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Abstract

Marlin [1, 2] is a Variable-to-Fixed (VF) codec optimized for high decoding speed through
the use of small sized dictionaries that fit in the L1 cache of most CPUs. While the size
of Marlin dictionaries is adequate for decoding, they are still too large to be encoded fast.
We address this problem by proposing two techniques to reduce the alphabet size. The first
technique is to encode rare symbols in their own segment, and the second is to combine
Marlin dictionaries with Rice encoding, hence our name Rice-Marlin for our new codec.
Using those techniques, we are able to reduce the size of Marlin dictionaries by a factor of
16, not only enabling faster encoding speed, but also achieving better compression efficiency.

1 Introduction

High Throughput (HT) codecs prime speed over compression efficiency. While HT
codecs have been used to reduce storage needs (i.e., LZ4 [3], and LZO [4]), their main
application is to improve the throughput of communication interfaces [5].

Most generic lossless compression codecs that are not considered to be HT are
based on the deflate [6] algorithm, which is a two-step algorithm that combines dic-
tionary compression(i.e., LZ77 [7]), and an entropy encoder (i.e., Huffman [8], arith-
metic [9] or range encoding [10]). However, entropy encoding is significantly slower
than the dictionary compression step and, furthermore, in most target applications,
entropy coding provides reduced compression gains as compared to those due to dic-
tionary compression. Hence, in most HT algorithms, the entropy encoding step is
either dropped [3, 5] or severely simplified [4, 11]. In particular, most research in
HT focuses on finding novel ways to find matches in LZ77 dictionaries that offer
compelling tradeoffs between coding speed and efficiency [12, 13].

Still, there are applications that need a fast entropy codec. In particular data
obtained by sensors (i.e., image, audio, etc.) generally can not be compressed well
using generic dictionary approaches; hence, LZ77 based HT codecs do not perform
well in this kind of data. One option to deal with this problem is to use fast versions
of generic entropy codecs (i.e., Huff0 [14] for Huffman and FSE [15] for Asymmetric
Numeral Systems [16]). However, if we know that the source we are compressing
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provides symbols following a particular probability distribution, we can use a codec
that specifically matches this distribution. The typical example of this case is when
encoding sensor residuals, which often follow Laplacian distributions. For this par-
ticular distribution, the Rice codec [17] is close to optimal, and faster than generic
entropy codecs. Hence, Rice encoding is very popular in lossless image codecs [18, 19].

Rice codec is a Fixed-to-Variable (FV) codec, where each input symbol is encoded
as a variable number of bits. Generally, FV codecs can be encoded exceedingly fast
using a lookup table, but are slower to decode as the boundaries between compressed
symbols are not known in advance. On the other hand, Variable-to-Fixed (VF) codecs
(e.g., Tunstall [20]) can be decompressed fast, but are slower to compress.

Marlin [1, 2] was the first VF codec that achieved a competitive compression
ratio at HT decoding speeds thanks to the combination of using plurally parsable
dictionaries [21, 22, 23, 24, 25] in a memoryless context, however, being a VF codec,
Marlin is slow to encode. The main bottleneck during the encoding process is related
to the size of the dictionary. For decoding, we only need to store the dictionary itself
on the L1 cache, but for encoding, we need to encode either a tree or a hash table
whose size is several times larger than the dictionary itself.

In VF codecs, the size of the dictionary must be larger than the alphabet size.
Hence, when encoding 8-bit sources the size of the dictionary must be larger than 256
entries. As the next efficient value for the codeword size is 12-bit, Marlin dictionaries
have 4096 entries. This size poses two problems: first, the encoding tree does not fit
in the L1 cache, and also 4096 entries are not enough for efficient encoding of high
entropy sources. We deal with those two problems in this contribution.

Here we apply two techniques that reduce the number of symbols to be encoded
by Marlin, effectively decreasing the size of the Marlin alphabet as much as possible.

