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Abstract

The successor and predecessor problem consists of obtaining the closest value in a set
of integers, greater/smaller than a given value. This problem has interesting applications,
like the intersection of inverted lists. It can be easily modeled by using a bitvector of size n
and its operations rank and select. However, there is a practical approach [1], which keeps
the best theoretical bounds, and allows to solve successor and predecessor more efficiently.
Based on that technique, we designed a novel compact data structure for bitvectors with k
runs that achieves access, rank, and successor/predecessor in O(1) time by consuming space

O(
√
kn) bits. In practice, it obtains a compression ratio of 0.04%− 26.33% when the runs

are larger than 100, and becomes the fastest technique, which considers compressibility,
in successor/predecessor queries. Besides, we present a recursive variant of our structure,
which tends to O(k) bits and takes O(log n

k ) time.

Introduction

One of the main computational tasks in a search engine is to look for those documents
that contain a set of words. In order to speed up that search, those engines use
inverted lists. Each inverted list corresponds to a word and stores as an increasing
sequence the document identifiers of the documents where that word occurs. Most of
the time, the query received by a search engine carries more than one word, to know
where all the words appear together, the search engine needs to intersect various
inverted lists. The optimal intersection of two lists can be easily solved by iterating
over both of them in alternate form [2]. In each iteration, the search engine looks
for a value in the second list, v2, equal to or higher than the value from the first list,
v1. If they are identical, v1 is part of the solution and iterates to the next value in
the first list. Otherwise, the iterator of the first list skips those values lower than v2.
Therefore, it needs an efficient mechanism that can find an equal or higher value in
the other list, which is known as the successor problem.

Let us formalize the successor and predecessor problem, considering a set of inte-
gers S = {x1 < x2 < · · · < xm}, the successor (succ(x) = xi) of a given value x returns
the minimum value xi ≥ x of S. Analogously, the predecessor of x (pred(x) = xi)
returns the maximum value xi ≤ x of S. Assuming n = xm and m = |S|, both
problems can be modeled by using a bitvector B[1, n] which contains m 1s located
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at positions xi for all 1 ≤ i ≤ m, and solved in O(1) time with the two classical
operations on bitvectors: rank and select [3–6].

In some scenarios, the bitvector B can contain the set bits clustered together in
k runs; hence B contains k runs of 1s and k ± 1 runs of 0s. There is a structure,
oz-vector [1], which compresses the bitvectors exploiting its runs. The oz-vector
transforms the input bitvector into two sparse bitvectors O and Z, which mark the
lengths of the runs of 1s and 0s, respectively. Since those bitvectors are sparse,
they are very compressible, and the oz-vector can obtain good compression ratios in
practice. However, for solving succ and pred, it requires O(log k) time. This study
aims to propose a new structure, zombit-vector, which compresses bitvectors with
runs and supports succ and pred in O(1) time. zombit-vector splits the bitvector into
blocks of fixed size β and classifies them into three sets of blocks depending on their
information: full of 0s (Z), full of 1s (O), and containing 1s and 0s (M). Representing
this information needs O(kβ + n

β
) + o(n) bits. As the optimal value of β is

√
n
k
, it

can solve access, rank, succ, and pred in O(1) time with O(
√
kn) bits. Besides,

we present a variant which constructs a zombit-vector recursively. That recursive
technique converges to O(k) bits and can solve those operations in O(log n

k
).

We compare our proposal with different compact data structures for bitvectors
that can solve succ and pred efficiently. In the experimental evaluation, we can
observe that zombit-vector obtains the best response times in all settings. It becomes
5 − 12 times faster than our immediate competitor and occupies 0.04% − 26.33% of
the plain bitvector, when the mean length of runs is higher than 100.

Background

A bitvector B[1, n] is an array of bits whose size is |B| = n, and each position can
acquire the two possible bit values, 0 and 1. Usually, it is used to represent the values
of S = {x1, x2, . . . xm}, a subset of an universe {1, 2, . . . n}, by setting B[xi] = 1 such
that xi ∈ S. Mainly, they support two operations: rankα(B, x), which returns the
number of bits set to α within the interval B[1, x]; and selectα(B, x), which returns
the position of the x-th α value in B. In theory, both operations can be solved in
O(1) time by using additional structures which require o(n) bits of extra-space [3–6].

