
Regular Expression Search on Compressed Text

Pierre Ganty* and Pedro Valero**

*IMDEA Software Institute tUniversidad Politecnica de Madrid
pierre.gantyOimdea.org pedro.valeroOimdea.org

Abstract

We present an algorithm for searching regular expression matches in compressed text. The
algorithm reports the number of matching lines in the uncompressed text in time linear
in the size of its compressed version. We define efficient data structures that yield nearly
optimal complexity bounds and provide a sequential implementation -zearch- tha t requires
up to 25% less time than the state of the art.

Introduction

The growing amount of information handled by modern systems demands efficient
techniques both for compression, to reduce the storage cost, and for regular expression
searching, to speed up querying. A type of query that is supported out of the box by
many tools1 is counting: compute how many lines of the input text contain a match
for the expression. When the text is given in compressed form, the fastest approach
in practice is to query the uncompressed text as it is recovered by the decompressor.

We present an algorithm for counting the lines in a compressed text containing a
match for a regular expression whose runtime does not depend on the size N of the
uncompressed text. Instead, it runs in time linear in the size of its compressed version.
Furthermore, the information computed for counting can be used to perform an on-
the-fly, lazy decompression to recover the matching lines from the compressed text.
Note that , for reporting the matching lines, the dependency on N in unavoidable.

The salient features of our approach are:

Generality. Our algorithm is not tied to any particular grammar-based compressor.
Instead, we consider the compressed text is given by a straight line program (SLP):
a context-free grammar generating the uncompressed text and nothing else.

Finding the smallest SLP g generating a text of length N is an NP-hard problem,
as shown by Charikar et al. [1], for which grammar-based compressors such as LZ78 [2],
LZW [3], RePair [4] and Sequitur [5] produce different approximations. For instance,
Hucke et al. [6] showed that the LZ78 algorithm produces a representation of size

(\g\-(N/logN)2/3) and the representation produced by the RePair algorithm has
size (\g\ • (log N/ log log N)). Since it is defined over SLPs, our algorithm applies to
all such approximations, including g itself.

Nearly optimal data structures. We define data structures enabling the algo­
rithm to run in time linear in the size of the compressed text. With these data struc-

1 Tools such as grep, ripgrep, awk and ag, among others, can be used to report the number of
matching lines in a text.

tures our algorithm runs in G(p-s3) time using G(p-s2) space where p is the size of the
compressed text and s is the size of the automaton built from the expression. When
the automaton is deterministic, the complexity drops to 0(p-s) time and 0(p-s) space.
Abboud et al. [7] showed that there is no combinatorial2 algorithm improving these
time complexity bounds beyond polylog factors, hence our algorithm is nearly optimal.

Efficient implementat ion. We present zearch, a purely sequential implementa­
tion of our algorithm which uses the above mentioned data structures.3 The ex­
periments show that zearch requires up to 25% less time than the state of the art:
running hypers can on the uncompressed text as it is recovered by lz4 (in parallel).
Furthermore, when the grammar-based compressor achieves high compression ratio
(above 13:1), running zearch on the compressed text is as fast as running hyperscan
directly on the uncompressed text. This is the case, for instance, when working with
automatically generated log files.

Notat ion

An alphabet E is a nonempty finite set of symbols. A string w is a finite sequence of
symbols of E where the empty sequence is denoted e. Let \w\ denote the length of w
that we abbreviate to | when w is clear from the context. Further define (w)i as the
z-th symbol of w if 1 < i < | and e otherwise. Similarly, (w)itj denotes the substring,
also called factor, of w between the i-th and the j - t h symbols, both included.

A finite state automaton (FSA or automaton for short) is a tuple A = (Q, E, / , F, 8)
where Q is the (finite) set of states; I C Q are the initial states; E is the alphabet;
F C Q are the final states; and K Q x E x Q are the transitions4. The notions
of accepting run, accepted string and language of an automaton (denoted C{A)) are
defined as expected. For clarity, we assume through the paper that / and F are
disjoint. Otherwise e G C(A), therefore, for every string there is a factor (e) in C(A).