Our first technique is to remove non-compressible bits (i.e., bits whose probability
of being 0 and 1 is close to 50%, and are uncorrelated to other bits). Having non-
compressible bits in an alphabet has an extremely negative effect on its efficiency,
and it is thus worth just to store them in a binary form, similarly to what Rice codes
do. Hence we named the combination Rice-Marlin codec. Each stored bit halves the
alphabet size, duplicating the ratio between dictionary size and alphabet size.

Our second technique consists of removing from the alphabet those symbols whose
probability of being emitted in a message is below a certain threshold, becoming
then unrepresented symbols. Each occurrence of an unrepresented symbol is stored
independently in a dedicated section.

The first technique is more effective when compressing high entropy sources, while
the second technique is more effective when compressing low entropy sources. By
combining both techniques we are able to use 8-bit codewords along all the entropy
ranges, while improving the compression ratio over previous approaches.

Experimental results for both synthetic and real data reveal how Rice-Marlin codes
achieve better compression ratio, the same decoding speed, and 2.4x faster encoding
speed when compared to original Marlin codes.



2 Background: Marlin Dictionaries

In this section we review the concepts from Marlin dictionaries that are necessary to
present our new contributions.

Marlin expects an alphabet A that contains a certain number of symbols and
their probabilities, and builds a dictionary W with 2N words. Most VF codecs do
uncompress a message by consuming N bits from the compressed stream and emit its
corresponding word. Marlin uses instead an overlapping codeword methodology [2],
where N bits are peeked from the stream, corresponding to one entry in the dictionary,
but only K bits are consumed, as seen in Fig. 1. In our notation, K is the number
of bits that are consumed from the source at each iteration, and O is the number of
bits that overlap between codewords, with N = O +K.

0000: aaaa
0001: a
0010: ba
0011: aa
0100: c
0101: aaa
0110: d
0111: b

1000: baaa
1001: ba
1010: ca
1011: baa
1100: bb
1101: c
1110: d
1111: b

(a) Dictionary W with K = 3 and O = 1

Decoding 0101001101:
a a a ∗ ∗ ∗ ∗ · · ·

Decoding 0101001101:
a a a b a ∗ ∗ · · ·

Decoding 0101001101:
a a a b a c ∗ · · ·

(b) Decoding of message 101001101

Figure 1: Decoding example for the message 101001101 using the dictionary W. Codewords
of W are encoded in 4 bits, but only 3 bits are consumed from the compressed source at each
step (K = 3), and there is 1 bit of overlap between consecutive codewords (O = 1). The
grayed bit corresponds to the initialization which in our current algorithm is always zero.

Because of the overlap, not all possible words of the dictionary are accessible
at each step. This is due to the prefix which is fixed by the previous codeword. We
named chapters to each set of accessible words. On the example represented in Fig. 1,
we have two chapters. The first contains the codewords from 0000 to 0111, and the
second chapter contains the codewords from 1000 to 1111. There are not repeated
words within a chapter, but the same word can appear in different chapters.

VFs codes, including Marlin, have the limitation that the number of words in
the dictionary |W| must be larger than the number of symbols of the alphabet |A|.
Marlin requisites are more strict due to the overlapping, and 2K must be larger than
|A| to achieve compression. Hence, in previous publications, we have suggested to
use a value 12 for K when encoding 8-bit alphabets, forcing us upon dictionaries that
contain thousands of words. This limit is the motivation for the Rice-Marlin codecs
introduced in this work, which allow to reduce the size of the working alphabet and,
therefore, to use a value of 8 for K.



3 Increasing the Efficiency of Marlin Dictionaries

The coding efficiency of stateless VF codecs is related to the ratio between the size
of the dictionary and the size of the alphabet. However, increasing the size of the
dictionary requires more memory and reduces the speed of the codec. Therefore,
in this section we present two techniques that allow us to increase the efficiency of
VF codecs by reducing the size of the alphabet instead of increasing the size of the
dictionary. The first technique, Removing High Entropy Bits, is more effective on
high entropy sources, while the second technique, Removing Low Entropy Symbols, is
more effective on low entropy sources.

