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Abstract

Network quantization is an effective method for the deployment of neural networks on
memory and energy constrained mobile devices. In this paper, we propose a Dynamic
Network Quantization (DNQ) framework which is composed of two modules: a bit-width
controller and a quantizer. Unlike most existing quantization methods that use a universal
quantization bit-width for the whole network, we utilize policy gradient to train an agent
to learn the bit-width of each layer by the bit-width controller. This controller can make
a trade-off between accuracy and compression ratio. Given the quantization bit-width
sequence, the quantizer adopts the quantization distance as the criterion of the weights
importance during quantization. We extensively validate the proposed approach on various
main-stream neural networks and obtain impressive results.

1 Introduction

Deep convolutional neural networks have shown their strengths in computer vision and
machine learning. In order to achieve better performance, deeper and wider networks
are designed which poses heavy burden on storage and computational resources. It
is challenging to deploy neural networks on memory and energy constrained devices
such as mobile phones and drones. To solve this problem, low precision networks
are proposed and attract many researchers interests. Quantized networks with low-
precision weights can achieve competitive performance with the full-precision models.
Network quantization can not only reduce the memory size, but also reduce the
computation cost when acceleration engines [1] are used.

Most of the existing network quantization works, the quantization bit-widths are
usually kept the same for different layers [2] [3] [4]. However, since the representation
abilities and capacities of layers are different, we address that the bit-width should
be learned to conform to its representation ability. Moreover, after the bit-width is
determined, it is also important to quantize the network and preserve its accuracy
at the same time. Recently proposed iterative quantization method [4] [5] that
incrementally partitions the weights into a quantization part and re-training part
achieves good performance. However, INQ [4] determines the importance of network
weights by simply comparing their absolute values, which is less convincing and may
have limitations in guaranteeing the performance after quantization. In this paper,
we argue that quantization distance is a better criterion.

The contributions of this paper are:
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1. We propose a Dynamic Network Quantization (DNQ) framework which
consists of two modules: a bit-width controller and a quantizer.

2. The bit-width in each layer is modeled by a Markov decision process (MDP).
We train a policy network by policy gradient [6] to search for the optimal
quantization bit-width for each layer, such that each layer can be adaptively
quantized by an optimal bit-width.

3. A distance-based criterion is introduced during iteratively network quantization.

4. The experiment results demonstrate that DNQ can preserve a low accuracy drop
with large compression ratio.

The rest of this paper is organized as follows. Some related works are summarized in
section 2. In section 3, we describe Dynamic Network Quantization (DNQ) framework.
The experimental results are reported in section 4, followed by the conclusion in
Section 5.

2 Related Work

Network quantization: Many researches obtain network compression by network
quantization. Basically, network compression aims to group weights with similar values
to reduce the number of free parameters. Hash-net [7] constrains weights hashed into
different groups before training. Within each group the weights are shared and only
the shared weights and hash indices need to be stored. Training binary and ternary
networks attracts many researchers interests [8] [9] [10], weights are constrained to
be binary or ternary representations during training. Hao Li et al. [11] and Yin [12]
give a deeper understanding in theory. Different from training low precision networks
from scratch, quantizing the pre-trained full-precision model can better preserve the
accuracy of the network. Han et al.[13] present deep compression which combines
the pruning [14], vector quantization and Huffman coding, and reduces the model
size by 35× on AlexNet and 49× on VGG-16. Iterative quantization [4] [5] utilizes
the characteristic of the network itself. This method partitions the weights into two
different parts: one part is used to quantize and another part is used to retrain to
compensate for quantization loss.

Reinforcement learning: Reinforcement learning has been proven an effective
tool to solve many tasks. Neural architecture search has shown its strength by
searching for the optimal architecture of a given data-set. [15] uses a controller to
sample child networks of different architectures. Different from random search, NASnet
[16] propose a new search space to achieve better performance. Efficient architecture
search algorithms [17] [18] are proposed to reduce the time cost and computation cost
of architecture search. Deep reinforcement learning has also been applied in network
compression. Ji et al.[19] prune filters of the network based on different input images
by Deep Q-learning. He et al. [20] find the sparsity of each layer by reinforcement
learning.
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Figure 1: The framework of DNQ. DNQ is composed of two modules. The first module is a
bit-width controller which training a policy network to generate the bit-width for each layer.
The second module is a quantizer that quantizes the network iteratively based on the given
bit-width sequence.

