
MR-RePair: Grammar Compression based on Maximal Repeats

Isamu Furuya∗, Takuya Takagi∗, Yuto Nakashima†, Shunsuke Inenaga†,
Hideo Bannai†, Takuya Kida∗

∗ Graduate School of IST, † Department of Informatics,
Hokkaido University, Japan Kyushu University, Japan
furuya@ist.hokudai.ac.jp yuto.nakashima@inf.kyushu-u.ac.jp

tkg@ist.hokudai.ac.jp inenaga@inf.kyushu-u.ac.jp

kida@ist.hokudai.ac.jp bannai@inf.kyushu-u.ac.jp

Abstract

We analyze the grammar generation algorithm of the RePair compression algorithm, and show
the relation between a grammar generated by RePair and maximal repeats. We reveal that RePair
replaces step by step the most frequent pairs within the corresponding most frequent maximal re-
peats. Then, we design a novel variant of RePair, called MR-RePair, which substitutes the most
frequent maximal repeats at once instead of substituting the most frequent pairs consecutively. We
implemented MR-RePair and compared the size of the grammar generated by MR-RePair to that
by RePair on several text corpora. Our experiments show that MR-RePair generates more compact
grammars than RePair does, especially for highly repetitive texts.

1 Introduction

Grammar compression is a method of lossless data compression that reduces the size of a given text by
constructing a small context free grammar that uniquely derives the text. While the problem of generating
the smallest such grammar is NP-hard [6], several approximation techniques have been proposed. Among
them, RePair [11] is known as an off-line method that achieves a high compression ratio in practice [7,
9, 20], despite its simple scheme. There have been many studies concerning RePair, such as extending it
to an online algorithm [13], improving its practical working time or space [5, 17], applications to other
fields [7, 12, 18], and analyzing the generated grammar size theoretically [6, 15, 16].

Recently, maximal repeats have been considered as a measure for estimating how repetitive a given
string is: Belazzougui et al. [4] showed that the number of extensions of maximal repeats is an upper
bound on the number of runs in the Burrows-Wheeler transform and the number of factors in the Lempel-
Ziv parsing. Also, several index structures whose size is bounded by the number of extensions of maximal
repeats have been proposed [2, 3, 19].

In this paper, we analyze the properties of RePair with regard to its relationship to maximal repeats.
As stated above, several works have studied RePair, but, to the best of our knowledge, none of them
associate RePair with maximal repeats. Moreover, we propose a grammar compression algorithm, called
MR-RePair, that focuses on the property of maximal repeats. Ahead of this work, several off-line grammar
compression schemes focusing on (non-maximal) repeats have been proposed [1, 10, 14]. Very recently,
Gańczorz and Jeż addressed to heuristically improve the compression ratio of RePair with regard to the
grammar size [8]. However, none of these techniques use the properties of maximal repeats. We show
that, under a specific condition, there is a theoretical guarantee that the size of the grammar generated
by MR-RePair is smaller than or equal to that generated by RePair. We also confirmed the effectiveness
of MR-RePair compared to RePair through computational experiments.
Contributions: The primary contributions of this study are as follows.

ar
X

iv
:1

81
1.

04
59

6v
2

 [
cs

.D
S]

 1
8

Fe
b

20
19

furuya@ist.hokudai.ac.jp
yuto.nakashima@inf.kyushu-u.ac.jp
tkg@ist.hokudai.ac.jp
inenaga@inf.kyushu-u.ac.jp
kida@ist.hokudai.ac.jp
bannai@inf.kyushu-u.ac.jp

1. We analyze RePair and show the relation between a grammar generated by RePair and maximal
repeats.

2. We design a novel variant of RePair called MR-RePair, which is based on substituting the most
frequent maximal repeats.

3. We implemented our MR-RePair algorithm and experimentally confirmed that MR-RePair reduces
the size of the generated grammar compared to RePair; in particular, the size decreased to about
55% for a highly repetitive text that we used in our experiment.

The remainder of this paper is organized as follows. In Section 2, we review the notations of strings
and the definitions of maximal repeats, grammar compression, and RePair. In Section 3, we analyze
RePair and show the relation between RePair and maximal repeats. In Section 4, we define MR-RePair,
compare it with RePair, and describe the implementation of it. In Section 5, we present experimental
results of comparison to RePair. Finally, we conclude the paper in Section 6.

2 Preliminaries

In this sections, we provide some notations and definitions to be used in the following sections. In
addition, we recall grammar compression and review the RePair.

2.1 Basic notations and terms

Let Σ be an alphabet, which is an ordered finite set of symbols. An element T = t1 · · · tn of Σ∗ is called
a string, where |T | = n denotes its length. We denote the empty string by ε which is the string of length
0, namely, |ε| = 0. Let Σ+ = Σ∗\{ε}. A string is also called a text. Let T = t1 · · · tn ∈ Σn be any text of
length n. If T = usw with u, s, w ∈ Σ∗, then s is called a substring of T . Then, for any 1 ≤ i ≤ j ≤ n,
let T [i..j] = ti · · · tj denote the substring of T that begins and ends at positions i and j in T , and let
T [i] = ti denote the ith symbol of T . For a finite set S of texts, text T is said a superstring of S, if T
contains all texts of S as substrings. We call the number of occurrences of s in a text as a substring, the
frequency of s, and denote it by #occ(s). Texts Σ∗ and Σ̂∗ are said to be isomorphic for alphabet Σ and
Σ̂, if there exists an isomorphism from Σ to Σ̂.

2.2 Maximal repeats

Let s be a substring of text T . If the frequency of s is greater than 1, s is called a repeat. A left (or
right) extension of s is any substring of T with the form ws (or sw), where w ∈ Σ∗. We say that s is
left (or right) maximal if left (or right) extensions of s occur strictly fewer times in T than s, and call
s a maximal repeat of T if s is left and right maximal. We call s a maximal repeatg of T if both left-
and right-extensions of s occur strictly fewer times in T than s. In this thesis, we consider only such
strings with length more than 1 as maximal repeats. For example, substring abra of T =abracadabra is
a maximal repeat, while br is not.