Therefore, successor and predecessor problem can be modeled by setting B[xi] = 1
where xi ∈ S and both operations, with respect to a position x, can be solved as
succ(B, x) = select1(B, rank1(B, x−1)+1) and pred(B, x) = select1(B, rank1(B, x)).
Though both areO(1) time, there is a more practical structure for succ/pred [1], which
keeps the o(n) extra-space and O(1) time. In practice, it achieves less space and
better response times than using rank, and then select. That structure is similar to
the classical rank structure [3–6], but instead of storing the number of ones preceding
a position, it stores the location of the next/previous 1-bit. Since predecessor and
successor are symmetrical, from this point on, we only refer to successor.

Zero-order entropy

Notice that, in a plain bitvector, we are using n bits of space, which is the worst-case
optimal, and achieves rank, select, and succ in O(1) time with additional o(n) space.



However, a better lower bound of the representation of S is B(n,m) = dlog
(
n
m

)
e.

In order to improve the worst-case optimal, in [7, 8] they propose techniques, which
get O(1) time in rank and select by using B(n,m) + o(n) bits. Consequently, succ
can be solved in O(1) time. The space result is approximately nH0, where H0 is the
zero-order entropy of B. Some studies show new lower-bounds [9, 10] and confirm
that the space of [7, 8] is almost the optimal.

Sparse bitvectors

Those bitvectors where m� n are well-known as sparse bitvectors. In sparse bitvec-
tors the extra o(n) space can be huge, for this reason there are some proposals, like
rec-rank and sd-array [11], focused on avoiding that dependency.

The first one splits B into blocks of a given fixed size and classifies those partitions
into two types: Z, full of 0s, and NZ, the block contains at least one 1-bit. The kind
of each block is stored into a contracted bitvector, Bc, and the NZ blocks are grouped
together by concatenating them preserving the order into an extracted bitvector, Be.
This process is repeated recursively over Be until it is not sparse. In total, it takes
log n

m
+m+ o(n) bits and can solve rank, select, and succ in O(log n

m
) time.

The sd-array defines a parameter r = blog n
m
c and each value S[i] is divided into

the r lowest bits (li) and the dlog ne−r most significant bits (hi). Notice that each hi
covers an interval of values [hi×2r, (hi+1)×2r). With this information, the sd-array
builds two elements, L and H. L is an array composed by each li, and H is a bitvector
that indicates in unary how many elements of L are covered by all possible hi. Since
L can be stored by using m log n

m
bits, H uses at most 3m bits, and an additional

structure of select ; the required space is m log n
m

+O(m) bits. It is able to solve select
in O(1) time, but rank and succ operations take O(log n

m
).

Bitvectors with runs

Occasionally, a bitvector has the same distribution of 1s and 0s; however, both bits are
clustered together forming runs. Since the number of 1s and 0s are similar, the zero-
order entropy cannot capture the compressibility of bitvectors with runs. Therefore,
the previous techniques are not useful in this case.

Nevertheless, in [1] they propose a structure called oz-vector, which makes possible
to use those previous techniques by transforming B into two sparse bitvectors (O
and Z). The transformation consists in computing the length ` of every run of 1s
and 0s, and storing those lengths with unary code (10`) in O and Z, respectively.
Consequently, the length of the first run of 1s is the distance between the first and
second 1-bit in O. By using the sd-array in O and Z, the oz-vector uses k log 2n

k
+O(k)

bits and solves select in O(min(log k, log n
k
)) and rank in O(log k). Therefore, succ

can be solved in O(log k).

Hybrid bitvectors

As it is shown in the previous scenarios, we can find different types of bitvectors
depending on its number of 1s or how clustered are those bits. In [12], the authors
propose a structure (hybrid-vector) that can adapt its compression technique accord-
ing to the features of its input. The hybrid-vector splits the input into blocks of a



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

zombit-vector:
1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

Figure 1: Example of zombit-vector with β = 2.

fixed size b, and each one is encoded individually. There are three possible types of
block encoding: (i) minority bit positions, which stores only the positions of all 1s or
0s, the one which has fewer occurrences; (ii) run-length encoding, stores the length
of every run; and (iii) plain, in case that the previous options are not satisfactory,
the block is encoded in plain form. Over those blocks, in order to speed up rank and
select, there is an auxiliary structure of super-blocks storing the accumulative rank.
In the worst case it takes n+ o(n), but if it has k runs and m minority ones, it only
uses min(k,m)dlog be+o(n) bits. With this space, it achieves rank in O(1), but select
and succ require O(log n) time.

zombit-vector

Our proposal, zombit-vector is designed to compress bitvectors with runs and solve
successor and predecessor operations in O(1) time. The main idea is to divide the
input into blocks in such a way that most of the blocks are uniform (all 0s or all 1s).
With this approach, our structure only needs to store the information contained by
non-uniform blocks.