3 Dynamic network quantization

The framework of our Dynamic Network Quantization (DNQ) is consisted of two
modules (see Figure 1):

• Module 1: a bit-width controller that generates optimal quantization bit-width
for each layer;

• Module 2: a quantizer which iteratively quantizes the weights according to the
bit-width given by the bit-width controller.

3.1 Bit-width controller – module 1

The compression ratio is related with the quantization bit-width bl which indicates
that bl bits are used to encode the index of quantized weights. If we use B bits to
store one floating point weight, the compression ratio can be expressed as follows:

r =

∑L
l=1 nlB∑L

l=1 nlbl + klB
(1)

Our bit-width controller in this work is based on reinforcement learning for training
an agent to maximize the cumulative reward when interacting with an environment.
This problem is solved by training a policy network Mθ, the input sequence is the
embedding of the network and the output sequence BL = (b1, . . . , bl, . . . , bL) is the
bit-widths of the network, where bl is the bit-width of the lth layer. In time step l,
the state s is the current produced bit-width sequence (b1, . . . , bl−1, ). The action al
we choose in time step l indicates the bit-width used to quantize the layer, where
al ∈ (2, 3, . . . , 8). The bit-width sequence directly affects the accuracy of the network
and it is meaningless to provide a model with high compression rate and low accuracy.
There is a tradeoff between the compression ratio and the performance. Thus, the
reward R is defined as:

R = Acc+ λr, (2)



Layer Embedding Layer Embedding Layer Embedding

Softmax Softmax Softmax

b1 b2 bL

… 

… 

… 

Bi-LSTM Bi-LSTM

Layer 1 Layer 2 Layer L

… 

Bi-LSTM

Figure 2: The network structure of the bit-width controller. The policy network is a BiLSTM.
The input sequence is the embedding of each layer while the output sequence is the nit-width
of the layer.

where Acc is the accuracy of the quantized network without fine-tuning and r is the
compression ratio. λ is a positive real value.

R is the reward of the finished sequence (b1, . . . , bl, . . . , bL). We should not only
consider the fitness of previous layers’ bit-widths but also the future outcome. There-
fore, to evaluate the action at in time step t, we apply Monte Carlo search to sample
the next L − t bit-widths. We average the N times sampling results to reduce the
variance:

RMθ(st = Bt−1, at = bt) =
1

N

N∑
n=1

Rn(BL), BL = MC(Bt;N), (3)

where MC(:) is the Monte Carlo sampling function.
We train our policy networks by policy gradient [6]:

∇θJ(θ) =
L∑
l=1

Eb1:L Pθ [∇θlogPθ(bl|b1:l−1)RMθ ]

=
1

N

N∑
n=1

L∑
l=1

Eb1:L Pθ [∇θlogPθ(bl|b1:l−1)Rn(BL)]

(4)

where N is the Monte Carlo sampling times. L is the total length of the sequence.
Pθ(bl|b1:l−1) is the action probability of action bl in the time step l given previous l− 1
actions b1:l−1. Algorithm 1 details the training procedure of the bit-width controller.

3.2 Quantizer – module 2

As the quantization bit-width is determined, the quantizer maps the weights to their
corresponding centroids and recovers the accuracy of the quantized network. Inspired



Algorithm 1 Bite-width Controller
1: Input: The pre-trained full-precision DNN model
2: output: The optimal quantization bit-width sequence for the model
3: for Iterations do
4: Input the embedding sequence of the full precision network by policy network Mθ.
5: Generate bit-width sequence BL(b1, . . . , bL)
6: for t in 1 : L do
7: Compute RMθ(st = Bt−1, at = bt) by Eq.3
8: end for
9: Update policy network Mθ by policy gradient by Eq.4.

10: end for

by the INQ [4], we follow an iterative strategy that quantizes part of the weights
and retrains the remaining weights to recover accuracy. Different from INQ , we use
k-means to control the quantization loss and we use quantization distance as the
criterion of the weights importance. The quantization part can be divided into four
steps: weight clustering, distance clustering, weight-sharing and re-training (as shown
in Fg.3).

Weight clustering: We adopt the commonly used k-means clustering. By
minimizing the within-cluster sum of squares,

arg min
C1,C2...Ck

k∑
i=1

∑
ω∈Ci

|ω − ci|2, (5)

where Ci is the ith cluster, ci is its corresponding centroid which equals to the mean of
the weights in Ci. Our quantization algorithm is an iterative one that each iteration
will contain the clustering step. Note that we only update the centroid in the weight
clustering of the first iteration. In other iterations, we fix the centroid and re-allocate
the weights into different clusters.