A Straight Line Program, hereafter SLP, is a tuple P = (V,E,TZ) where V is
the set of variables {XX,X2,.. .,X\V\], E is the alphabet and K is the set of rules
{Xi ->• atipi | ai,/3i G (E U {Xx,... ,Xi_ i}} . We refer to X\V\ ->• a\V\P\v\ as the
axiom rule. We write p => a, with p, a E (E U V)*, if there exists (p)* = X and
(X ->• a(3) E K such that a = (p)hi_1af3(p)i+hj. Denote the reflexo-transitive closure
of => by =>*. Clearly, the language generated by an SLP consists of a single string
w E E* and, by definition, \w\ > 1. Since C{P) = {w} we identify w with C{P).

Counting Algori thm

Let *J denote the new-line delimiter and E = E \ { ^ } . Given a string w G E+
compressed as an SLP P = (V, E, K) and an automaton A = (Q, E, / , F, 5) built from
a regular expression, Algorithm 1 reports the number of lines in w containing a match
for the expression. Note that we deliberately ignore matches across lines.

2 Interpreted as any practically efficient algorithm that does not suffer from the issues of Fast
Matrix Multiplication such as large constants and inefficient memory usage.

3zearch can optionally report the matching lines.
4Our definition prescribes e-transitions which can be removed in C(s2) time adding no state.

As an overview, our algorithm computes some counting information for each al­
phabet symbol of the grammar (procedure INIT_AUTOMATON) which is then propa­
gated, in a bottom-up manner, to the axiom rule. Such propagation is achieved by
iterating through the grammar rules (loop in line 13) and combining, for each rule,
the information for the symbols on the right hand side to obtain the information for
the variable on the left (procedure C O U N T) . Finally, the output of the counting is
computed from the information propagated to the axiom symbol (line 20).

%I,F,5).

A l g o r i t h m 1 Counting matching lines.

Input : An SLP P = (V, E, U) and an FSA A = (Q, E,
O u t p u t : The number of matching lines in C(P).

l: p r o c e d u r e C O U N T (X , a, j3, m) 6: p r o c e d u r e I N I T _ A U T O M A T O N ()
2: Nx:=N a V N/3; 7: for each a G £ do
3: L x : = (¬ N a ? L a V L ^ V m : L a) ; 8: N 0 :=(a = <J); Mo:=0;
4: R x : = (- N / 3 ? R a V R / 3 V m : R / 3) ; 9: La:=((q0, a, qf) G 6, q0 G I, qf G F);
5: M x :=M a+M / 3+(N aAN / 3A(R aVL / 3Vm)?l: 0); 10: Ra:=La;

11: funct ion MAIN
12: INIT_AUTOMATON()
13: for each £=1,2,..., \V\ — 1 do
14: let (Xe ->• ae/3e) G K; new_match := false;
15: for each q1 q' G Q s.t. (q1,ae, q') G 5 or q1=q' G / do
16: for each q2 G Q s.t. (q', j3£, q2) G 5 or q'=q2 G F do
17: S:=SU{(q1,Xe,q2)};
18: new_match := newjna tch V(q1 £ IA q< <£ (I U F) A q2 £ F);

19: COUNT(X£ ,a£ , /3£ ,new.match);

20: r e turn MX|V|+(NX|V| ? L x m + R x m : LX|v|);

Define a /me as a maximal factor of w each symbol of which belongs to E, a dosed
/me as a line which is not a prefix nor a suffix of w and a matching line as a line in
C(A), where £ (T) = E*-£(A)-E*. The counting information of r G (V U E), with
r ^ * u and u G E+, is the tuple CT = (Nr, L r, Rr, Mr) where

Nr := 3k (u)k = *i Lr := 3i (u)hi G E*-C(A)

Rr := 3 j (M)J)t G £(A)-E* Mr := | { (« + l , j - l) | (u)itj G ^ - Z ^) - ^ } !

