ω and x∗ ∈ [0, A], it must hold

0 = −
∫ x∗−A

0

ω(ω2 + h∗2)γ−1dω +

∫ x∗

0

ω(ω2 + h∗2)γ−1dω (35)

by substituting ω by −ω we get∫ A−x∗

0

ω(ω2 + h∗2)γ−1dω =

∫ x∗

0

ω(ω2 + h∗2)γ−1dω. (36)

Hence for any choice of h∗ it must hold x∗ = A− x∗, which is equivalent to x∗ = A/2. To find

the optimal parameter, we can just insert x∗ into the average distortion

D̄(x∗, h) =
1

A

∫ A

0

(x∗ − ω)2 + h2)γ

h
dω =

1

A

∫ A/2

0

(ω2 + h2)γ

h
dω (37)

where we substituted again and inserted x∗ = A/2. By substituting ω with 2ω/A and h with

u = 2h/A we get

=

∫ 1

0

2

A

((Aω/2)2 + (Au/2)2)γ

u
dω =

(
A

2

)2γ−1 ∫ 1

0

f(ω, u, γ)dω (38)

where for each γ ≥ 1 the integral kernel f is a convex function in x = (ω, u) over R2
+. Let us

rewrite f as

f(ω, u, γ) =
(ω2 + u2)γ

u
=
‖(ω, u)‖2γ

2

u
. (39)

Clearly, ‖x‖2 is a convex and continuous function in x over R2 and since (·)2γ with 2γ ≥ 2

is a strictly increasing continuous function, the concatenation f(x, γ) is a strict convex and

2Note, there is no optimizing over the regions, since there is only one.
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continuous function over R2
+. Hence, for any x1,x2 ∈ R2 we have

‖λx1 + (1− λ)x2‖2γ
2 < λ ‖x1‖2γ

2 + (1− λ) ‖x2‖2γ
2 (40)

for all λ ∈ (0, 1). But then we have also for any u1, u2 ∈ R2
+ and ω ≥ 0

f(λu1 + (1− λ)u2, ω, γ) <
λ ‖(ω, u1)‖2γ

2 + (1− λ) ‖(ω, u2)‖2γ
2

λu1 + (1− λ)u2

. (41)

Considering the following inequality

1

u1

+
1

u2

=

(
1

u1

+
1

u2

)
λu1+(1−λ)u2

λu1+(1−λ)u2

=

(
λ+ (1−λ)u2

u1
+(1−λ)+ λu1

u2

)
λu1+(1−λ)u2

>
1

λu1+(1−λ)u2

and (41), we will have

f(λu1 + (1− λ)u2, ω, γ) < λf(u1, ω, γ) + (1− λ)f(u2, ω, γ) (42)

for every λ ∈ (0, 1). Hence, the integral kernel is a strictly convex function for every ω ≥ 0, γ ≥

1, and since the infinite sum (integral) of convex functions is again a convex function, for u > 0,

we have shown convexity of F (u, γ). Note, f(u, ω, γ) is continuous in R2
+ since it is a product

of the continuous functions ‖(u, ω)‖2γ
2 and 1/(u+ 0 · ω), and so is F (u, γ). Therefore, the only

critical point of F (·, γ) will be the unique global minimizer

g(γ) = arg min
u>0

F (u, γ), (43)

which is defined by the vanishing of the first derivative:

F ′(u)=

∫ 1

0

(ω2+u2)γ−1

(
(2γ−1)− ω2

u2

)
dω=

1

u2

∫ 1

0

(ω2+u2)γ−1
(
(2γ−1)u2 − ω2

)
dω. (44)

Hence, F ′(u) can only vanish if u < 1/
√

2γ − 1, which is an upper bound on g(γ). The optimal

parameter for minimizing the average distortion (37) is then

h∗ =
A

2
g(γ) with D̄(x∗, h∗) =

(
A

2

)2γ−1

g(γ). (45)

Analytical solutions for F ′(u) = 0 are possible for integer valued γ. Let us set 0 < x = u2 in

(44), then for γ ∈ N, the integrand in (44) will be a polynomial in ω of degree 2γ and in x of
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degree γ. For γ ∈ {1, 2, 3} the integrand will be

(ω2 + x)0(1x− ω2) = x− ω2 (46)

(ω2 + x)1(3x− ω2) = 3x2 + 2ω2x− ω4 (47)