Structure

Given a bitvector B of size |B| = n with k runs of 1s and k±1 runs of 0s, zombit-vector
defines a size of block β which splits B into dn

β
e partitions, obtaining a set of blocks

{X1, X2, . . . , Xdn
β
e}. Each block Xi can be classified into three different sets of blocks

depending on its data: uniform blocks full of 0s (Z), uniform blocks full of 1s (O), and
mixed blocks, those which contain both bits (M). As a consequence, the structure
contains u = |{Z ∪ O}| uniform and t = dn

β
e − u mixed blocks. The classification of

each block can be represented by using two plain bitvectors: U and O. The bitvector
U [1, dn

β
e] marks which Xi is uniform by setting U [i] = 1 when Xi ∈ {Z ∪ O}. Then,



we use the bitvector O[1, dn
β
e] to represent which block contains at least one 1-bit, it

means O[i] = 1 when Xi ∈ {O ∪M}. Additionally to this classification, we need to
store the data of every mixed block. For that purpose, we use a bitvector M [1, t× β]
which appends the information of each mixed block together, preserving the order in
B. In total, we need O(kβ + n

β
) bits, and since the optimal β =

√
n
k
, we can reduce

the space to O(
√
kn) bits.

Figure 1 shows an example of zombit-vector built over the bitvector B with β = 2.
On top of Figure 1, B is divided into 8 blocks {X1, X2, . . . , X8}. On the bottom of
each block, we can observe the set which contains such block and solid or dashed lines,
which distinguish uniform and mixed blocks, respectively. For instance, X1 ∈ O is
uniform, thus it gets a solid line, but X2 ∈ M is mixed, and it is represented with
a dashed line. As X2, X4, X6 are the mixed blocks, in the bitvector U of the zombit-
vector structure, all the bits are set to 1 except 2, 4 and 6. Concerning the O bitvector,
it has only 0-bits at positions 3, 7, and 8 because X3, X7, X8 belong to Z. Finally, the
mixed blocks are sequentially stored in the bitvector M , hence M [1, 2] corresponds
with X2, M [3, 4] with X4 and M [5, 6] with X6.

Basic operators

For a better explanation of the operations that can be solved in the zombit-vector
structure, let us define two basic operators:

• begi and endi: given a position i, which represents the i-th block, it returns
the first/last position, respectively, where the information of the i-th block is
located. The result can be computed as begi = (i− 1)×β+ 1 and endi = i×β.

• ∆i: computes the distance of i with respect to the first position of its block as
(i − 1) mod β. For example in Figure 1, ∆8 = 1 because of β = 2 the first
position of its block is 7, hence the distance is 8− 7 = 1.

Access

Access operation retrieves the value at a given position i. That information is stored
on a block Xj, where j = d i

β
e. If Xj is uniform (U [j] = 1), all the values inside

that block are identical. Since O[j] indicates when a block contains at least 1-bit, the
uniform block is full of 1s when O[j] = 1; otherwise, it is empty. Therefore, in the
uniform case, access can be solved by returning O[j]. For instance, with i = 5 the
solution is in X3, an uniform block (U [3] = 1), thus the algorithm returns O[3] = 0.

Otherwise, when Xj is mixed (U [j] = 0), the number of mixed blocks up to j is
computed as q = rank0(U, j). Consequently, the value of i is inside the q-th mixed
block, specifically, ∆i positions after the first position of that block. As the data of
the q-th mixed block are at M [begq, endq], the value corresponds with M [begq + ∆i].
For example, in Figure 1 to retrieve B[7], the algorithm computes j = 4 and checks
U [4]. X4 is a mixed block because U [4] = 0 , in particular, it is the second mixed block
(q = rank0(U, 4) = 2). Hence, the algorithm returns M [beg2 + ∆7] = M [3 + 0] = 0.
As we can observe, in both cases, this operation can be solved in O(1) time by using
o(n) bits of additional space for rank in plain bitvectors.



Rank

rank1(B, i) computes the number of 1s in B up to a position i which belongs to a
block Xj. In zombit-vector, the algorithm starts computing the number of 1s preced-
ing to Xj. Let us define p′/q′, as the number of uniform/mixed blocks previous to
Xj.

1 Therefore, the uniform blocks include b1 = p′ − rank0(O, j − 1) blocks full of
1s. Since there are b1 blocks with β 1s each, and q′ mixed blocks that accumulate
rank1(M, endq′) 1s, the number of 1s before Xj is r = b1 × β + rank1(M, endq′).