Note that Nr, Lr and Rr are boolean values while Mr is an integer. It follows from
the definition that the number of matching lines in u, with r ^ * u, is given by the
number of closed matching lines (MT) plus the prefix of u iff it is a matching line (LT)
and the suffix of u iff it is a matching line (Rr) different from the prefix (NT). Since
whenever Nr = false we have Lr = Rr, it follows that

u • 1 if Lr 1 if Nr A Rr
patching lines m u = Mr + Q ^ ^ . ^ + Q ^ ^ . ^

Computing the counting information of r requires deciding membership of certain
factors of u in C(A). To solve such queries we adapt an algorithm of Esparza et al. [8]
designed to decide whether the languages generated by a context-free grammar and an
automaton intersect. The resulting algorithm iterates through the rules (X^a/3) G K
applying the following operation: add {q1,X,q2) to 8 iff (a) {q^a^), {q,,/3,q2) G 8,
(b) (qi,(3,q2) G ^ w i t h 9 l G / , or (c) (qi,a,q2) G 5 with q2 G F . This operation

corresponds to lines 15 to 17 of Algorithm 1. As a result, after processing the rule
for r , we have (ql}T, q2) E 5 iff the automaton moves from q to q' reading (a) u, (b) a
suffix of u and qx E I, or (c) a prefix of u and q2 E F.

Procedures c o u n t and i n i t a u t o m a t o n are quite straightforward, the main
difficulty being the computation of M x which we explain next. Let x,y E £+ be the
strings generated by a and [3, respectively. Given rule X^a(3, X generates all the
matching lines generated by a and [3 plus, possibly, a “new” matching line of the
form z={x)ij{y)ltj with K K | a ; | and l < j < | y | . Such an extra matching line appears
iff both a and [3 generate a ^ symbol and either the suffix of x or the prefix of y
matches the expression or there is a new match m E z with m <£ x, m <£ y (line 18).

Example 1. Let A be an automaton with C(A) = {ab,ba}. Consider the grammar
rule X^a(3 with a =^* ba^a and [3 =^* b^aba. Then X ^* ba^ab^aba.

The matching lines generated by a, (3 and X are, respectively, {ba}, {aba} and
{ba, ab, aba}. Furthermore Ca={true, true, false, 0) and Cp={true, false, true, 0).

Applying function c o u n t we find that Cx = {true, true, true, 1). Therefore the
number of matching lines is 1+1 + 1=3, as expected. 0

Note that the counting information computed by Algorithm 1 can be used to un­
compress only the matching lines by performing a top-down processing of the SLP. For
instance, given X^af3 with Cx = {true, true,false,0) and Ca = {true, true, false, 0),
there is no need to decompress the string generated by [3 since we are certain it is not
part of any matching line (otherwise we should have Kx > 0 or Rx = true).

Next, we describe the data structures used to implement Algorithm 1 with nearly
optimal complexity.

Data Structures

We assume the alphabet symbols, variables and states are indexed and use the follow­
ing data structures, illustrated in Figure 1: an array A with p+\E\ elements, where
p is the number of rules of the SLP, and two s x s matrices M and AT where s is the
number of states of the automaton.

A
o n
* •

Mii]M=A4MM=A4[i i]M=* i

Cx EXi

Qi1 Qi2

ptr - ^

Qi3 Qi4

ptr

Qi1 Qi4

ptr
•NULL

Ar[h][0... 2] = [i2,U, -1] A^3][0 . . . 1] = [u, -1]

Figure 1: Data structures enabling nearly optimal running time for Algorithm 1. The
mage shows the contents of M after processing rule X; ->• arfi and the contents of M after
processing Xe ->• aefie with f3e = Xi.

Each element A[i] contains the information related to variable Xi} i.e. CXi and
the list of transitions labeled with Xi} EXi. We store Cx using one bit for each Nx, Lx
and Rx and an integer for Mx. For each rule Xe ->• ae(3e the matrix AT is set so that
row i contains all the states reachable from qi with a transition labeled with f3e, i.e.
{(lj I (qi,Pe,Qj) e 8}. If there are less than s such states we use a sentinel value (- 1

in Figure 1). Finally, each element M[i][j] stores the index I of the last variable for
which (qi,Xe,qj) was added to 8. Note that since rules are processed one at a time,
matrices M and M can be reused for all rules.