2.3 Grammar compression

A context free grammar (CFG or grammar, simply) G is defined as a 4-tuple G = {V,Σ, S,R}, where V
is an ordered finite set of variables, Σ is an ordered finite alphabet, R is a finite set of binary relations
called production rules (or rules) between V and (V ∪ Σ)∗, and S ∈ V is a special variable called start
variable. A production rule represents the manner in which a variable is substituted and written in a
form v → w with v ∈ V and w ∈ (V ∪ Σ)∗. Let X,Y ∈ V ∪ Σ∗. If there are xl, x, xr, y ∈ (V ∪ Σ)∗ such
that X = xlxxr, Y = xlyxr, and x→ y ∈ R, we write X ⇒ Y , and denote the reflexive transitive closure

2

a b r a c a d a b r a

vα → α (α = a, b, r, c, d) va vb vr va vc va vd va vb vr va
v1 → vavb v1 vr va vc va vd v1 vr va
v2 → v1vr v2 va vc va vd v2 va
v3 → v2va v3 vc va vd v3

S → v3vcvavdv3 S

Figure 1: An example of the grammar generation process of RePair for text abracadabra. The generated
grammar is {{va, vb, vr, vc, vd, v1, v2, v3, S}, {a, b, r, c, d}, S, {va → a, vb → b, vr → r, vc → c, vd → d, v1 →
vavb, v2 → v1vc, v3 → v2vd, S → v3vcvavdv3}}, and the grammar size is 16.

of ⇒ by
∗⇒. Let val(v) be the string derived from v, i.e., v

∗⇒ val(v), and let [[w]] denote a variable that

derives w, i.e. [[w]]
∗⇒ w. Note that [[w]] is not necessarily unique. We define grammar Ĝ = {V̂ , Σ̂, Ŝ, R̂}

as a subgrammar of G if V̂ ⊆ V , Σ̂ ⊆ V ∪ Σ, and R̂ ⊆ R.
Given a text T , grammar compression is a method of lossless text data compression that constructs

a restricted CFG, which uniquely derives the given text T . For G to be deterministic, a production rule
for each variable v ∈ V must be unique. In what follows, we assume that every grammar is deterministic
and each production rule is vi → expr i, where expri is an expression either expr i = a (a ∈ Σ) or
expr i = vj1vj2 · · · vjn (i > jk for all 1 ≤ k ≤ jn).

We estimate the effectiveness of compression by the size of generated grammar, which is counted by
the total length of the right-hand-side of all production rules of the generated grammar.

2.4 RePair

RePair is a grammar compression algorithm proposed by Larsson and Moffat [11]. For input text T , let
G = {V,Σ, S,R} be the grammar generated by RePair. RePair constructs G by the following steps:

Step 1. Replace each symbol a ∈ Σ with a new variable va and add va → a to R.
Step 2. Find the most frequent pair p in T .
Step 3. Replace every occurrence (or, as many occurrences as possible, when p is a pair consisting of
the same symbol) of p with a new variable v, then add v → p to R.
Step 4. Re-evaluate the frequencies of pairs for the renewed text generated in Step 3. If the maximum
frequency is 1, add S → (current text) to R, and terminate. Otherwise, return to Step 2.

Figure 1 shows an example of the grammar generation process of RePair.

Lemma 1 ([11]). RePair works in O(n) expected time and 5n+ 4k2 + 4k′+ d
√
n+ 1e−1 words of space,

where n is the length of the source text, k is the cardinality of the source alphabet, and k′ is the cardinality
of the final dictionary.

3 Analyzing RePair

In this section, we analyze RePair with regard to its relationship to maximal repeats, and introduce an
important concept, called MR-order.

3.1 RePair and maximal repeats

The following theorem shows an essential property of RePair. That is, RePair recursively replaces the
most frequent maximal repeats.

3

Theorem 1. Let T be a given text, and assume that every most frequent maximal repeat of T does not
appear with overlaps with itself. Let f be the frequency of the most frequent pairs of T , and t be a text
obtained after all pairs with frequency f in T are replaced by variables. Then, there is a text s such that
s is obtained after all maximal repeats with frequency f in T are replaced by variables, and s and t are
isomorphic to each other.

We need two lemmas and a corollary to prove Theorem 1. The following lemma shows a fundamental
relation between the most frequent maximal repeats and the most frequent pairs in a text.

Lemma 2. A pair p of variables is most frequent in text T if and only if p occurs once in exactly one of
the most frequent maximal repeats of T .

Proof. (⇒) Let r be a most frequent maximal repeat that contains p as a substring. It is clear that
p can only occur once in r, since otherwise, #occ(p) > #occ(r) would hold, implying the existence of
a frequent maximal repeat that is more frequent than r, contradicting the assumption that r is most
frequent. Suppose there exists a different most frequent maximal repeat r′ that contains p as a substring.
Similarly, p occurs only once in r′. Furthermore, since r and r′ can be obtained by left and right extensions
to p, #occ(r) = #occ(r′) = #occ(p), and any occurrence of p is contained in an occurrence of both r and
r′. Since r′ cannot be a substring of r, there exists some string w that is a superstring of r and r′, such
that #occ(w) = #occ(r) = #occ(r′) = #occ(p). However, this contradicts that r and r′ are maximal
repeats.

(⇐) Let r be the most frequent maximal repeat such that p occurs once in. By definition, #occ(r) =
#occ(p). If p is not the most frequent symbol pair in T , there exists some symbol pair p′ in T such
that #occ(p′) > #occ(p) = #occ(r). However, this implies that there is a maximal repeat r′ with
#occ(r′) = #occ(p′) > #occ(r), contradicting that r is most frequent.

The following corollary is directly derived from Lemma 2.

Corollary 1. For a given text, the frequency of the most frequent pairs and that of the most frequent
maximal repeats are the same.

The following lemma shows an important property of the most frequent maximal repeats.

Lemma 3. The length of overlap between any two occurrences of most frequent maximal repeats is at
most 1.

Proof. Let xw and wy be most frequent maximal repeats that have an overlapping occurrence xwy, where
x, y, w ∈ Σ+. If |w| ≥ 2, then, since xw and wy are most frequent maximal repeats, it must be that
#occ(w) = #occ(xw) = #occ(wy), i.e., every occurrence of w is preceded by x and followed by y. This
implies that #occ(xwy) = #occ(xw) = #occ(wy) as well, but contradicts that xw and wy are maximal
repeats.

From the above lemmas and a corollary, now we can prove Theorem 1.

Proof of Theorem 1. By Corollary 1, the frequency of the most frequent maximal repeats in T is f . Let
p be one of the most frequent pairs in T . By Lemma 2, there is a unique maximal repeat that is most
frequent and contains p once. We denote such maximal repeat by r. Assume that there is a substring
zxpyw in T , where z, w ∈ Σ, x, y ∈ Σ∗, and xpy = r. We denote r[1] and r[|r|] by ẋ and ẏ, respectively.
There are 2 cases to consider:
(i) #occ(zẋ) < f and #occ(ẏw) < f . If |r| = 2, the replacement of p directly corresponds to the
replacement of the most frequent maximal repeat, since p = r. If |r| > 2, after p is replaced with a
variable v, r is changed to xvy. This occurs f times in the renewed text, and by Lemma 2, the frequency
of every pair occurring in xvy is still f . Because the maximum frequency of pairs does not increase, f
is still the maximum frequency. Therefore, we replace all pairs contained in xvy in the following steps,

