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Abstract

We consider the problem of decompressing the Lempel–Ziv 77 representation of a string
S of length n using a working space as close as possible to the size z of the input. The
folklore solution for the problem runs in O(n) time but requires random access to the whole
decompressed text. Another folklore solution is to convert LZ77 into a grammar of size
O(z log(n/z)) and then stream S in linear time. In this paper, we show that O(n) time and
O(z) working space can be achieved for constant-size alphabets. On general alphabets of

size σ, we describe (i) a trade-off achieving O(n logδ σ) time and O(z log1−δ σ) space for any
0 ≤ δ ≤ 1, and (ii) a solution achieving O(n) time and O(z log log(n/z)) space. The latter
solution, in particular, dominates both folklore algorithms for the problem. Our solutions
can, more generally, extract any specified subsequence of S with little overheads on top of
the linear running time and working space. As an immediate corollary, we show that our
techniques yield improved results for pattern matching problems on LZ77-compressed text.

1 Introduction

In this paper we consider the following problem: given an LZ77 representation of a
string S of length n, decompress S and output it as a stream in left-to-right order
(without storing it explicitly). Our goal is to solve this problem in as little space as
possible, i.e. close to the size z of the compressed input string, and as fast as possible.
This problem is fundamental in applications dominated by big repetitive data, where
information has to be analyzed on-the-fly due to limitations in storage resources.

The folklore solution for the Lempel-Ziv decompression problem achieves linear
time, but requires random access to the whole string. A better solution is to convert
LZ77 into a straight-line program (i.e. a context-free grammar generating the text)
of size O(z log(n/z)). This conversion can be performed in O(z lg(n/z)) space and
time [1, 2]. Then, the entire text can be decompressed and streamed in linear time
using just the space of the grammar. The problem has also been recently considered
in [3] in the context of external-memory algorithms. To the best of our knowledge, the
only other work addressing small-space LZ77 decompression is [4], which implements
(a practical version of) the ideas described in our paper. In particular, no other
theoretical solutions using O(z) space are known.
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1.1 Our contributions

The main contribution of this paper is to show that LZ77 decompression can be
performed in O(z) space and almost linear time (in the length of the extracted string).
We provide two space-time trade-offs which enable us to achieve either linear time or
linear space or both if the alphabet’s size is constant. The first trade-off is particularly
appealing on small alphabets, while the second dominates the first on large alphabets
and the folklore algorithm based on grammars.

Our solution even works for decompressing any specified subsequence of S with
little overheads on top of the linear running time (in the extracted substring’s length)
and working space. As an application, we show that our techniques yield improved
results for pattern matching problems on LZ77-compressed text.

We formalize the LZ77 decompression problem as follows. The input consists of an
LZ77 representation of a text (we use the version where phrases and sources are not al-
lowed to overlap) and a list of text substrings encoded as pairs: (i1, j1), . . . , (is, js). We
decompress these substrings and output them (e.g. to a stream or to disk) character-
by-character in the order S[i1, j1], . . . , S[is, js]. Since both the input strings and the
output can be streamed (for example, from/to disk) we only count the working space
used on top of the input and the output. Let the quantity l =

∑s
k=1(jk−ik+1) denote

the total number of characters to be extracted. Our main results are summarized in
the following two theorems. Let S be a string of length n from an alphabet of size σ
compressed into an LZ77 representation with z phrases.

Theorem 1. For any parameter 0 ≤ δ ≤ 1, we can decompress any s substrings of
S with total length l in O(l lgδ σ + (s+ z) lg(n/z)) time using O(z lg1−δ σ) space.

Theorem 2. For any parameter 1 ≤ τ ≤ lg(n/z), we can decompress any s substrings

of S with total length l in O
(
l lg(n/z)

τ
+ (s+ z) lg(n/z)

)
time using O(z lg τ) space.

Theorems 1 and 2 lead to a series of new and non-trivial bounds on different
algorithmic problems on LZ77. For instance, we provide a smooth time-space trade-
off for decompressing the whole S in O(n lgδ σ) time using O(z lg1−δ σ) space for any
constant 0 ≤ δ ≤ 1. By combining Theorem 2 with τ = lg(n/z) with grammars,
we furthermore show how to decompress S in O(n) time using O(z lg lg(n/z)) space.
Both bounds are strict improvements over the previous best complexity of O(n) time
and O(z lg(n/z)) space. See Section 4 and Corollaries 1 and 2 for details.