These data structures provide (9(1) runtime for the following operations:
• Accessing the information corresponding to ae and fa at line 14 (using A).
• Accessing the list of pairs (q, q') with (q, ae, q1) E 5 at line 15 (using EXi).
• Accessing the list of states q2 with (q',fa,q2) G 8 at line 16 (using AT).
• Inserting a pair (q, q>) in EXi at line 17 (using M) .
As a result, Algorithm 1 runs in 0(p-s3) time using 0(p-s2) space when the FSA

built from the regular expression is non deterministic and it runs in 0(p-s) time and
0(p-s) space when the FSA is deterministic (each row of M stores up to one state).

Abboud et al. proved [7, Thm. 3.2] that , under the Strong Exponential Time Hy­
pothesis, there is no combinatorial algorithm deciding whether a grammar-compressed
text contains a match for a deterministic FSA running in 0((p-s)l-£) time with e>0.
For non deterministic FSA, they proved [7, Thm. 4.2] that, under the fc-Clique Con­
jecture, there is no combinatorial algorithm running in 0((p-s3)l-£) time. Therefore,
our algorithm is nearly optimal both for deterministic and non deterministic FSA.

Implementat ion

We implemented Algorithm 1, using the data structures described in the previous
section, in a tool named zearch5. This tool works on repair6-compressed text and,
beyond counting the matching lines, it can also report them by partially decompress­
ing the input file. The implementation consists of less than 2000 lines of C code.

The choice of this particular compressor, which implements the RePair algo­
rithm [4], is due to the little effort required to adapt Algorithm 1 to the specific
grammar built by repair and the compression it achieves (see Table 1). However
zearch can handle any grammar-based scheme by providing a way to recover the
SLP from the input file. Recall that we assume the alphabet symbols, variables and
states are indexed. For repair-compressed text, the indexes of the alphabet sym­
bols are 0 , 1 , . . . , 255 (Σ is fixed7) and the indexes of the variables are 256 .. .p+256.
Grammar-based compressors encode the grammar so that rule X^a(3 appears always
after the rules with a and (3 on the left hand side. Thus, each iteration of the loop
in line 14 reads a subsequent rule from the compressed input file.

We translate the input regular expression into an e-free FSA using the automata
library libfa8 which applies Thompson’s algorithm [9] with on-the-fly e-removal.

Empirical Evaluation

Next we present a summary of the experiments carried out to assess the performance
of zearch. The details of the experiments, including the runtime and number of

5https://github.com/pevalme/zearch
6https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/re-pair/repair1
7Our algorithm also applies to larger alphabets, such as UTF8, without altering its complexity
8http://augeas.net/libfa/index.html

matching lines reported for each expression on each file and considering more tools,
file sizes and regular expressions are available on-line9.

All tools for regular expression searching considered in this benchmark are used
to count the matching lines without reporting them. To simplify the terminology, we
refer to counting the matching lines as searching, unless otherwise stated.

Tools

Our benchmark compares the performance of zearch against the fastest implementa­
tions we found for (i) searching the compressed text without decompression, (ii) search­
ing the uncompressed text, (ii i) decompressing the text without searching and
(iv) searching the uncompressed text as it is recovered by the decompressor.

For searching the compressed text we consider GNgrep, the tool developed by
Navarro [10] for searching LZW-compressed text. To the best of our knowledge, this is
the only existing tool departing from the decompress and search approach.

For searching uncompressed text we consider grep and hyperscan. We improve
the performance of grep by compiling it without perl regular expression compatibility,
which is not supported by zearch. We used the library hyperscan by means of the
tool (provided with the library) simplegrep, which we modified10 to efficiently read
data either from stdin or an input file.

For (de)compressing the files we use zstd and lz4 which are among the best
lossless compressors11, being lz4 considerably faster while zstd achieves better com­
pression. We use both tools with the highest compression level, which has little
impact on the time required for decompression.

We use versions grep v3.3, hyperscan v5.0.0, lz4 v1.8.3 and zstd v1.3.6
running in an Intel Xeon E5640 CPU 2.67 GHz with 20 GB RAM which supports
SIMD instructions up to SSE4-2. We restrict to ASCII inputs and set LC_ALL=C for
all experiments, which significantly improves the performance of grep. Since both
hyperscan and GNgrep count positions of the text where a match ends, we extend
each regular expression (when used with these tools) to match the whole line. We
made this decision to ensure all tools solve the same counting problem and therefore
produce the same output.