Quantization distance clustering: Quantizing weight ω to its corresponding
centroid ω̂ (ω̂ ∈ {ci}) will cause accuracy loss. The bigger the accuracy loss is, the
harder the accuracy can be recovered.

d = |ω − ω̂| (6)

The quantization loss is highly related with the item d (Eq.6). If Loss L is smooth,

|L(χ, ω)− L(χ, ω̂)| = O(|ω − ω̂|). (7)

We can assume that there is a positive correlation between the quantization loss
and quantization distance d. Based on the observation, the quantization distance d is
better used to measure the importance of weights. It can also be assumed that weights
with similar quantization distance would show similar effect to the network. We
represent each weight of the network by a triplet Ω = (ω, ω̂, d). This triplet contains
three most important elements during the quantization of Ω. We propose quantization
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Figure 3: Illustration of one iteration of the quantizer. Different color indicates different
clusters. Rectangle represents the weight matrix while parallelogram represent the distance
matrix. First, the weights of the the network are clustered; Second, the distance between
the weights and centroids generated by weight clustering are computed and weights are re-
clustered based on distance; Third, weights with bigger distance are quantized in preference;
Fourth, accuracy is recovered by re-training.

distance clustering to cluster the weights with similar quantization distance. Weights
in the same distance cluster will be quantized at the same time.

Weight sharing and re-training: Weights with similar quantization distance
are clustered together. The weights in the large distance cluster are quantized in
preference since these weights are more important and need more weights to be re-
trained to recover accuracy according to our assumption. Also, the number of weights
quantized in the iterations is constrained to be a descending sequence.

A mask matrix M(p, q), which has the same size as weight matrix W (p, q), acts as
an indicator function to fix the quantized weights:

M(p, q) =

{
0 , if ω is quantized

1 , otherwise
(8)

We re-train the network using stochastic gradient decent(SGD) to update the un-
quantized weights. To fix the quantized weights, we use the indicator function M as a
mask on the gradient of the weights to control the gradient propagation:

ω ← ω − γ ∂E

∂(ω)
M (9)

Algorithm 2 details the iterative quantization procedure.



Algorithm 2 Quantizer
1: Input: Bit-width sequence and pre-trained full-precision DNN model
2: output: The quantized low-precision model
3: for Iterations do
4: Given bit-width BL, conduct weight clustering as Eq.5.
5: Conduct distance clustering
6: Quantize the weights in the bigger distance cluster.
7: Re-train the un-quantized weights to recover accuracy.
8: end for
9: All weights are quantized.

4 Experiments

We conduct experiments on two data-sets CIFAR-10 and ILSVRC2012 (ImageNet-12)
to evaluate our proposed framework DNQ. CIFAR-10 consists of 60,000 RGB images
(32×32) with 10 classes, with 6,000 images per class. There are 50,000 training
images and 10,000 test images. ILSVRC2012 contains as much as 1,000 classes of
objects with nearly 1.2 million training images and 50 thousand validation images.
For CIFAR-10, we use a 5-layer network CIFAR-Net 1. For ILSVRC2012, we use
AlexNet and ResNet18 for evaluation. We compare our DNQ with state-of-the-art
quantization methods on ILSVRC2012.

4.1 Implementation Details

The implementation of DNQ is consisted of two modules. The first is the bit-width
controller and the second is a quantizer. The module 1 generates bit-width for
each convolutional layer and module 2 conducts quantization according to the bit-
width. The bit-width controller is implemented on Tensorflow while the quantizer is
implemented on Caffe.

In the module 1, we use a bidirectional LSTM as the policy network (as shown in
Fg.2). The policy network is trained using SGD with learning rate 0.01. The batch
size is 5 and the total iterations are 1,000. In the bit-width controller, we only consider
the convolutional layers of the network for the following reasons. First, in a network,
convolutional layers extracting features are more important and more difficult to be
quantized than fully-connected (FC) layers. Second, most of the computation cost
is caused by convolution operation. The computation cost can be reduced if the
bit-width is smaller when using the acceleration engine [1]. Third, recent networks
like ResNet [21] use global average pooling (GAP) other than redundant FC layers.
The bit-width of the FC layers in CIFAR-Net and AlexNet is fixed to 3.