Our results also imply new trade-offs for the pattern matching and approximate
pattern matching problems on LZ77-compressed texts. By showing how our tech-
niques can be combined with existing pattern matching results, in Appendix F we
show the following:

Theorem 3. Let S be a string of length n compressed into an LZ77 representation
Z with z phrases, let P be a pattern of length m and let A be an algorithm that can
detect an (approximate) occurrence of P in S (with at most k errors) given P and
Z in t(z, n,m, k) time and s(z, n,m, k) space. Then, we can solve the same task in
O(t(z, zm,m, k) + z lg(n/z)) time and O(s(z, zm,m, k) + z) space. If A reports all



occ occurrences using t(z, n,m, k) time and s(z, n,m, k) space, then we can report all
occurrences in O(t(z, zm,m, k)+z lg(n/z)+occ) time and O(s(z, zm,m, k)+z+occ)
space.

Theorem 4. Let A be a streaming algorithm that reports all occ (approximate) oc-
currence of a pattern P ∈ [σ]m (with at most k errors) in a stream of length n in
t(n,m, k) time and s(n,m, k) space. Then, we can report all occurrences of P in the
LZ77 representation of a string S ∈ [σ]n in either:

• O(t(zm,m, k) + z lg(n/z)) time and O(s(zm,m, k) + z lg lg(n/z) + occ) space or

• O(t(zm,m, k)+z lg(n/z)+zm lgδ σ) time and O(s(zm,m, k)+z lg1−δ σ+occ) space.

The best known algorithm for detecting if pattern P occurs in a string S given
P and Z uses O(z lg(n/z) + m) time and O(z lg n + m) space [5]. If we plug this
into Theorem 3 we obtain O(z lg(n/z) + m) time and O(z lgm + m) space thereby
reducing the lg n factor in the space to lgm without increasing the time.

We also obtain new trade-offs for reporting all approximate occurrences of P with
at most k errors. For example, if we plug in the Landau–Vishkin and Cole–Hariharan
[6, 7] algorithms, we can solve the problem in O(z lg(n/z)+zmin{mk, k4 +m}+occ)
time using O(z + m + occ) space for constant-sized alphabets or O(z lg lg(n/z) +
m + occ) space for general alphabets. The previous best solution has the same time
complexity but uses O(z lg n+m+ occ) space [8]. The complete explanation can be
found in Appendix F.

1.2 Related work

While the LZ77 decompression problem has not been studied much in the literature,
the problem of fast LZ77 compression in small working space has lately attracted a
lot of research in the field of compressed computation [9, 10, 11, 12, 13].

A closely related problem is the random access problem, where the aim is to build a
data structure taking space as close as possible to O(z) words and supporting efficient
access queries to single characters. Existing solutions for the random access problem
[1, 2, 14] need Ω(z log(n/z)) space to achieve O(log(n/z)) access time. Because these
data structures can be built efficiently they also solve the LZ77 decompression problem
considered in this paper. In particular they can decompress the entire string S given
its LZ77 representation in O(n) time using O(z lg(n/z)) working space.

Random access data structures can also decompress any set of s substrings with
total length l in O(l+s lg n) time. We provide several new trade-offs for this problem;
for instance we can solve it using O(l + (z + s) lg(n/z)) time and O(z) space for
constant-sized alphabets or O(z lg lg(n/z)) space for general alphabets.

In a recent work [4], Puglisi and Rossi implemented the ideas described in our
paper. They showed that, even if an implementation of our algorithms is not practical
due to the underlying mergeable dictionary, several optimizations can be introduced
that drastically improve performance. Their optimized implementation led to new
relevant space-time tradeoffs on several datasets of practical interest.