Files and Regular Expressions

Our benchmark consists of an automatically generated Log12 of HTTP requests, En­
glish Subtitles [11], and a concatenation of English Books13. Table 1 shows how each
compressor behaves on these files.

We first run each experiment 3 times as warm up so that the files are loaded in
memory. Then we measure the running time 30 times and compute the confidence
interval (with 95% confidence) for the running time required to count the number
of matching lines for a regular expression in a certain file using a certain tool. We

9https://pevalme.github.io/zearch/graphs/index.html
10https://gist.github.com/pevalme/f94bedc9ff08373a0301b8c795063093
11https://quixdb.github.io/squash-benchmark/
12http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
13https://web.eecs.umich.edu/~lahiri/gutenberg_dataset.html

File

Logs
Subtitles

Books

Compressed size
LZW | repair | zstd | lz4

Compression time
LZW | repair | zstd | lz4

Decompression time
LZW | repair | zstd | lz4

0.19
0.36
0.42

0.08
0.13
0.34

0.07 0.12
0.11 0.15
0.27 0.43

0.04
0.04
0.04

0.19
0.25
0.29

0.51
0.3

0.42

0.03
0.03
0.08

0.02 0.01
0.02 0.01
0.02 0.02

0.01
0.01
0.01

0.004
0.004
0.004

Logs
Subtitles

Books

96
191
206

38
66

153

33
55

129

65
114

216

16.9
19.9
20.2

123.2
169.3
198.6

819.1
415.2
646.3

13.3
22.8
40.6

7.8
8.6
8.6

5.5
8.2
9.7

1.1
1.2
2.0

0.64
0.81

0.8

Table 1: Sizes (in MB) of the compressed files and (de)compression times (in seconds).
Maximum compression levels enabled. (Blue = best; bold black = second best; red = worst).

consider the point estimate of the confidence interval and omit the margin of er­
ror which never exceeds the 9% of the point estimate for the reported experiments.
Figure 2 summarizes the obtained results when considering, for all files, the regular ex­
pressions: “what”, “HTTP”, “.”, “I .* you ”, “ [a-z]{4} ”, “ [a-z]*[a-z]{3} ”,
“ [0-9] {4}”, “ [0-9] {2}/ (Jun I Jul I Aug) / [0-9] {4}”. For clarity, we report only on
the most relevant tools among the ones considered. For lz4 and zstd, we report the
time required to decompress the file and send the output to /dev/null.

Logs Subtitles Books

ioo y- -

Uncompressed size (MB) Uncompressed size (MB) Uncompressed size (MB)

—•— zearch —e— grep -B— hyperscan -i — zstdlhyperscan —e- lz4 Ihyperscan —e— lz4 -B— zstd —B- GNgrep

Figure 2: Average running time required to report the number of lines matching a regular
expressions in a file and time required for decompression. Colors indicate whether the tool
performs the search on the uncompressed text (blue); the compressed text (black); the output
of the decompressor (green); or decompresses the file without searching (red).

Analysis of the Results.

Figure 2 and Table 1 show that the performance of zearch improves with the com­
pression ratio. This is to be expected since zearch processes each grammar rule
exactly once and better compression results in less rules to be processed. In conse­
quence, zearch is the fastest tool for counting matching lines in compressed Log files
while it is the second slowest one for the Books.

In particular, zearch is more than 25% faster than any other tool working on
compressed Log files. Actually zearch is competitive with grep and hyperscan,
even though these tools operate on the uncompressed text. These results are remark­
able since hyperscan, unlike zearch, uses algorithms specifically designed to take
advantage of SIMD parallelization.14

I K

500

^ 5 0

50

25 50 100 250 500 25 50 100 250 500 25 50 100 250 500

14According to the documentation, hyperscan requires, at least, support for SSSE3.

Finally, the fastest tool for counting matching lines in compressed Subtitles and
Books, lz4|hyperscan, applies to files larger than the ones obtained when com­
pressing the data with repair (see Table 1). However, when considering a better
compressor such as zstd, which achieves slightly more compression than repair, the
decompression becomes slower. As a result, zearch outperforms zstd Ihyperscan
by more than 7% for Subtitles files and 50% for Logs.