In the module 2, the weight clustering cluster number k equals 2b−1 + 1 because we
use one bit to store zero. The distance clustering cluster number is 12. CIFAR-Net,
AlexNet and ResNet are all trained using SGD. In each iteration, CIFAR-Net is
retrained with learning rate 0.01 for total 8k iterations, with batch size 100. AlexNet
and ResNet are both retrained with an initial learning rate 0.001, decaying by a factor

1CIFAR-NET model file can be found: https://github.com/BVLC/caffe/tree/master/examples/cifar10
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Figure 4: The bit-width generated by the bit-width controller. The left part is the bit-width
of each convolutional layers of CIFAR-Net while the right part is the bit-width of each
convolutional layers of AlexNet

Table 1: Experiments of DNQ on CIFAR-Net (module 1 and module 2 indicate the bit-width
controller and the quantizer resectively)

Method Bit-width Accuracy(%) Compression ratio (Eq.1)

INQ [4] 5 81.08 6.3
SLQ [5] 5 81.11 6.3
DNQ ((module 2) 5 81.63 6.3

INQ 3 79.52 10.6
DNQ (module 2) 3 79.89 10.6
DNQ(module 1+ 2) Dynamic 80.56 10.5

of 10 after 30k, 60k iterations for total 60k iterations. The batch size of AlexNet is
256 and the batch size of ResNet is 80. For extremely low bit-with, we do the distance
clustering within each weight cluster.

4.2 Results on CIFAR-10

For CIFAR-10, we use a 5 layer convolutional network with 3 convolutional layers.
We first test the effectiveness of our quantizer which is the module 2 in DNQ. The
result is shown in Table.1. All layers are quantized into 5 bit or 3 bit when only
using the module 2. The accuracies of the 5-bit and 3-bit DNQ quantized CIFAR-Net
are higher than the INQ 5-bit and 3-bit quantized models respectively. Besides, the
5-bit model quantized by the proposed quantizer also outperforms the 5-bit model
quantized by SLQ [5]. This demonstrates the effectiveness of the quantization distance
criterion. For module 1, the bit-widths of all three convolutional layers are shown in
Figure 4. The bit-width of conv1 is 5 while the other two convolutional layers are
both 3. The result of our DNQ applied on CIFAR-Net is as shown in Table.1. With
module 1 and 2 both applied, the quantized CIFAR-Net by DNQ can obtain better



Table 2: Experiments of DNQ on ILSVRC2012

Network Bit-width Top-1 Accuracy (%) Compression ratio (Eq.1)

AlexNet ref 32 56.81
AlexNet-DNQ Dynamic 56.72 (-0.09) 10.6
ResNet18 ref 32 68.20
ResNet18-INQ [4] 3 68.08 (-0.12) 10.7
ResNet18-DNQ Dynamic 68.23 (+0.03) 10.6

performance with nearly the same compression ratio compared with other methods
INQ with universal bit-width 3. The quantized model by DNQ also achieves better
performance the model quantized by only using module 2.

4.3 Results on ILSVRC2012

For ILSVRC2012, we use AlexNet and ResNet18 for experiments. The bit-width of
ALexNet is shown in Fg.4. The result is shown in Table.2. AlexNet quantized by
DNQ can achieve negligible accuracy loss compared with full-precision model. Note
that we do not add BN layers and we quantize all the layers in the AlexNet. The
quantized ResNet18 can achieve nearly the same performance as full-precision model.

To show the effectiveness of our approach, we compare the proposed DNQ with
INQ [4] on ResNet18. The results are shown in Table.2. The bit-width for INQ is set 3
for all of the layers. The bit-width for DNQ is determined by the bit-width controller
(module 1). The compression ratio for INQ is 10.7, while the compression ratio for our
DNQ is 10.6 which is nearly the same. However, DNQ can have better result than
INQ since we use the dynamic bit-widths and distance based quantization.

5 Conclusion

In this paper, we propose Dynamic Network Quantization (DNQ) framework which
is composed of two modules. First, we train an agent network by policy gradient [6]
to learning the bit-width for each layer. Second, we propose a quantization distance
based quantizer to quantize the network iteratively based on the given bit-width.
We evaluate our DNQ with CIFAR-Net on CIFAR-10 and AlexNet, ResNet18 on
ILSVRC2012 and achieve impressive results.
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