(ω2 + x)2(5x− ω2) = 5x3 + 9ω2x2 + 3ω4x− ω6 (48)

which yield with the definite integrals to

0 = ω(x− ω2

3
)
∣∣∣
ω=1

(49)

0 = ω(3x2 +
2ω2x

3
− ω4

5
)
∣∣∣
ω=1

(50)

0 = ω(5x3 + 3ω2x2 +
3ω4x

5
− ω6

7
)
∣∣∣
ω=1

(51)

Solving (49) for x yields to the only feasible solution

x =
1

3
⇒ g(1) =

1√
3
≈ 0.577. (52)

The solutions of (50) are

x± = −1

9
±
√

1

81
+

1

15
=
±
√

32/5− 1

9
(53)

Since only positive roots are allowed, we get as the only feasible solution

g(3) =

√√
32/5− 1

3
≈ 0.412. (54)

Finally, the cubic equation (51) results in

5x3 + 3x2 +
3

5
x− 1

7
= 0 (55)

The solution of a cubic equation can be found in [25, p. 2.3.2] by calculating the discriminant

∆ = q2 + 4p3 with q =
2b3 − 9abc+ 27a2d

27a3
, p =

3ac− b2

9a2
(56)
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Let us identify a = 5, b = 3, c = 3/5 and d = −1/7, then we get

q =
6 · 9− 9 · 9− 27 · 52 · 1/7

27 · 53
= − 3

3 · 5 · 25
− 1

5 · 7
= − 32

25 · 35
(57)

∆ = q2 + 4

(
3 · 3− 9

9 · 52

)3

= q2 > 0 (58)

which indicates only one real-valued root, given by

x = α
1/3
+ + α

1/3
− −

b

3a
with α± =

−q ±
√

∆

2
=

{
0,

32

25 · 35

}
(59)

which computes to

x =

(
32

53 · 7

)1/3

− 1

5
=

(32
7

)1/3 − 1

5
⇒ g(5) =

√
(32

7
)1/3 − 1

5
≈ 0.363. (60)

APPENDIX B

PROOF OF LEMMA 3

Although, this statement seems to be trivial, it is not straight forward to show. We will use the

quantization relaxation for the average distortion D̄ in (9) to show that the N−level parameter

optimized quantizer has strictly smaller distortion than the (N − 1)−level optimized quantizer

(10). We define, as in quantization theory, see for example [26], an N−level quantizer for Ω,

by a (disjoint) partition R = {Rn}Nn=1 ⊂ Ω of Ω and assign to each partition region Rn a

quantization-parameter point (qn, hn) ∈ Ω× R+. The assignment rule or quantization rule can

be anything such that the regions are independent of the value of the quantization and parameter

points. Minimizing over the quantizer, that is, over all partitions and possible quantization-

parameter points will yield to the parameter optimized quantizer, which is by definition the

optimal deployment which generate the generalized Voronoi regions as the optimal partition

(tessellation3). This holds for any density function λ(ω) and target area Ω. To see this4, let us

3Since we take here the continuous case, the integral will not distinguish between open or closed sets.
4We use the same argumentation as in the prove of [2, Prop.1].
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start with any quantizer (Q,h,R) for Ω yielding to the average distortion

D̄(Q,h,R) =
N∑
n=1

∫
Rn
D(qn, hn, ω)λ(ω)dω ≥

N∑
n=1

∫
Rn

(
min
m∈[N ]

D(qm, hn, ω)

)
λ(ω)dω

=

∫
Ω

min
m∈[N ]

D(qm, hn, ω)λ(ω)dω =
N∑
n=1

∫
Vn(Q,h)

D(qn, hn, ω)λ(ω)dω (61)

where the first inequality is only achieved if for any ω ∈ Rn we have chosen (qn, hn) to be

the optimal quantization point with respect to D, or vice versa, if every (q, hn) is optimal for

every ω ∈ Rn, which is the definition of the generalized Voronoi region V(Q,h). Therefore,

minimizing over all partitions gives equality, i.e.

min
R

D̄(Q,h,R) = D̄(Q,h,V(Q,h)) (62)

for any (Q,h) ∈ ΩN × RN
+ . Hence, we have shown that the parameterized distortion quantizer

optimization problem is equivalent to the locational-parameter optimization problem

min
Q∈ΩN ,h∈RN+

min
R∈ΩN

D̄(Q,h,R) = min
Q∈ΩN ,h∈RN+

D̄(Q,h,V(Q,h)) = D̄(Q∗,h∗,V∗). (63)

We need to show that for the optimal N−level parameter-quantizer (Q∗,h∗,V∗) with V∗ =

V(Q∗,h∗), we have µ(Vn) > 0 for all n ∈ [N ]. Let us first show that each region is indeed a

closed interval, i.e., V∗n = [b∗n−1, b
∗
n] with 0 ≤ b∗n−1 ≤ b∗n ≤ A.