2 Preliminaries

We assume a standard unit-cost RAM model with word size w = Θ(lg n) and that the
input is from an integer alphabet Σ = {1, 2, . . . , σ} where σ ≤ nO(1), and we measure
space complexity in words unless otherwise specified. A string S of length n = |S| is
a sequence S[1] . . . S[n] of n symbols from an alphabet Σ of size |Σ| = σ. The string
S[i] . . . S[j] denoted S[i, j] is called a substring of S. Let ε denote the empty string
and let S[i, j] = ε when i > j. To ease the notation, let S[i, j] = S[1, j] if i < 1 and
S[i, n] if j > n. Let [u] be shorthand for the interval [1;u] = {1, 2, . . . , u} and $ be
a special symbol that never occurs in the input. A straight-line program (SLP) is an
acyclic grammar in Chomsky normal form where each non-terminal T has exactly one
production rule with T as its left-hand side i.e., a grammar where each non-terminal
production rule expands to two other rules and generates one string only.

Lempel-Ziv 77 Algorithm For simplicity of exposition we use the scheme given
by Farach & Thorup [15]. Map Σ into [σ] and assume that S is prefixed by Σ in the
negative positions, i.e. S[−c] = c for c ∈ Σ and S[0] = $ /∈ Σ.

An LZ77 representation [16, 17] of S is a string Z of the form (s1, l1) . . . (sz, lz) ∈
([−σ;n] × [n])z. Let u1 = 1 and ui = ui−1 + li−1, for i > 1. For Z to be a valid
LZ77 representation of S, we require that si + li ≤ ui and that S[ui, ui + li − 1] =
S[si, si + li − 1] for i ∈ [z]. This guarantees that Z represents S and clearly S is
uniquely defined in terms of Z. We refer to the substring S[ui, ui + li − 1] as the ith

phrase of the representation, the substring S[si, si + li − 1] as the source of the ith

phrase and (si, li) as the ith member of Z. We note that the restriction si + li ≤ ui
for all i implies that a source and a phrase cannot overlap and thus we do not handle
representations that are self-referential.

By the given definition, the LZ77 representation of a string is not unique, however
a minimal LZ77 representing a text S can be found greedily in O(n) time [18, 19].

Mergeable Dictionary To obtain our results we need mergeable dictionaries with
shift operations. The Mergeable Dictionary problem is to maintain a dynamic col-
lection G of sets {G1, G2, . . .} of n elements from an ordered universe {1, 2, . . . ,U}
starting from n singleton sets under the operations:

1. C ← merge(A,B): Remove A and B from G and insert C = A ∪B instead.

2. (A,B) ← split(G, x): Split G into two sets A = {y ∈ G | y ≤ x} and
B = {y ∈ G | y > x}. G is removed from G while A and B are inserted.

3. G′ ← shift(G, x) for some x such that y + x ∈ [U ] for each y ∈ G: Create the
set G′ = {y + x | y ∈ G}. G is removed from G while G′ is inserted.

4. makeset(j): Insert a new singleton set G = {j} in G.

Bille et al. [20] show how to extend the mergeable dictionary by Iacono & Özkan
[21] to support shifts (Iacono & Özkan [21] write that their data structure can be
extended to support the shift operation but do not provide any details):
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Figure 1: Example of the τ -context of a string. Dashed parts are truncated parts of the
string not shown by the figure, grey parts represent substrings in the τ -context and white
parts represent substrings not in the τ -context. The first substring in the negative positions
−σ through 0 is always in the τ -context. Recall that li is the length of the ith phrase. In
this example, li < τ, li+1 ≤ 2τ and li+2, li+3 > 2τ .

Theorem 5 ([20]). There exists a mergeable dictionary with shifts supporting all
operations in lgU amortized time using linear space. For a set G, let UG = max(G)−
min(G). The split operations take O(lgUG) worst-case and amortized time and the
makeset and shift operations take O(1) worst-case and amortized time. The amortized
time of the merge operation is O(lgUG), where G is the set output by the operation.

3 LZ77 Induced Context

In this section we present the centerpiece of our algorithm. It builds on the funda-
mental property of LZ77 compression that any substring of a phrase also occurs in
the source of that phrase. Our technique is to store a short substring, which we call
context, extracted around phrase borders. The contexts are stored in a compressed
form that allows faster substring extraction than that of LZ77. We then take ad-
vantage of this property when extracting a substring of S by splitting it into short
chunks which in turn are extracted by repeatedly mapping them to the source of the
phrase they are part of. Eventually, they will end up as substrings of the contexts
from where they can be efficiently extracted.