4

and zẋ and ẏw are not replaced. This holds for every occurrence of p, implying that replacing the most
frequent pairs while the maximum frequency does not change, corresponds to replacing all pairs contained
(old and new) in most frequent maximal repeats of the same frequency until they are replaced by a single
variable. Then, we can generate s by replacement of r.
(ii) #occ(zẋ) = f or #occ(ẏw) = f . We consider the case where #occ(zẋ) = f . Note that #occ(zxpy) <
f by assumption that xpy is a maximal repeat. Suppose RePair replaces zẋ by a variable v before p is
replaced. Note that by Lemma 2, there is a maximal repeat occurring f times and including zẋ once
(we denote the maximal repeat by r′), and r′ 6= r by assumption. By Lemma 3, the length of overlap
of r and r′ is at most 1, then only ẋ is a symbol contained both r and r′. After that, xpy = r is
no longer the most frequent maximal repeat because some of its occurrences are changed to vr[2..|r|].
However, r[2..|r|] still occurs f times in the renewed text. Since #occ(zxpy) < f and #occ(xpy) = f ,
#occ(vr[2]) < f and r[2..|r|] is a maximal repeat. Then, r[2..|r|] will become a variable in subsequent
steps, similarly to (i). Here, r′ would also become a variable. Thus, we can generate s in the way that
we replace r′ first, then we replace r[2..|r|]. This holds similarly for ẏw when #occ(ẏw) = f , and when
#occ(zẋ) = #occ(ẏw) = f .

3.2 MR-order

From Theorem 1, if the most frequent maximal repeat is unique in the current text, then all the oc-
currences of it are replaced step by step by RePair. However, it is a problem if there are two or more
most frequent maximal repeats and some of them overlap. In this case, which maximal repeat is first
summarized up depends on the order in which the most frequent pairs are selected. Note, however, if
there are multiple most frequent pairs, which pair is first replaced depends on the implementation of
RePair. We call this order of selecting (summarizing) maximal repeats maximal repeat selection order
(or MR-order, simply).

For instance, consider a text abcdeabccde. abc and cde are the most frequent maximal repeats
occurring 2 times. There are 2 MR-order, depending on which one is attached priority to the other. The
results after replacement by RePair with the MR-order are (i) xyxcx with variables x and y such that

x
∗⇒ abc and y

∗⇒ de, and (ii) zwzcw with variables z and w such that z
∗⇒ ab and w

∗⇒ cde. More
precisely, there are 12 possible ways in which RePair can compress the text, and the generated rule sets
are:

1. {v1 → ab, v2 → v1c, v3 → de, S → v2v3v2cv3},

2. {v1 → ab, v2 → de, v3 → v1c, S → v3v2v3cv2},

3. {v1 → bc, v2 → av1, v3 → de, S → v2v3v2cv3},

4. {v1 → bc, v2 → de, v3 → av1, S → v3v2v3cv2},

5. {v1 → ed, v2 → ab, v3 → v2c, S → v3v1v3cv1},

6. {v1 → ed, v2 → bc, v3 → av2, S → v3v1v3cv1},

7. {v1 → ab, v2 → cd, v3 → v2e, S → v1v3v1cv3},

8. {v1 → ab, v2 → de, v3 → cv2, S → v1v3v1cv3},

9. {v1 → cd, v2 → ab, v3 → v1e, S → v2v3v2cv3},

10. {v1 → cd, v2 → v1e, v3 → ab, S → v3v2v3cv2},

11. {v1 → ed, v2 → ab, v3 → cv1, S → v2v3v2cv3},

5

12. {v1 → ed, v2 → cv1, v3 → ab, S → v3v2v3cv2}.

Here, 1 - 6 have the same MR-order, because abc is prior to cde in all of them. On the other hand, 7 -
12 have the same MR-order for similar reason; cde is prior to abc.

The size of the grammar generated by RePair varies according to how to select a pair when there are
several distinct most frequent pairs that overlap. For instance, consider the text bcxdabcyabzdabvbcuda.
There are 3 most frequent pairs, ab, bc, and da with 3 occurrences. If RePair takes ab first, the rule
set of generated grammar may become {v1 → ab, v2 → bc, v3 → dv1, S → v2xv3cyv1zv3vv2uda} and
the size of it is 19. On the other hand, if RePair takes da first, the rule set of generated grammar may
become {v1 → da, v2 → bc, S → v2xv1v2yabzv1bvv2uv1} and the size of it is 18.

Remark 1. If there are several distinct pairs with the same maximum frequency, the size of the grammar
generated by RePair depends on the replacement order of them.

However, the following theorem states that MR-order rather than the replacement order of pairs is
essentially important for the size of the grammar generated by RePair.

Theorem 2. The sizes of the grammars generated by RePair are the same if they are generated in the
same MR-order.

Proof. Let T be a variable sequence appearing in the grammar generation process of RePair, and f be
the maximum frequency of pairs in T . Suppose that T ′ is a variable sequence generated after RePair
replaces every pair occurring f times. By Theorem 1, all generated T ′ are isomorphic to one another,
then the length of all of them is the same, regardless of the replacement order of pairs. Let r1 be the most
frequent maximal repeats of T such that r1 is prior to all other ones in this MR-order. r1 is converted
into a variable as a result, and by Lemma 2, all pairs included in r1 are distinct. Then, the size of the
subgrammar which exactly derives r1 is 2(|r1| − 1) + 1 = 2|r1| − 1. This holds for the next prioritized
maximal repeat (we denote it by r2) with a little difference; the pattern actually replaced would be a
substring of r2 excluding the beginning or the end of it, if there are occurrences of overlap with r1.
However, these strings are common in the same MR-order, then the sizes of generated subgrammars are
the same, regardless of the selecting order of pairs. This similarly holds for all of the most frequent
maximal repeats, for every maximum frequency of pairs, through the whole process of RePair.

3.3 Greatest size difference of RePair

We consider the problem of how large the difference between possible outcomes of RePair can be.

Definition 1 (Greatest Size Difference). Let g and g′ be sizes of any two possible grammars that can
be generated by RePair for a given text. Then, the Greatest Size Difference of RePair (GSDRP) is
max(|g − g′|).

We show a lower bound of above GSDRP in the following theorem.

Theorem 3. Given a text with length n, a lower bound of GSDRP is 1
6 (
√

6n+ 1 + 13).

Proof. Let B, L, and R be strings such that

B = l1xyr1l2xyr2 · · · lf−1xyrf−1lf xyrf ,

L = ♦l1x♦l2x · · · ♦lf x,

R = ♦yr1♦yr2 · · · ♦yrf ,

where x, y, l1, . . . , lf , r1, . . . , rf denote distinct symbols, and each occurrence of ♦ denotes a distinct
symbol. Consider text T = BLf−1Rf−1. Here, xy, l1x, · · · , lfx, yr1 , · · · , yrf are the most frequent

6

maximal repeats with frequency f in T . Let G and G′ be grammars generated by RePair for T in
different MR-order, such that (i) xy is prior to all other maximal repeats, and (ii) xy is posterior to all
other maximal repeats, respectively. We denote the sizes of G and G′ by g and g′, respectively.