Fine-Grained Complexi ty

The grammars produced by repair break the definition of SLP in behalf of the
compression by allowing the axiom rule to have more than two symbols on the right
hand side. This is due to the fact that the axiom rule is built with the remains of the
input text after creating all grammar rules. Typically \a\ > \K\ so the way in which
the axiom is processed heavily influences the performance of zearch.

Furthermore, our experiments show that the performance of zearch is typically
far from its worst case complexity. This is because the worst case scenario assumes
each string generated by a grammar variable labels a path between each pair of states
of the automaton. However, we only observed such behavior in contrived examples.

Processing the Axiom Rule.

Algorithm 1 could process the axiom rule X\V\-^o by building an SLP with rules
{Sl^(a)l(a)2} U {Si-^Si-Mj+i | i = 2 . . . | < J | - 2 } U { X | y | ^ S H _ 2 (a) t } . However
it is more efficient to compute the set of states reachable from the initial ones when
reading the string generated with Si and update this set for each symbol (a)*. To
perform the counting note that CSi is only used to compute CSi+1 and can be discarded
afterwards. This yields an algorithm running in O (p-s3+\a\-s2) time using 0(p-s2)
space where p is the number of rules of the input grammar and X\V\^xr its axiom.

Complexity in Terms of Operations Performed by the Algorithm

Define sT,q = \{q' \ (q,r,q') G S}\ and sT = £ g e Q Sr,g. Let us recall the complexity of
Algorithm 1 according to the described data structures. The algorithm iterates over
the p rules of the grammar and, for each of them, 1) initializes matrix M with s f t

elements15 and 2) iterates through N[q'][0 ... s^] for each pair (ql}q') E E«£. Then
it processes the axiom rule iterating, for each symbol (a*), through s{a)i transitions.
These are all the operations performed by the algorithm with running time dependent

on the size of the input. Hence, Algorithm 1 runs in O {jJHi ˜ + E l ! V)*) time

where se = s^ + s + £ (g i) g /) e E (1 + S / w) . Note that ˜z < s3 and V)* < g2.
In the experiments we observed that se and s{<7i) are usually much smaller than

s3 and s2, respectively, as reported in Table 2. Indeed, zearch exhibits almost linear
behavior with respect to the size of the FSA built from the expression. Nevertheless,
there are regular expressions that trigger the worst case behavior (last row in Table 2),
which cannot be avoided due to the result of Abboud et al. [7] describe before.

15 We need to set up to s sentinel values for the rows in J\f not used for storing

Expression s s3
percentiles for s̃

50% 75% 95% 98% 100%
s2 percentiles for s (σ) i

50% 75% 95% 98% 100%

“I .* you” “.*[A-Za-z]{5}”
“.*[A-Za-z]{10}”
“.*[A-Za-z]{20}”
“(((((.)*.)*.)*.)*.)*”

8
7

12
22

6

512
343

1728
10648

216

3
14
29
57
12

13 15 17
25 48 48
51 86 95
87 132 153
29 209 209

28
48
98

198
209

64
49

144
484

36

3
11
16
23
29

3
14
26
38
29

5
14
29
52
29

5
14
29
58
29

8
14
29
59
29

Table 2: Analysis of the values se and s{a). obtained when considering different regular
expressions to search Subtitles (100 MB uncompressed long). The fifth column of the first
row indicates that when considering the expression “I .* you”, for 75% of the grammar
rules we have se < 5 while s3 = 512.

Related Work

Regular expression matching on compressed text is a well-studied problem consisting
on deciding whether a string generated by an SLP matches a regular expression
(represented as an automaton). Plandowsky et al. [12] reduced the problem to a
series of matrix multiplications, showing it can be solved in 0(ps3) time (0(ps) for
deterministic automata) where p is the size of the grammar and s is the size of the
automaton. Independently, Esparza et al. [8] defined an algorithm to solve a number
of decision problems involving automata and context-free grammars which, when
restricted to SLPs, results in a particular implementation of Plandowsky’s approach.
Removing the function c o u n t from Algorithm 1 and replacing the return statement
of the algorithm by ((/ x {X{v{} x F) n 8 : true ? false) we are left with an efficient
implementation of Plandowsky’s approach.