By the definition of the Möbius regions in Lemma 1, each dominance region is either a

single interval (if it is a ball not contained in the target region or a halfspace) or two disjoint

intervals (if its a ball contained in the target region), we can not have more than Kn ≤ 2N − 2

disjoint closed intervals for each Möbius (generalized Voronoi) region. Therefore, the nth optimal

Möbius region is given as V∗n =
⋃Kn
k=1 vn,k, where vn,k = [an,k−1, an,k] are intervals for some

0 ≤ an,k−1 ≤ an,k ≤ A.

Let us assume there are quantization points with disconnected regions, i.e. Kn > 1 for n ∈

Id and some Id ⊂ [N ]. Then, we will re-arrange the partition V∗ by concatenating the Kn

disconnected intervals vn,k to Rn = [bn−1, bn] for n ∈ Id and move the connected regions

appropriatly such that for all n ∈ [N ] it holds µ(Rn) = µ(V∗n) = bn − bn−1 and bn−1 ≤ bn,

where we set b0 = 0 and bN = A. For the new concatenated regions, we move each q∗n to

the center of the new arranged regions, i.e., q̃n = bn+bn−1

2
for n ∈ Id. If for the connected

regions n ∈ [N ] \ Id, the quantization point q∗n is not centroidal, by placing it at the center
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of the corresponding closed interval, we will obtain a strictly smaller distortion by Lemma 2.

Hence, for the optimal quantizer, the quantization points must be centroidal and we can assume

q̃n = (bn + bn−1)/2 for all n ∈ [N ]. In this rearrangement, we did not change the parameters h∗n
at all. The rearranged partition R = {Rn} and replaced quantization points q̃ = (q̃1, . . . , q̃N)

provide the average distortion

D̄(q̃,h∗,R) =
N∑
n=1

∫ bn

bn−1

((q̃n−ω)2 + h∗2n )γ

h∗n
dω = 2

N∑
n=1

∫ bn−bn−1
2

0

(ω2 + h∗2n )γ

h∗n
dω (64)

where we substituted ω by q̃n−ω. Since the function (ω2 +h∗2n )γ is strictly monotone increasing

in ω for each γ > 0, for any n ∈ Id, we have

D̄n = D̄(q̃n, h
∗
n,Rn) = 2

∫ bn−bn−1
2

0

(ω2 + h∗2n )γ

h∗n
dω <

Kn∑
k=1

∫ an,k−1−q∗n

an,k−q∗n

(ω2 + h∗2n )γ

h∗n
dω (65)

since the non-zero gaps in
⋃
k[an,k − q∗n, an,k−1 − q∗n] will lead to larger ω in the RHS integral

and therefore to a strictly larger average distortion. Therefore, the points (q̃,h∗) with closed

intervals {Rn} have a strictly smaller average distortion, which contradicts the assumption that

(q∗,h∗) is the parameter-optimized quantizer (11). Hence, Kn = 1 for each n ∈ [N ] and

every γ ≥ 1. Moreover, the optimal quantization points must be centroids of the intervals, i.e.

x∗n = (b∗n + b∗n−1)/2.

Now, we have to show that the optimal quantization regions V∗n = {[b∗n−1, b
∗
n]}Nn=1 are not

points, i.e., it should hold b∗n > b∗n−1 for each n ∈ [N ]. If b∗n = b∗n−1 for some n, then the nth

average distortion D̄n will be zero for this quantization point, since the integral is vanishing.