First, we consider G and how RePair generates it. The first rule generated by replacement is v1 → xy
because of the MR-order. After replacement, L and R is unchanged but B becomes the following text:

B1 = l1v1r1l2v1r2 · · · lf−1v1rf−1lf v1rf .

Each pair in B1 occurs only once in the whole text B1L
f−1Rf−1. This means that B1 is never be

shortened from the current length, 3f . In the remaining steps, each lix and yri (for i = 1, · · · , f) is
replaced, and that is all. L and R changed to texts whose length are both 2f . Hence, the following holds:

g = 3f + 2 · 2f + 2(1 + 2f) = 11f + 2. (1)

Next, we consider G′ and how RePair generates it. By its MR-order, l1x, · · · , lfx, yr1 , · · · , yrf are
replaced before xy is selected. They do not overlap with each other, and after they are replaced, xy does
not occur in the generated text. Therefore, in G′, there are 2f rules which derive each lix and yri (for
i = 1, · · · , f), respectively, but the rule which derives xy is absent. L and R changed to texts whose
length are both 2f , and B changed to a text with length 2f . Hence, the following holds:

g′ = 2f + 2 · 2f + 2 · 2f = 10f. (2)

Let us denote the length of the original text T = BLf−1Rf−1 by n. Then, the following holds:

n = 4f + 2(3f)(f − 1) = 6f2 − 2f.

Therefore,

f =
1

6
(
√

6n+ 1 + 1) (3)

holds. By (1), (2), and (3),

g − g′ = 11f + 2− 10f = f + 2

=
1

6
(
√

6n+ 1 + 13)

holds and the theorem follows.

4 MR-RePair

The main strategy of our proposed method is to recursively replace the most frequent maximal repeats,
instead of the most frequent pairs.

In this section, first, we explain the näıve version of our method called Näıve-MR-RePair. While it
can have bad performance in specific cases, it is simple and helpful to understand our main result. Then,
we describe our proposed MR-RePair.

4.1 Näıve-MR-RePair

Definition 2 (Näıve-MR-RePair). For input text T , let G = {V,Σ, S,R} be the grammar generated by
Näıve-MR-RePair. Näıve-MR-RePair constructs G by the following steps:

7

a b r a c a d a b r a

vα → α (α = a, b, r, c, d) va vb vr va vc va vd va vb vr va
v1 → vavbvrva v1 vc va vd v1
S → v1vcvavdv1 S

Figure 2: An example of the grammar generation process of Näıve-MR-RePair for text abracadabra.
The generated grammar is {{va, vb, vr, vc, vd, v1, S}, {a, b, r, c, d}, S, {va → a, vb → b, vr → r, vc → c, vd →
d, v1 → vavbvrva, S → v1vcvavdv1}}, and the grammar size is 14.

Step 1. Replace each symbol a ∈ Σ with a new variable va and add va → a to R.
Step 2. Find the most frequent maximal repeat r in T .
Step 3. Replace every occurrence (or, as many occurrences as possible, when there are overlaps) of r in
T with a new variable v, and then add v → r to R.
Step 4. Re-evaluate the frequencies of maximal repeats for the renewed text generated in Step 3. If the
maximum frequency is 1, add S → (current text) to R, and terminate. Otherwise, return to Step 2.

We can easily extend the concept of MR-order to this Näıve-MR-RePair.
We show an example of the grammar generation process of Näıve-MR-RePair in Figure 2. Fig-

ure 1 and 2 illustrates the intuitive reason why the strategy using maximal repeats is effective compared
to that using pairs. When compressing text vavbvrvavcvavdvavbvrva, RePair and Näıve-MR-RePair both
generate subgrammars which derive the most frequent maximal repeat vavbvrva. The rule set of the
subgrammar of RePair is {v1 → vavb, v2 → v1vr, v3 → v2va}, and the size is 6. On the other hand, the
rule set of subgrammar of Näıve-MR-RePair is {v1 → vavbvrva}, and the size is 4.

However, the following theorem indicates that the size of the grammar generated by Näıve-MR-RePair
is larger than that by RePair in particular cases, even when they work in the same MR-order.

Theorem 4. Given a text T with length n, and assume that RePair and Näıve-MR-RePair work in the
same MR-order. Let grp and gnmr be sizes of grammars generated by RePair and Näıve-MR-RePair for
T , respectively. Then, there is a case where gnmr = grp +O(log n) holds.1

Proof. Assume that Grp = {Vrp ,Σrp , Srp , Rrp} and Gnmr = {Vnmr ,Σnmr , Snmr , Rnmr} are grammars
generated by RePair and Näıve-MR-RePair, respectively. Let T ′ = v1 · · · vn such that vi ∈ Vrp ∩
Vnmr and vi → T [i] ∈ Rrp ∩ Rnmr (for i = 1, · · · , n), and Ĝrp = {V̂rp , Σ̂rp , Ŝrp , R̂rp} (or Ĝnmr =

{V̂nmr , Σ̂nmr , Ŝnmr , R̂nmr}) be a subgrammar of Grp (or Gnmr) which derives T ′. Assume that T ′ =

(uw)2
m+1−1u, where u ∈ Vrp ∩ Vnmr , w ∈ (Vrp ∩ Vnmr)+ such that uwu is the most frequent maximal

repeat of T ′, and m ∈ N+. Note that 2m+1 − 1 =
∑m
i=0 2i. Here R̂rp and R̂nmr consist as follows:

R̂rp: Assume that xi ∈ V̂rp for 1 ≤ i ≤ m and yj ∈ V̂rp ∪ Σ̂rp for 1 ≤ j ≤ |w|, then

• |w| rules yj → ylyr with val(y|w|) = uw.

• One rule x1 → y|w|y|w| and log2 b2m+1 − 1c − 1 = m− 1 rules xi → xi−1xi−1 for 2 ≤ i ≤ m.

• One rule Ŝrp → xmxm−1 · · ·x1y|w|.

R̂nmr : Assume that d = |V̂nmr | = |R̂nmr | and zi ∈ V̂nmr for 1 ≤ i ≤ d, then

• One rule z1 → uwu.

• d− 1 rules zi → zi−1wzi−1 for 2 ≤ i ≤ d and zd = Ŝnmr .

1We show a concrete example of this theorem in Appendix.

8

a b r a c a d a b r a

vα → α (α = a, b, r, c, d) va vb vr va vc va vd va vb vr va
v1 → vavbvr v1 va vc va vd v1 va
v2 → v1va v2 vc va vd v2

S → v2vcvavdv2 S

Figure 3: An example of the grammar generation process of MR-RePair for text abracadabra. The
generated grammar is {{va, vb, vr, vc, vd, v1, S}, {a, b, r, c, d}, S, {va → a, vb → b, vr → r, vc → c, vd →
d, v1 → vavbvr, v2 → v1va, S → v2vcvavdv2}}, and the grammar size is 15.