3.1 Removing High Entropy Bits

We analyze source symbols as a group of bits. Often, when encoding high entropy
sources, the least significant order bits of each symbol can not be compressed (i.e.,
their probability of being 0 or 1 is close to 50% and uncorrelated with other bits).
This is a well known effect, and it is taken advantage from in, e.g., Rice [17] codecs,
where the least significant order bits are simply stored in a truncated binary form.

In VF codecs, each non-compressible bit effectively duplicates the number of al-
phabet symbols, hence, by encoding them in a separate section, we free a large number
of codewords in the dictionary.

We use a simple variation of the Rice-Golomb coding as we split each input symbol
in two parts: the S least significant bits are the reminder, while the most significant
bits are the quotient, defined as:

r = x mod 2S, and q =
⌊ x

2S

⌋

, (1)

where x is the original symbol interpreted as an unsigned integer.
For each input message, we compress all quotients together using the Marlin codec,

while the reminders are simply packed together afterwards. Hence, for S = 0, our
codec is simply equivalent to the original Marlin code.

To find the optimal S for an alphabet, we build a dictionary for each possible
value of S and choose the one with the best efficiency.

3.2 Removing Low Entropy Symbols

While building a VF codec, we must ensure that each possible source symbol can
be represented. As a consequence, symbols that are unlikely to be generated by
the source must use at least one entry in the dictionary. When using very small
dictionaries together with low entropy sources, a significant portion of the entries in
the dictionary are wasted representing symbols whose probability of appearing in a
message is close to zero.

To solve this problem, we identify symbols whose occurrence probability is below
a certain threshold, and we exclude them from the Marlin dictionary, labeling them
as unrepresented symbols. When encoding a message, each unrepresented symbol is
stored uncompressed in a dedicated section.



Marlin
Encoder

Source Block

Dictionaries
DictionariesDictionariesDictionariesDictionariesDictionaries

Encoded
Message

Marlin
Decoder

Output Block

Figure 2: To improve coding speed, a set of dictionaries is built beforehand and known to
both encoder and decoder. The encoder selects the best fitting dictionary, compresses the
block, and emits the compressed message which includes the index of the dictionary used.
The decoder recovers the original data using the selected dictionary.

4 Proposed Code Format

Most entropy encoders build custom encoding and decoding tables based on the statis-
tics of the symbols appearing in the block being currently encoded. However, building
such tables is time consuming, and several compression formats default to a prede-
fined generic table, as in JPEG or ZIP. Marlin is optimized for speed, but we also
want it to provide a competitive compression ratio, hence, we use a hybrid approach
where we build beforehand a set of dictionaries that cover a wide range of possible
probability distributions that may appear in the source, and we make this set of
dictionaries available to both encoder and decoder, as seen in Fig. 2. Then, when
compressing a block, we select the best fitting dictionary.

Also, as in previous Marlin codes, we rely on the software used to transmit the
message from source to target to provide the decoder with the size of the encoded
message and the size of the original message.

Our suggested message format has the following sections:

#D #U marlin encoded quotients unrepresented premindersp

1. #D: 1 byte containing the index of the dictionary used to encode the message.
2. #U : 1 byte containing the number of unrepresented symbols in the message.
3. quotients: variable sized field encoding the quotients using a Marlin dictionary.
4. unrepresented: each unrepresented symbol encoded as a pair {location,symbol}.
5. reminders: bit field with all concatenated reminders.
The quotients section is made of concatenated Marlin words, whose size depends

on the chosen dictionary. The unrepresented section is made by pairs {location,symbol},
those encode the symbols that the selected Marlin dictionary can not represent. In
most cases this section is small or even empty. The location field contains the abso-
lute position of the symbol within the uncompressed message, and its size depends
precisely on the size of the uncompressed message: 1 byte for messages smaller than
28 symbols, 2 bytes for message smaller than 216 symbols, 4 bytes for messages smaller
than 232 symbols, etc. If the original message has more than 255 unrepresented sym-
bols we store the original message uncompressed.