After computing the number of 1s previous to Xj, the algorithm updates r depend-
ing on the number of 1s in Xj. If Xj ∈ Z, the block is absent of 1s and the algorithm
returns r. When Xj ∈ O, the number of ones contained by Xj up to i must be consid-
ered. Since Xj is full of 1s, thus it contains ∆i + 1 extra 1s, the solution is r+ ∆i + 1.
Otherwise, Xj belongs to M, which is the (q′ + 1)-th mixed block. The number of
ones up to i inside Xj is computed as b = rank1(M, beg(q′+1) +∆i)− rank1(M, endq′),
thus the solution becomes r + b. Notice that, we can simplify that formula as
b1×β+ rank1(M, beg(q′+1) + ∆i), the number of 1s previous to Xj in those blocks full
of 1s, and the number of 1s inside the mixed blocks up to the queried position. For
example, in Figure 1 for solving rank1(B, 8) where j = 4, the algorithm gets p′ = 2,
q′ = 1, and b1 = 1. X4 is a mixed block, hence the algorithm computes the first addend
as b1× β = 2, and the second one as rank1(M, beg(1+1) + ∆8) = rank1(M, 3 + 1) = 2.
The addition of these two values is the solution, 2 + 2 = 4. As we can observe, the
rank operation on zombit-vector only requires rank on plain bitvectors, which can be
solved in O(1) time by storing o(n) bits of extra-space. It is important to notice that
we do not discuss rank0(B, i) because it can be solved as i− rank1(B, i).

Successor

Given a bitvector B and a position i, succ(B, i) returns the lowest index which con-
tains a 1-bit at B[i, n]. For example, in Figure 1 succ(B, 3) = 3 and succ(B, 6) = 8.
This operation can be solved in the zombit-vector following Algorithm 1. Firstly,
at Lines 1-2, the algorithm computes the block that contains i (Xj), and stores the
number of mixed blocks up to Xj into q. There are two cases where Xj includes the
solution. The first case occurs when Xj ∈ O, at Line 5. Since Xj is full of 1s the
successor is the current position i. The second one happens when Xj ∈ M and the
next 1-bit is inside Xj. In order to know if the next 1-bit is contained by Xj, Line 7
computes the position (s), where is the first 1-bit after the correspondent position of
i in M (begq + ∆i). If s is in the range of Xj in M , [begq, endq], the next 1-bit is in
Xj. In particular, that 1-bit is at distance ∆s from the first position of Xj, hence the
solution is begj + ∆s.

Otherwise, the next 1-bit is not in Xj because it is empty or the last 1-bit in
Xj is previous to i. The algorithm jumps to the next block with 1s by performing
Algorithm 2. Firstly, the next partition (Xj′) that contains at least one 1-bit is
computed. If it is part of O, Line 3, that block is full of 1s, and the solution is its
first position. Otherwise, the result is located inside the (q+ 1)-th mixed block (Xj′)
at position ∆s′ , thus the algorithm returns begj′ + ∆s′ .

1Note that p′ = rank1(U, j − 1) and q′ = rank0(U, j − 1).



Algorithm 1: succ(B, i)

1 j ← d i
β
e

2 q ← rank0(U, j) // mixed blocks

3 if U [j] then
4 if O[j] then
5 return i

6 else
7 s← succ(M, begq + ∆i)
8 if s ≤ endq then
9 return begj + ∆s

10 return jump(j, q)

Algorithm 2: jump(j,q)

1 j′ = succ(O, j + 1)
2 if U [j′] then
3 return begj′
4 else
5 s′ ← succ(M, beg(q+1))
6 return begj′ + ∆s′

Every succ in plain bitvectors requires o(n) extra space to solve them in O(1)
time. Consequently, zombit-vector can compute succ queries in O(1) time with an
extra-space of o(n) bits.

Therefore access, rank, and succ can be solved in O(1) time by using O(kβ+ n
β
) +

o(n) bits. With the optimal value of β,
√

n
k
, we can reduce the space to O(

√
kn) bits,

and keep the last operations in O(1) time. Furthermore, if we apply the zombit-vector
over M recursively up to c levels, we need to store O(k1−εnε) bits, where ε = 1

2c
. This

recursive variant converges to O(k) bits, and each operation can be solved in O(log n
k
)

time. Recall that we do not discuss pred(B, i) because it is symmetrical to succ(B, i)
and achieves identical theoretical bounds.