Let ĝrp and ĝnmr be sizes of Ĝrp and Ĝnmr , respectively. Then, the following holds:

ĝrp = 2|w|+ 2m+ (m+ 2) = 3m+ 2|w|+ 2 (4)

ĝnmr = |w|+ 2 + (|w|+ 2)(d− 1) = (|w|+ 2)d (5)

Here, with regard to the length of T ′, the following holds:

(2d − 1)|w|+ 2d = n = (2(2m − 1) + 1)(|w|+ 1) + 1.

Since the right-side results in 2m+1|w|+ 2m+1, d = m+ 1 follows it. Hence, by equation (4) and (5), the
following holds:

ĝnmr − ĝrp = (m− 1)(|w| − 1)− 1.

Therefore, ĝnmr > ĝrp holds for some (m, |w|), and the proposition holds.

4.2 MR-RePair

The reason why the grammar size of Näıve-MR-RePair becomes larger than that of RePair as seen in
Theorem 4 is that Näıve-MR-RePair cannot replace all occurrences of the most frequent maximal repeats
if it overlaps with another occurrence of itself. In the remainder of this section, we describe MR-RePair,
which is an improved version of the above Näıve-MR-RePair.

Definition 3 (MR-RePair). For input text T , let G = {V,Σ, S,R} be the grammar generated by MR-
RePair. MR-RePair constructs T by the following steps:

Step 1. Replace each symbol a ∈ Σ with a new variable va and add va → a to R.
Step 2. Find the most frequent maximal repeat r in T .
Step 3. Check if |r| > 2 and r[1] = r[|r|], and if so, replace r with r[2..|r|].
Step 4. Replace every occurrence of r with a new variable v, then add v → r to R.
Step 5. Re-evaluate the frequencies of maximal repeats for the renewed text generated in Step 4. If the
maximum frequency is 1, add S → (current text) to R, and terminate. Otherwise, return to Step 2.

We show an example of the grammar generation process of MR-RePair in Figure 3. We can easily
extend the concept of MR-order to this MR-RePair. We do not care if it uses r[1..|r − 1|] in Step 3,
instead of r[2..|r|]. MR-RePair can replace all occurrences of r even if it overlaps with itself in some
occurrences, since by Lemma 3, the length of overlaps of the most frequent maximal repeats is at most 1.
If r[1] = r[|r|] but r does not overlap with itself, then r[1]v becomes the most frequent maximal repeat
after r[2..|r|] is replaced by v, and r[1]v would be replaced immediately. MR-RePair still cannot replace
all of them if |r| = 2, but the same is said to RePair.

We show an example of the grammar generation process of MR-RePair in Figure 3. Although the
size of the generated grammar in Figure 3 is larger than that of Näıve-MR-RePair shown in Figure 2, it
is still smaller than that of RePair shown in Figure 1.

9

Theorem 5. Assume that RePair and MR-RePair work based on the same MR-order for a given text.
Let grp and gmr be sizes of grammars generated by RePair and MR-RePair, respectively. Then, 1

2grp <
gmr ≤ grp holds.

Proof. Assume that Grp = {Vrp ,Σrp , Srp , Rrp} and Gmr = {Vmr ,Σmr , Smr , Rmr} are grammars gener-
ated by RePair and MR-RePair, respectively, for a given text T with length n. Let T ′ = v1 · · · vn such
that vi ∈ Vrp ∩ Vmr and vi → T [i] ∈ Rrp ∩Rmr (for i = 1, · · · , n).

We start with T ′. Let f1 be the maximum frequency of maximal repeats in T ′. By Corollary 1, the

maximum frequency of pairs in T ′ is also f1. Let Ĝ
(f1)
rp (or Ĝ

(f1)
mr) be a subgrammar of Grp (or Gmr)

which is generated while RePair (or MR-RePair) replaces pairs (or maximal repeats) with frequency f1,

ĝ
(f1)
rp (or ĝ

(f1)
mr) be the size of it, and T

(f1)
rp (or T

(f1)
mr) be the renewed text after all pairs (or maximal

repeats) with frequency f1 are replaced. Let r
(f1)
1 , · · · , r(f1)m1 be maximal repeats with frequency f1 in T ′,

and assume that they are prioritized in this order by the MR-order. Let each l
(f1)
i (for i = 1, · · · ,m1) be

the length of the longest substring of r
(f1)
i such that there are variables that derive the substring in both

Ĝ
(f1)
rp and Ĝ

(f1)
mr . Note that this substring is common to RePair and MR-RePair, and each l

(f1)
i is at least

2. Then, by Lemma 2, the following holds:

ĝ(f1)rp =

m1∑
i=1

2(l
(f1)
i − 1) ,

ĝ(f1)mr =

m1∑
i=1

l
(f1)
i .

Therefore,

∴
1

2
ĝ(f1)rp < ĝ(f1)mr ≤ ĝ(f1)rp (6)

holds. The renewed texts T
(f1)
rp and T

(f1)
mr are isomorphic for Vrp and Vmr . Let f2 be the maximum

frequency of maximal repeats in T
(f1)
rp (and this is the same in T

(f1)
mr). Then, the similar discussion holds for

Ĝ
(f2)
rp and Ĝ

(f2)
mr . Hence, 1

2 ĝ
(f2)
rp < ĝ

(f2)
mr ≤ ĝ(f2)rp holds similarly to (6), and the renewed texts T

(f2)
rp and T

(f2)
mr

are isomorphic. Inductively, for every maximum frequency of maximal repeats fi,
1
2 ĝ

(fi)
rp < ĝ

(fi)
mr ≤ ĝ

(fi)
rp

holds and the renewed texts T
(fi)
rp and T

(fi)
mr are isomorphic. Let k be a natural number such that fk > 1

and fk+1 = 1, which is the number of decreasing of maximum frequency through the whole process of
RePair and MR-RePair. Then,

grp =

k∑
j=1

ĝ(fj)rp + |Σ|+ |T (fk)
rp | =

k∑
j=1

mj∑
i=1

2(l
(fj)
i − 1) + |Σ|+ |T (fk)

rp | , (7)

gmr =

k∑
j=1

ĝ(fj)mr + |Σ|+ |T (fk)
mr | =

k∑
j=1

mj∑
i=1

l
(fj)
i + |Σ|+ |T (fk)

mr | (8)

holds. Because every l
(fj)
i ≥ 2 and |T (fk)

rp | = |T (fk)
mr |, 1

2grp < gmr ≤ grp follows (7) and (8) and the

proposition holds. gmr = grp holds when every length of l
(fj)
i is 2.

The following theorem shows that unless the MR-order of RePair and MR-RePair are the same, the
grammar generated by MR-RePair might be larger than that by RePair.

Theorem 6. Unless the MR-order of RePair and MR-RePair are the same, there is a case where the
size of the generated grammar by MR-RePair becomes larger than that by RePair.