The technique resembles what Farach & Thorup refer to as winding in [15]. We
show new applications of the technique and obtain better time complexity by using
the mergeable dictionary of Section 2.

Recall that we assume S is prefixed by the alphabet in the negative positions,
that S[0] = $, and that uk is the starting position in S of the kth phrase.

Definition 1. Let τ be a positive integer. The τ -context of a string S (induced by
an LZ77 representation Z of S) is the set of positions j where either j ≤ 0 or there
is some k such that uk − τ < j < uk + τ . If positions i through j are in the τ -context
of S, then we simply say “S[i, j] is in the τ -context of S”.

Definition 2. Let τ be a positive integer. The τ -context string of S, denoted Sτ , is
the subsequence of S that includes S[j] if and only if j is in the τ -context of S. We
denote with πτ (j) the unique position in Sτ where such a position j is mapped to (i.e.
Sτ [πτ (j)] = S[j]).

It is easy to show how to map positions from S to Sτ (see Appendix A for a proof)

Lemma 1. Let Z be an LZ77 representation of a string S of length n with z phrases
and let τ be a positive integer. Given t = O(z) sorted positions, p1 ≤ . . . ≤ pt ∈ [n]
in the τ -context of S we can compute πτ (p1), . . . , π

τ (pt) in O(z) time and space.



We use π as shorthand for πτ whenever τ is clear from context. The following
properties follow from the definitions and Lemma 1 but will come in handy later on:

Property 1. If a, a′ are positions in the τ -context of S and a < a′ then π(a) < π(a′).

Property 2. If S[a, b] is in the τ -context of S then Sτ [π(a), π(b)] = S[a, b]

We now consider the following problem: given a substring S[i, j] of length at most
τ , find a pair of integers (i′, j′) such that i′ ≤ i, S[i, j] = S[i′, j′] and S[i′, j′] is in the
τ -context of S.

We first give an informal overview of how the algorithm works. Recall that if a
substring of S is contained within a phrase in the LZ77 parse of S, then the substring
also occurs in the source of that phrase. The idea is to repeat this process of finding
an identical substring in the source until the found string is in the τ -context of S,
which happens after at most z steps. To do this efficiently for multiple strings, we use
the mergeable dictionary structure to maintain the relevant positions. This allows
us to process all strings inside a phrase simultaneously because they all need to be
moved to the same source. By processing the phrases in right-to-left order we can
bound the number of dictionary operations by the number of phrases.

The following algorithm gives the details of how to solve the problem for a set of
z substrings using O(z) space and O(z lg n) time (which we later improve).

Algorithm 1. Let Z be an LZ77 representation of a string S of length n with z
phrases and let τ be a positive integer. The input is t = O(z) substrings of S given as
pairs of integers denoting start and end positions: (a1, b1), . . . , (at, bt) where bi−ai < τ
for all i ∈ [t]. Let G be a mergeable dictionary as given by Lemma 5. For each of
the pairs (ai, bi) create a singleton set Gi with element xi at position ai and finally
merge all these elements into a single set G. Each element xi has associated its rank
i among the input pairs as satellite information.

We now consider the members of Z one by one in reverse order. Member (si, li)
is processed as follows:

1. If li ≤ τ skip to the next member.

2. Otherwise let

(a) (A,B)← split(G, ui + li − τ)

(b) (A′, B′)← split(A, ui − 1),

(c) B′′ ← shift(B′, si − ui)

(d) G← merge(A′, B′′).

In step 1, we skip a phrase if it is no longer than τ because any string of length
τ or shorter starting in that phrase is already in the τ -context of S. In step 2a, we
split the set such that all strings that start in the last τ positions of the phrase are
not shifted, because these already are in the τ -context of S. In 2a-d we split the set
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Figure 2: Example of the dictionaries created during an iteration. The dashed parts of
the string are truncated parts not relevant to the example. The dotted triangles represent
the B-sets from earlier iterations. The grey parts show the τ -context of the string inside
the ith and i − 1th phrase. Note that the set B′′ is the set B′ after the shift operation.
As exemplified by the elements xj and xj+1, the relative order and position inside the set
is unaffected by the shift. Let p and p′ be the position of xj before and after the shift,
respectively. Observe also that S[p, p + (bj − aj) − 1] = S[p′, p′ + (bj − aj) − 1], so the
shift does not affect the substring represented by xj . An iteration starts from the set G,
obtaining A by cutting off B. The new G (not shown in the figure) is then obtained by
shifting all elements in the range of B′, which are all contained in the ith phrase to the same
relative position in the source of the phrase.

to obtain the set of strings B′′ that starts in the ith phrase excluding those starting in
the last τ positions, as they are already in the τ -context of S. These strings are then
shifted to the source and will be considered again in later iterations.