The reminders section is made of the concatenated least significant bits from the
original message, as seen in Fig. 3. Those can be encoded and decoded fast using bit
shuffling instructions.



000000000000000000000000000001010011100101110111

Compressed message

reminders

0000000000000001000000100000001100000100000001010000011000000111

Uncompressed message

Figure 3: Reminders are stored concatenated all together in its own section. Both encoding
and encoding of reminders can be done very efficiently using bit manipulation instructions.

5 Improved Encoding Algorithm

The process of encoding of a Marlin message is divided in three stages. On the first
stage, we calculate the quotients for each symbol and we encode them using the
VF dictionary. In this step, symbols whose quotient is not represented in the VF
alphabet are replaced by the most common quotient acting as a placeholder. The
second stage is to emit the location and value of each unrepresented symbol identified
in the previous step. The third stage is to emit the reminders of each source symbol.

The most time consuming stage is, by far, the encoding of the VF words. The
goal of this stage is to find the largest prefix of the source that corresponds to a word
in the dictionary. The two common approaches for solve this problem (hash tables or
prefix trees) require one query to the data structure per source symbol; as this query
can not be predicted, it often causes a cache-miss, becoming the main bottleneck.
Hence, to speed up encoding times we must have better locality to improve the cache
hits/miss ratio. We found out that prefix trees enable us to better control locality.

We build our prefix tree in the form of a matrix organized as shown in Fig. 4. Each
column of the encoding matrix represents the current state, and each row represents
the next source symbol to be encoded. Each codeword in the dictionary corresponds
to one state, and each cell contains both the next state, and a flag that indicates if the
current state/codeword must be emitted in the compressing stream. For example, if
we have encoded ”aa” and thus we are on the fourth column, and we fetch an ”a” from
the source, we must fetch the first row of the fourth column, which would indicate to
go to the state belonging to the ”aaa”, and not emit a word. On the other hand, if
we are in ”aa” and receive a ”b”, we fetch the second row of the fourth column, and
thus we will emit the codeword corresponding to ”aa” (i.e., the column index), and
go to the state ”b” of the corresponding chapter.

This data structure has three particularities: First, we avoid one memory fetch
by identifying codeword with state. Second, we avoid one memory fetch by storing
the next state and the flag in the same cell. Third, by choosing this disposition of
rows and columns, and sorting inputs symbols from most probable to least probable,
we will create an inbalance where most memory fetches will be close together and
centered on the first rows of the structure, as seen in Fig. 4, improving locality.



aaaa a ba aa c aaa d b baaa ba ca baa bb c d b
a a! aa a! aaa a! aaaa a! ba a! baa a! baaa a! ca a! ba
b b! b! b! b! b! b! b! b! b! b! b! b! b! b! b! bb
c c! c! c! c! c! c! c! c! c! c! c! c! c! c! c! c!
d d! d! d! d! d! d! d! d! d! d! d! d! d! d! d! d!

Figure 4: VF encoding table for the dictionary shown in Fig. 1. Our current state is
encoded in a column, and corresponds to the current codeword. The next possible symbols
are encoded as rows. Each cell contains our next state (our next codeword), as well as a flag
(!) indicating that the current codeword should be emited. Shading color indicates access
probability. Red and blue symbols correspond to the two chapters of the dictionary.

6 Evaluation

We integrated our new contributions in Marlin’s codebase, which is publicly available1.
Evaluation is performed on a i5-6600K CPU at 3.5GHz with 64GB of DDR4-2133
RAM running Ubuntu 16.04 and compiled using GCC v5.4.0 with the -O3 flag. While
previous Marlin codes suggested to use a K = 12, our new contributions allow us to
use a K = 8, avoiding shift operations in the decoding loop. We use O = 4 as the
overlap parameter. In this evaluation we decorate Marlin codes with the notation
(K,O) to indicate the used values for K and O. Our main evaluation metric is the
compression efficiency defined as the ratio between the information entropy of the
source and the average bit rate achieved: ηX = H(X)/ABR(X).