But, then we only optimize over N − 1 quantization points. So we only need to show that an

additional quantization point strictly decreases the minimum average distortion. Hence, take any

non-zero optimal quantization region V∗n = [b∗n−1, b
∗
n]. We know by Lemma 2 that the optimal

quantizer q∗n for some closed interval V∗n must be centroidal for any parameter hn. Hence, if

we split V∗n with µ∗n = b∗n − b∗n−1 by a half and put two quantizers qn1 and qn2 with the same

parameter h∗n in the center, we will get by using (65)

D̄n1 +D̄n2 =
1

h∗n

∫ b∗n−1+
µ∗n
2

b∗n−1

((qn1 − ω)2 + h∗2n )γdω +

∫ b∗n

b∗n−1+
µ∗n
2

((qn2 − ω)2 + h∗2n )γdω


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Substituting qni − ω by ω, we get

=

∫ µ∗n
4

−µ
∗
n
4

(ω2 + h∗2n )γ

h∗n
dω +

∫ µ∗n
4

−µ
∗
n
4

(ω2 + h∗2n )γ

h∗n
dω (66)

= 2

∫ µ∗n
4

0

(ω2 + h∗2n )γ

h∗n
dω + w

∫ µ∗n
4

0

(ω2 + h∗2n )γ

h∗n
dω (67)

< 2

∫ µ∗n
4

0

(ω2+h∗2n )γ

h∗n
dω + 2

∫ µ∗n
2

µ∗n
4

(ω2+h∗2n )γ

h∗n
dω = 2

∫ µ∗n
2

0

(ω2+h∗2n )γ

h∗n
dω = D̄n. (68)

Hence, the average distortion will strictly decrease if µ∗n > 0. Therefore, the N−level parameter

optimized quantizer will have quantization boundaries bn>bn−1 for n ∈ [N ].

APPENDIX C

PROOF OF THEOREM 1

We know by Lemma 3 that the optimal quantization regions are closed non-vanishing intervals

V∗n = [b∗n−1, b
∗
n] for some b∗n−1 < b∗n with quantization points

q∗n = x∗n =
b∗n + b∗n−1

2
(69)

for n ∈ [N ]. Let us set µ∗n = b∗n− b∗n−1 for n ∈ [N ]. By substituting 2(x∗n−ω)
µn

= ω̃ and h∗n = u∗nµ
∗
n

2

in the average distortion, we get

D̄(Q∗,h∗,V∗) =
N∑
n=1

∫ b∗n

b∗n−1

((x∗n − ω)2 + h∗n
2)γ

h∗n

dω

A
=

N∑
n=1

∫ −1

1

−(µ∗2n ω̃
2/4 + u∗2n µ

∗2
n /4)γ

u∗nµ
∗
n/2

µn
2A

dω̃

=
1

22γ−1A

N∑
n=1

µ∗2γn ·
∫ 1

0

(ω2 + u∗2n )γ

u∗n
dω (70)

where we used (69) to get for the integral boundaries 2(x∗n − b∗n−1)/µ∗n = 1 = −2(x∗n − b∗n)/µ∗n.

We do not know the value of u∗n and µ∗n but we know that µ∗n > 0 and
∑N

n=1 µ
∗
n = A by

Lemma 3. Furthermore, (70) is the minimum over all such µn > 0 and un > 0. Hence, it must

hold

D̄(Q∗,h∗,V∗) =
1

22γ−1A
min
un>0

min
µn>0

A=
∑N
n=1 µn

N∑
n=1

µ2γ
n ·
(∫ 1

0

(ω2 + u2
n)γ

un
dω

)
=

g(γ)

22γ−1A
min
µn>0

A=
∑N
n=1 µn

N∑
n=1

µ2γ
n
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where in the last equality we used Lemma 2. By the Hölder inequality we get for p = 2γ, q =

2γ/(2γ − 1)

N∑
n=1

µ2γ
n =

N∑
n=1

µpn =
N∑
n=1

µpn ·
( N∑
n=1

(1/N)q
)p/q
·N ≥

( N∑
n=1

µn
N

)p
·N =

(
A

N

)2γ

N

where the equality is achieved if and only if µ∗n = A/N . Hence, the optimal parameter-quantizer

is the uniform scalar quantizer x∗n = (2n−1)A/2N with identical parameters h∗ = (A/2N)g(γ)

resulting in the minimum average distortion (31).

Let us note here, that for identical parameters, the Möbius regions are closed intervals and

reduce to Euclidean Voronoi regions by Lemma 1, for which the optimal tessellation is known

to be the uniform scalar quantizer, see for example [26].
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