10

Proof. As shown in Theorem 5, the size of grammar generated by MR-RePair would be strictly equal to
that by RePair with the same MR-order. Thus, we can reduce this problem to the problem that there
is a difference between sizes of possible grammars generated by RePair as stated in Remark 1. Hence,
there are the cases stated in the proposition if the MR-order of MR-RePair matches with a MR-order of
RePair which does not generate the smallest RePair grammar.

We can implement MR-RePair by extending the original implementation of RePair stated in [11],
holding the same complexity.

Theorem 7. Let G = {V,Σ, S,R} be the generated grammar by MR-RePair for a given text with length
n. Then, MR-RePair works in O(n) expected time and 5n+ 4k2 + 4k′ + d

√
n+ 1e − 1 word space, where

k and k′ are the cardinalities of Σ and V , respectively.

Proof. Compared with RePair, the additional operations which MR-RePair does in our implementation
are (i) it extends the selected pair to left and right until it becomes a maximal repeat, and (ii) it checks
and excludes either of the beginning or the end of the obtained maximal repeat if they are the same. They
can be realized by only using the same data structures as that of RePair. Then, the space complexity of
MR-RePair follows Lemma 1.

We can clearly execute operation (ii) in constant time. So we consider how the time complexity is
affected by operation (i). Let l be the length of the maximal repeat containing the focused pair, and
f be the frequency of the pair. Then, when MR-RePair checks the left- and right-extensions for all
occurrences of the focused pair, O(fl) excessive time is required compared with RePair. However, the
length of entire text is shortened at least f(l − 1) by the replacement. Therefore, according to possible
counts of replacement through the entire steps of the algorithm, MR-RePair works in O(n) expected
time.

Remark 2. We can convert a grammar of RePair to that of MR-RePair by repeating the following
transform: If a variable v appears only once on the right-hand side of other rules, remove the rule for
v and replace the one occurrence of v with the right-hand side of the removed rule. However, time and
space complexity stated in Theorem 7 cannot be achieved in this manner, since additional operations and
memory for searching and storing such variables are required.

5 Experiments

We implemented MR-RePair and measured the number of generated rules and the execution time in order
to compare it to existing RePair implementations and Re-PairImp2 proposed by Gańczorz and Jeż [8].

As stated in Remark 1, the size of a generated grammar depends on the MR-order. In practice, the
MR-order varies how we implement the priority queue managing symbol pairs. To see this, we used five
RePair implementations in the comparison; they were implemented by Maruyama3, Navarro4, Prezza5 [5],
Wan6, and Yoshida7.

Table 1 summarizes the details of the texts we used in the comparison. We used three texts as highly
repetitive texts; one is a randomly generated text (rand77.txt), and the others are a Fibonacci string
(fib41) and a German text (einstein.de.txt) which were selected from Repetitive Corpus of Pizza&Chili
Corpus8. The randomly generated text, rand77.txt, consists of alphanumeric symbols and some special

2https://bitbucket.org/IguanaBen/repairimproved
3https://code.google.com/archive/p/re-pair/
4https://www.dcc.uchile.cl/~gnavarro/software/index.html
5https://github.com/nicolaprezza/Re-Pair
6https://github.com/rwanwork/Re-Pair; We ran it with level 0 (no heuristic option).
7https://github.com/syoshid/Re-Pair-VF; We removed a routine to find the best rule set.
8http://pizzachili.dcc.uchile.cl/repcorpus.html

11

https://bitbucket.org/IguanaBen/repairimproved
https://code.google.com/archive/p/re-pair/
https://www.dcc.uchile.cl/~gnavarro/software/index.html
https://github.com/nicolaprezza/Re-Pair
https://github.com/rwanwork/Re-Pair
https://github.com/syoshid/Re-Pair-VF
http://pizzachili.dcc.uchile.cl/repcorpus.html

Table 1: Text files used in our experiments.

texts size (bytes) |Σ| contents
rand77.txt 2,097,152 77 32 copies of 1024 random patterns of length 64
fib41 267,914,296 2 Fibonacci string from Pizza&Chili Corpus
einstein.de.txt 92,758,441 117 Edit history of Wikipedia for Albert Einstein
E.coli 4,638,690 4 Complete genome of the E. Coli bacterium
bible.txt 4,047,392 63 The King James version of the bible
world192.txt 2,473,400 94 The CIA world fact book

symbols; and it is generated by concatenating 32 copies of a block that includes 1024 random patterns
of length 64, i.e., the size is 64 × 1024 × 32 = 2, 097, 152 byte. In addition, we used three texts (E.coli,
bible.txt, world192.txt) for real data selected from Large Corpus9. We executed each program seven times
for each text and measured the elapsed CPU time only for grammar generation process. We calculated
the average time of the five results excluding the minimum and maximum values among seven. We ran
our experiments on a workstation equipped with an Intel(R) Xeon(R) E5-2670 2.30GHz dual CPU with
64GB RAM, running on Ubuntu 16.04LTS on Windows 10. All the programs are compiled by gcc version
7.3.0 with “-O3” option.

Table 2 lists the experimental results. Here, we excluded the number of rules that generate a single
terminal symbol from the number of rules because it is the same between MR-RePair and RePair. As
shown in the table, for all texts except for fib41, the size of rules generated by each RePair implementation
differs from each other.10. In any case, MR-RePair is not inferior to RePair in the size of rules. For
rand77.txt in particular, the number of rules decreased to about 11% and the size of rules decreased to
about 55%. For einstein.de.txt, moreover, the number of rules decreased to about 44% and the size of
rules decreased to about 72%. On the other hand, for the texts of Large Corpus, which are not highly
repetitive, it turned out that the effect of improvement was limited. Note that fib41 does not contain
any maximal repeats longer than 2 without overlaps. Therefore, MR-RePair generates the same rules as
RePair. Also note that MR-RePair runs at a speed comparable to the fastest implementation of RePair.

6 Conclusion

In this thesis, we analyzed RePair and showed that RePair replaces step by step the most frequent pairs
within the corresponding most frequent maximal repeats. Motivated by this analysis, we designed a
novel variant of RePair, called MR-RePair, which is based on substituting the most frequent maximal
repeats at once instead of substituting the most frequent pairs consecutively. Moreover, we implemented
MR-RePair and compared the grammar generated by it to that by RePair for several texts, and confirmed
the effectiveness of MR-RePair experimentally especially for highly repetitive texts.

We defined the greatest size difference of any two possible grammars that can be generated by RePair
for a given text, and named it as GSDRP. Moreover, we showed that a lower bound of GSDRP is
1
6 (
√

6n+ 1 + 13) for a given text of length n. Improving the lower bound and showing a upper bound of
GSDRP are our future works.