6.1 Results on synthetic data

We have evaluated our new contributions on synthetic data distributions at different
entropies. In Fig. 5a we show how using larger shift (S) values in our Rice-Marlin
distributions allow us to achieve compression gains with smaller dictionary sizes,
but also reduces the maximum efficiency achievable, as the stored reminders are not
compressed at all. In Fig. 5b we observe how we must find the right shift value to
use for each entropy level, with high entropy levels requiring larger shifts.

In Fig. 5c and Fig. 5d we have analyzed the impact of our high and low entropy
contributions on different probability distributions, showing that both are comple-
mentary, and together we achieve compression efficiencies well above the 95% mark
in almost the entire range of entropies and tested distributions.

The Rice codec, being a specialized codec, is very efficient for Laplacian distribu-
tions but struggles on significantly different distributions, such as Poisson. On the
other hand, Marlin is a generic VF codec that can efficiently compress sources from
any probability distribution, even when used in combination with Rice encoding.

Finally, in Fig. 5e and Fig. 5f, we show our improvement against our previous
versions of Marlin, which use dictionary sizes 16 times larger. There we achieve
approximately the same accuracy in low entropy sources, as the large dictionaries
used previously were not very sensitive to the few codewords wasted on rare symbols.
However, we observe a significant improvement on high entropy sources.

1Git repository: https://github.com/MartinezTorres/marlin (tag:dcc2019)

https://github.com/MartinezTorres/marlin
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Figure 5: (a): larger shift values enable smaller dictionary sizes, but reduce the maximum
possible efficiency achievable, which we represent in a dashed line. (b): as a consequence,
we must find the right balance for each entropy level. (c) and (d): removing low entropy
symbols is complementary to removing high entropy bits, and combining both provides ex-
cellent efficiency over the entire entropy range. Unlike Rice codec, our Rice-Marlin codec
is generic and performs well even in non Laplacian/Exponential distributions. (e) and (f):
compared to previous versions of Marlin, Rice-Marlin achieves approximately the same com-
pression efficiency for low entropy sources while using 16x smaller dictionaries, while having
significantly better efficiency for high entropy sources.
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Figure 6: Evaluation on the Rawzor lossless image compression dataset [26]. Compared
to Zstd, a very competitive fast compression algorithm, Rice-Marlin achieves comparable
compression performance and encoding speed, while decoding 6.12x faster.

6.2 Results on real data

In Fig. 6 we test Rice-Marlin against several state-of-the-art codecs on the Rawzor [26]
image set compressing independently blocks of 64× 64 pixels. The prediction model
uses the pixel above, and we compress the residuals.

Despite using dictionaries 16 times smaller, Rice-Marlin achieves a compression
ratio of 2.02647, a 2.34% improvement over Marlin with Overlapping codes [2], and
a 4.56% improvement over original Marlin [1]. Despite the increased complexity of
the new decoding algorithm, the decoding speed only drops by 5.56%. On the other
hand, Rice-Marlin is 2.4x faster to encode, achieving 176.67 MiB/s, mainly thanks to
the smaller dictionary, and the optimizations described in section 5.

7 Conclusions

We have presented two techniques for Marlin that improve the ratio between the
dictionary size and the alphabet size by reducing the alphabet size. Using those we
achieve better compression efficiency while using dictionaries 16 times smaller than
before. We presented an encoding algorithm that leverages the smaller dictionaries
to achieve 2.4x times faster encoding times. Thanks to this improvements, our new
codec, named Rice-Marlin, achieves encoding speeds and compression ratios similar
to the Zstd in lossless image compression, while still being 6.12x faster to decode.
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