The first algorithm searching grammar-compressed text for regular expression
matches is due to Navarro [10], GNgrep, and it is defined for LZ78/LZW compressed
text. His algorithm reports all k positions in the uncompressed text at which a
substring matching the expression ends (but not the matches) in 0(2s+s-p+k-s- log s)
time using 0(2s+p-s) space. The algorithm computes the number of matches by
enumerating these positions. To the best of our knowledge this is the only algorithm
searching compressed text for regular expression matches that has been implemented
and evaluated in practice. Bille et al. [13] improved the result of Navarro by defining a
data structure of size o(p) to represent LZ78 compressed texts that offers a time-space
trade off (reflected in parameter r) for finding all occurrences of a regular expression
in a LZ78 compressed text. Their algorithm operates in 0(p-s-(s+r)+k-s- logs) time
using 0(p-s2/r+p-s) space, where 1 < r < p. Note that these approaches to search
compressed text exhibit running time linear in the size of the uncompressed text
which might be exponentially larger than its compressed version. In consequence,
they are not optimal nor competitive with the state of the art, as show by Figure 2.

Conclusions and Future Work

We have presented the first algorithm for counting the number of lines in a grammar-
compressed text containing a match for a regular expression. The algorithm applies to
any grammar-based compression scheme and is nearly optimal for regular expression

matching on compressed text. Furthermore, we described the data structures required
to achieve nearly optimal complexity and used them to implement a (sequential) tool
that significantly outperforms the (parallel) state of the art to solve this problem.
Indeed, when the grammar-based compressor achieves hight compression ratio, which
is the case for automatically generated Log files, zearch uses up to 25% less time than
lz4|hyperscan, even outperforming grep and being competitive with hyperscan.

Finally, Algorithm 1 allows for a conceptually simple parallelization since any set
of rules such that no variable appearing on the left hand side of a rule appears on
the right hand side of another, can be processed simultaneously. Indeed, a theoretical
result by Ullman et al. [14] on the parallelization of Datalog queries can be used to
show that counting the number of lines in a grammar-compressed text containing a
match for a regular expression is in NC2 when the automaton built from the expression
is acyclic. We are optimistic about the possibilities of a parallel version of zearch.

References

[1] M. Charikar, E. Lehman, Ding Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat, “The smallest grammar problem,” IEEE Transactions on Information
Theory, 2005.

[2] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate coding,”
IEEE Transactions on Information Theory, 1978.

[3] T. A. Welch, “A technique for high-performance data compression,” Computer, 1984.
[4] N. J. Larsson and A. Moffat, “Off-line dictionary-based compression,” DCC, 1999.
[5] C. G. Nevill-Manning and I. H. Witten, “Compression and explanation using hierar­

chical grammars,” The Computer Journal, 1997.
[6] D. Hucke, M. Lohrey, and C. Philipp Reh, “The smallest grammar problem revisited,”

in SPIRE, 2016.
[7] A. Abboud, A. Backurs, K. Bringmann, and M. Ku¨nnemann, “Fine-grained complexity

of analyzing compressed data: Quantifying improvements over decompress-and-solve,”
FOCS, 2018.

[8] J. Esparza, P. Rossmanith, and S. Schwoon, “A uniform framework for problems on
context-free grammars,” Bulletin of the EATCS, 2000.

[9] K. Thompson, “Programming techniques: Regular expression search algorithm,” Com­
munications of the ACM, 1968.

[10] G. Navarro, “Regular expression searching on compressed text,” Journal of Discrete
Algorithms, 2003.

[11] P. Lison and J. Tiedemann, “Opensubtitles2016: Extracting large parallel corpora
from movie and TV subtitles,” in LREC, 2016.

[12] W. Plandowski and W. Rytter, “Complexity of language recognition problems for
compressed words.,” in Jewels are forever, 1999.

[13] P. Bille, R. Fagerberg, and I. L. Gørtz, “Improved approximate string matching and
regular expression matching on ziv-lempel compressed texts,” ACM Transactions on
Algorithms, 2009.

[14] J. D. Ullman and A. Van Gelder, “Parallel complexity of logical query programs,”
Algorithmica, 1988.