Although we did not discuss how to encode grammars, it is a very important issue from a practical
point of view. For MR-RePair, if we simply use delimiters to store the rule set, the number of rules may
drastically affect the compressed data size. To develop an efficient encoding method for MR-RePair is
one of our future works.

9http://corpus.canterbury.ac.nz/descriptions/#large
10We found that the results of Yoshida were the same as those of Maruyama because Yoshida utilized the code of

Maruyama.

12

http://corpus.canterbury.ac.nz/descriptions/#large

Acknowledgments

The authors would like to thank the people who provided the source codes. This work was sup-
ported by JSPS KAKENHI Grant Numbers JP17H06923, JP17H01697, JP16H02783, JP18H04098, and
JP18K11149, Japan. This work was also supported by JST CREST Grant Number JPMJCR1402, Japan.

13

Table 2: The sizes of generated grammars and the execution times. Each cell in the table represents the
number of generated rules, the total lengths of the right side of all the rules except for the start variable,
the length of the right side of the start variable, and the total grammar size in order from the top row.
The fifth row separated by a line represents the execution time with seconds.

RePair Re-PairImp MR-RePair
text file Maruyama Navarro Prezza Wan Yoshida
rand77.txt 41,651 41,642 41,632 41,675 41,651 41,661 4,492

83,302 83,284 83,264 83,350 83,302 83,322 46,143
9 2 7 2 9 2 9

83,311 83,286 83,271 83,352 83,311 83,324 46,152
0.41 0.37 4.76 4.27 0.40 3.95 0.42

fib41 38 38 38 38 38 37 38
76 76 76 76 76 74 76
3 3 3 3 3 23 3

79 79 79 79 79 97 79
26.75 23.94 96.05 483.86 25.04 1360.40 33.62

einstein.de.txt 49,968 49,949 50,218 50,057 49,968 49,933 21,787
99,936 99,898 100,436 100,114 99,936 99,866 71,709
12,734 12,665 13,419 12,610 12,734 12,672 12,683

112,670 112,563 113,855 112,724 112,670 112,538 84,392
30.08 43.45 216.74 213.15 30.76 452.56 29.63

E.coli 66,664 66,757 66,660 67,368 66,664 66,739 62,363
133,328 133,514 133,320 134,736 133,328 133,478 129,138
651,875 649,660 650,538 652,664 651,875 650,209 650,174
785,203 783,174 783,858 787,400 785,203 783,687 779,312

1.20 1.02 14.67 10.37 1.56 27.04 1.33
bible.txt 81,193 81,169 80,999 81,229 81,193 81,282 72,082

162,386 162,338 161,998 162,458 162,386 162,564 153,266
386,514 386,381 386,992 386,094 386,514 385,989 386,516
548,900 548,719 548,990 548,552 548,900 548,553 539,782

1.33 1.21 13.00 9.12 1.47 24.38 1.27
world192.txt 55,552 55,798 55,409 55,473 55,552 55,437 48,601

111,104 111,596 110,812 110,946 111,104 110,874 104,060
213,131 213,962 213,245 212,647 213,131 212,857 212,940
324,235 325,558 324,057 323,593 324,235 323,731 317,000

0.59 0.80 7.57 4.89 0.56 12.35 0.66

14

References

[1] Alberto Apostolico and Stefano Lonardi. Off-line compression by greedy textual substitution. Pro-
ceedings of the IEEE, 88(11):1733–1744, 2000.

[2] Djamal Belazzougui and Fabio Cunial. Fast label extraction in the CDAWG. In Proceedings of
the 24th International Symposium on String Processing and Information Retrieval (SPIRE 2017),
volume 10508 of Lecture Notes in Computer Science, pages 161–175. Springer, 2017.

[3] Djamal Belazzougui and Fabio Cunial. Representing the suffix tree with the CDAWG. In Proceedings
of the 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017), volume 78 of
Leibniz International Processings in Informatics, pages 7:1–7:13, 2017.

[4] Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raffinot. Composite
repetition-aware data structures. In Proceedings of the 26th Annual Symposium on Combinatorial
Pattern Matching (CPM 2015), volume 9133 of Lecture Notes in Computer Science, pages 26–39.
Springer, 2015.

[5] Philip Bille, Inge Li Grtz, and Nicola Prezza. Space-efficient Re-Pair compression. In Proceedings of
Data Compression Conference (DCC 2017), pages 171–180. IEEE Press, 2017.

[6] Moses Charikar, Eric Lehman, Ding Liu, Panigrahy Ring, Manoj Prabhakaran, Amit Sahai, and abhi
shelat. The smallest grammar problem. IEEE Transactions on Information Theory, 51(7):2554–2576,
2005.

[7] Francisco Claude and Gonzalo Navarro. Fast and compact web graph representations. ACM Trans-
actions on the Web, 4(4):16:1–16–31, 2010.

[8] Micha l Gańczorz and Artur Jeż. Improvements on Re-Pair grammar compressor. In Proceedings of
Data Compression Conference (DCC 2017), pages 181–190. IEEE Press, 2017.

[9] Rodrigo González and Gonzalo Navarro. Compressed text indexes with fast locate. In Proceedings
of the 18th Annual Symposium on Combinatorial Pattern Matching (CPM 2007), volume 4580 of
Lecture Notes in Computer Science, pages 216–227.

[10] Shunsuke Inenaga, Takashi Funamoto, Masayuki Takeda, and Ayumi Shinohara. Linear-time off-line
text compression by longest-first substitution. In Proceedings of the 10th International Symposium
on String Processing and Information Retrieval (SPIRE 2003), volume 2857 of Lecture Notes in
Computer Science, pages 137–152. Springer, 2003.

[11] N. Jesper Larsson and Alistair Moffat. Off-line dictionary-based compression. Proceedings of the
IEEE, 88(11):1722–1732, 2000.

[12] Markus Lohrey, Sebastian Maneth, and Roy Mennicke. Xml tree structure compression using RePair.
Information Systems, 38(8):1150–1167, 2013.

[13] Takuya Masaki and Takuya Kida. Online grammar transformation based on Re-Pair algorithm. In
Proceedings of Data Compression Conference (DCC 2016), pages 349–358. IEEE Press, 2016.

[14] Ryosuke Nakamura, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda. Simple linear-time off-
line text compression by longest-first substitution. In Proceedings of Data Compression Conference
(DCC 2007), pages 123–132. IEEE Press, 2007.

[15] Gonzalo Navarro and Lúıs MS Russo. Re-pair achieves high-order entropy. In Proceedings of the
Data Compression Conference (DCC 2008), page 537. IEEE Press, 2008.

15

[16] Carlos Ochoa and Gonzalo Navarro. RePair and all irreducible grammars are upper bounded by
high-order empirical entropy. IEEE Transactions on Information Theory, pages 1–5, 2018.

[17] Kei Sekine, Hirohito Sasakawa, Satoshi Yoshida, and Takuya Kida. Adaptive dictionary sharing
method for Re-Pair algorithm. In Proceedings of Data Compression Conference (DCC 2014), pages
425–425. IEEE Press, 2014.