Experimental Evaluation

zombit-vector was coded in C++, using several data strucures from the SDSL library
[13]. We have two implementations, the basic one, zombit, and the recursive variant,
zombit-rec. Both implementations compute β =

√
n
k
, and were compared with the

different proposals presented in Background (plain, rrr [7], rec-rank [11], sd-array
[11], oz-vector [1], and hybrid-vector [12]), and Partitioned Elias-Fano [14] (pef ), a
technique largely used in intersection of lists. Notice that the last baseline does not
support rank and access operations on bitvectors, but it gets a good compression
ratio/query time trade-off in succ queries.

Taking as reference the experimental evaluation of [11], we built all the techniques
over bitvectors of sizes 107, 108, and 109 bits with several configurations. Let us
denote with run0 (resp. run1) the mean length of runs of 0s (resp. 1s), inside the
input bitvector. For each dimension of bitvector, we have two distributions of runs:
equal distribution, run1 ' run0, and not-equal distribution, where run1 ' run0

8
. In

each distribution we performed various executions, with different settings for run0 and
run1. Given the e-th execution, run0 = 10e, and the values of run1 are computed
according to the chosen distribution. Notice that, in Figure 2, we can discern which
value corresponds with each execution because the size of the markers increases while
run0 grows.
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Figure 2: First six plots show the space and average response times on succ queries for
different sizes and distributions of runs. The last charts show the average response times of
access and rank operations on a bitvector of size 109 with an equal distribution of runs.



Over these data, we performed 1, 000, 000 random successor queries and measured
the average response time per operation. In most of the baseline cases, succ was
computed by using rank and select. However, some structures can solve successor
more efficiently without using rank and select, specifically, sd-array and hybrid-vector.
For a better comparison, in the last two structures, we have run the most efficient
algorithms. The experiments were conducted on an Intel R© Xeon R© E5-2470 CPU
@ 2.30GHz (32 cores) with 20MB of cache and 64 GB of RAM, running Debian
GNU/Linux 10 with kernel 4.19.0-5 (64 bits), gcc version 8.3.0 with -O3.

Compression

In terms of compression, if we compare the results between the two types of distribu-
tions, there is no significant difference. The behavior is very similar except for those
techniques focused on sparse bitvectors, which obtain better compression in not-equal
distribution. The clear winner is pef, but it is limited in functionality. It is followed
by the oz-vector, which needs 1.22%− 48.95% of the space of zombit-rec. Concerning
the rest of the techniques, when run0 is small, the hybrid-vector is very competitive,
for instance, it obtains the best compression when run0 is lower than 10, 000 in the
bitvector of size 109. However, when run0 grows, the size of the hybrid-vector keeps
constant, and it is improved by zombit, which requires 0.72% − 54.02% of its space.
Besides, we can observe that there is a slight difference between our proposal and
its recursive modification, in particular, zombit-rec occupies 68.25%− 87.06% of the
space of zombit.

Time performance

As it is shown in the first six plots of Figure 2, the main competitor of our proposal
for succ operations is hybrid-vector. However, it is beaten by zombit, which becomes
3 − 12 times faster and keeps those times constant. Our recursive variant, which
slightly improves the space, turns out 10%− 165% slower than hybrid-vector. Those
results are similar to those obtained by rrr, sd-array, rec-rank and pef. The most time-
consuming structure is oz-vector. Though it can solve succ with the same theoretical
bound of hybrid-vector, O(log n) time, in practice, it requires more binary searches,
and turns 5− 40 times slower than hybrid-vector.

On the bottom of Figure 2, we compare the response times of access and rank in
bitvectors with size 109 and equal distribution of runs. We can observe as zombit and
zombit-rec are competitive in both operations, being close to the response times of
hybrid-vector. Therefore, zombit becomes the structure with the best times in succ
queries, and keeps competitive times in access and rank.

Conclusions and Future Work

We have proposed a structure, zombit, which compresses bitvectors with large runs
and can solve access, rank and successor/predecessor queries in O(1) time. We ob-
tained a compression ratio of 0.04%− 26.33%, when the length of runs is larger than
100, and we can handle successor queries 3 − 12 times faster than our immediate
competitor. Consequently, zombit gets a good trade-off in terms of space and time



on bitvectors with runs. A variant of our structure to obtain better compression was
introduced, but in practice, it is 5 − 12 times slower than zombit, and it reduces to
68.25%− 87.06% the space of our first proposal.

As future work, since we do not beat the space of hybrid-vector in shorter runs,
we will focus on improving the compression in that scenario. We plan to solve select
operations on zombit efficiently by using o(n) extra-space. Also, we will explore other
areas where the successor and predecessor problem is relevant.
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