[18] Yasuo Tabei, Hiroto Saigo, Yoshihiro Yamanishi, and Simon J. Puglisi. Scalable partial least squares
regression on grammar-compressed data matrices. In Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (KDD 2016), pages 1875–1884.
ACM, 2016.

[19] Takuya Takagi, Keisuke Goto, Yuta Fujishige, Shunsuke Inenaga, and Hiroki Arimura. Linear-size
CDAWG: New repetition-aware indexing and grammar compression. In Proceedings of the 24th
International Symposium on String Processing and Information Retrieval (SPIRE 2017), volume
10508 of Lecture Notes in Computer Science, pages 304–316. Springer, 2017.

[20] Raymond Wan. Browsing and searching compressed documents. PhD thesis, The University of
Melbourne, 2003.

16

A Appendix

We show Figures 4, 5, and 6 to help for understanding Proof of Theorem 4.
Let Grp , Gnmr , and Gmr be the grammars generated by RePair, Näıve-MR-RePair, and MR-RePair,

respectively. For a given text T = a1 · · · an (ai ∈ Σ, 1 ≤ i ≤ n) of length |T | = n, let grp , gnmr , and gmr

be the sizes of Grp , Gnmr , and Gmr , respectively. Here, assume that T = (aw)2(2
m−1)+1a, where w ∈ Σ+

such that awa is the most frequent maximal repeat of T , and m ∈ N+. Then, by Proof of Theorem 4,
gnmr > grp holds with some m and w such that (m− 1)(|w| − 1) > 1.

We show a concrete example of the grammar generation process of RePair and Grp for T = (abcd)7a
with m = 2 and |w| = 3 in Figure 4. The size grp is 18 for this example. We also show an example of the
process of Näıve-MR-RePair and Gnmr for the same T in Figure 5. As we see, the size gnmr is 19, and
thus gnmr > grp holds. As shown in Figure 5, in particular cases, Näıve-MR-RePair may fail to extract
repetitive patterns (like abcd of (abcd)7a for the running example). However, this problem is solved by
using MR-RePair. We show an example of the process of MR-RePair and Gmr for the same T = (abcd)7a
in Figure 6. The size gmr is 16 and this is smaller than grp = 18. While the most frequent maximal
repeat at the second replacement step is vavbvcvdva, MR-RePair replaces vavbvcvd with new variable v1
because of the additional Step 3 of Definition 3.

17

a
b

c
d

a
b

c
d

a
b

c
d

a
b

c
d

a
b

c
d

a
b

c
d

a
b

c
d

a

v α
→

α
(α

=
a
,b
,c
,d
)

v a
v b

v c
v d

v a
v b

v c
v d

v a
v b

v c
v d

v a
v b

v c
v d

v a
v b

v c
v d

v a
v b

v c
v d

v a
v b

v c
v d

v a
y 1

→
v a
v b

y 1
v c

v d
y 1

v c
v d

y 1
v c

v d
y 1

v c
v d

y 1
v c

v d
y 1

v c
v d

y 1
v c

v d
v a

y 2
→

y 1
v c

y 2
v d

y 2
v d

y 2
v d

y 2
v d

y 2
v d

y 2
v d

y 2
v d

v a
y 3

→
y 2
v d

y 3
y 3

y 3
y 3

y 3
y 3

y 3
v a

x
1
→

y 3
y 3

x
1

x
1

x
1

y 3
v a

x
2
→

x
1
x
1

x
2

x
1

y 3
v a

Ŝ
r
p
→

x
2
x
1
y 3
v a

Ŝ
r
p

F
ig

u
re

4:
G

ra
m

m
ar

ge
n

er
at

io
n

p
ro

ce
ss

o
f

R
eP

a
ir

a
n

d
it

s
g
en

er
a
te

d
g
ra

m
m

a
r

fo
r

te
x
t

(a
b
c
d
)7
a
.

T
h

e
g
ra

m
m

a
r

si
ze

is
1
8
.

a
b

c
d

a
b

c
d

a
b

c
d

a
b

c
d

a
b

c
d

a
b

c
d

a
b

c
d

a

v α
→

α
(α

=
a
,b
,c
,d
)

v a
v b

v c
v d

v a
v b

v c
v d

v a
v b

v c
v d

v a
v b

v c
v d

v a
v b

v c
v d

v a
v b

v c
v d

v a
v b

v c
v d

v a
z 1

→
v a
v b
v c
v d
v a

z 1
v b

v c
v d

z 1
v b

v c
v d

z 1
v b

v c
v d

z 1
z 2

→
z 1
v b
v c
v d
z 1

z 2
v b

v c
v d

z 2
Ŝ
n
m
r
→

z 2
v b
v c
v d
z 2

Ŝ
n
m
r

F
ig

u
re

5:
G

ra
m

m
ar

ge
n

er
at

io
n

p
ro

ce
ss

of
N

ä
ıv

e-
M

R
-R

eP
a
ir

a
n

d
it

s
g
en

er
a
te

d
g
ra

m
m

a
r

fo
r

te
x
t

(a
b
c
d
)7
a
.

T
h

e
g
ra

m
m

a
r

si
ze

is
1
9
.

a
b

c
d

a
b

c
d

a
b

c
d

a
b

c
d

a
b

c
d

a
b

c
d

a
b

c
d

a

v α
→

α
(α

=
a
,b
,c
,d
)

v a
v b

v c
v d

v a
v b

v c
v d

v a
v b

v c
v d

v a
v b

v c
v d

v a
v b

v c
v d

v a
v b

v c
v d

v a
v b

v c
v d

v a
v 1

→
v a
v b
v c
v d

v 1
v 1

v 1
v 1

v 1
v 1

v 1
v a

v 2
→

v 1
v 1

v 2
v 2

v 2
v 1

v a
v 3

→
v 2
v 2

v 3
v 2

v 1
v a

Ŝ
m
r
→

v 3
v 2
v 1
v a

Ŝ
m
r

F
ig

u
re

6:
G

ra
m

m
ar

ge
n

er
at

io
n

p
ro

ce
ss

of
M

R
-R

eP
a
ir

a
n

d
it

s
g
en

er
a
te

d
g
ra

m
m

a
r

fo
r

te
x
t

(a
b
c
d
)7
a
.

T
h

e
g
ra

m
m

a
r

si
ze

is
1
6
.

18

	1 Introduction
	2 Preliminaries
	2.1 Basic notations and terms
	2.2 Maximal repeats
	2.3 Grammar compression
	2.4 RePair

	3 Analyzing RePair
	3.1 RePair and maximal repeats
	3.2 MR-order
	3.3 Greatest size difference of RePair

	4 MR-RePair
	4.1 Naïve-MR-RePair
	4.2 MR-RePair

	5 Experiments
	6 Conclusion
	A Appendix