After processing all members, scan each set in G to retrieve all the elements.
Let p(xi) denote the new position in G of element xi. We then output the pairs
(p(x1), e1), . . . , (p(xt), et) in order of their rank i where ei = p(xi) + bi − ai.

The proof of correctness and the analysis of the time complexity can be found in
Appendix B.

Bucketing To decrease the running time from O(z lg n) to O(z lg(n/z)), we apply
a bucketing argument similar to the one given by Farach & Thorup [15]. The overall
idea, described in detail in Appendix B, is to divide the universe of text positions
[n] into z buckets of size dn/ze each, and keep a separate mergeable dictionary for
each of the buckets. With a constant additional number of dictionary operations per
phrase, we are then able to simulate the dictionary used by Algorithm 1. Since the
universe size of each dictionary is now reduced to O(n/z), dictionary operations cost
just O(lg(n/z)) time (amortized) and we obtain:

Lemma 2. Let Z be an LZ77 representation of a string S of length n with z phrases
and let τ be a positive integer. Given t ∈ O(z) substrings of S as pairs of integers
(a1, b1), . . . , (at, bt) where bi−ai < τ we can find t pairs of integers (a′1, b

′
1), . . . , (a

′
t, b
′
t)

such that S[a′i, b
′
i] = S[ai, bi], a

′
i ≤ ai and S[a′i, b

′
i] is in the τ -context of S using O(z)

space and O(z lg(n/z)) time.



3.1 LZ77 Compressed Context

It is possible to obtain an LZ77 representation Zτ of the string Sτ directly from an
LZ77 representation Z of S. Informally, the idea is to split every phrase of Z into
two new phrases consisting of respectively the first and last O(τ) characters of the
phrase. In order to find a source for these phrases, we use Algorithm 1 which finds
an identical string that also occurs in Sτ .

We now describe the algorithm sketched above that constructs an LZ77 represen-
tation Zτ of Sτ given the LZ77 parse Z of S.

Algorithm 2. First we construct O(z) relevant pairs of integers representing sub-
strings of S by considering the members of Z one by one in order. Member (si, li) is
processed as follows:

1. If li ≤ τ : Let (ui, ui + li − 1) be a relevant pair.

2. If τ < li < 2τ : Let (ui, ui + τ − 1) and (ui + τ, ui + li − 1) be relevant pairs.

3. Otherwise li ≥ 2τ : Let (ui, ui + τ − 1) and (ui + li − τ + 1, ui + li − 1) be relevant
pairs.

Each of the relevant pairs represents a prefix or a suffix of a phrase. The concate-
nation of these phrase prefixes and suffixes in left-to-right order is exactly the string
Sτ . Let (a, b) be a relevant pair created when considering the ith member of Z. Then
we say that (a′, b′) = (a − ui + si, b − ui + si) is the related source pair and clearly
S[a, b] = S[a′, b′].

Note that the related source pairs might not be in the τ -context. We now use
Algorithm 1 to find a pair of integers (a′′, b′′) for each related source pair (a′, b′) such
that S[a′′, b′′] = S[a′, b′], a′′ ≤ a′ and S[a′′, b′′] is in the τ -context of S. We give the
pairs in order of creation and this order is preserved by Algorithm 1. If (a′′, b′′) is the
ith output of Algorithm 1 then (πτ (a′′), l) is the ith member of Zτ where l = b− a+ 1
and πτ (a′′) is computed using Lemma 1.

We leave the proof of correctness and the analysis of the time complexity to
Appendix D. We obtain the following lemma:

Lemma 3. Let Z be an LZ77 representation of a string S of length n with z phrases.
We can construct an LZ77 representation Zτ of Sτ with O(z) phrases in O(z lg(n/z))
time and O(z) space.

3.2 Packed and SLP-Compressed Context

In this section we consider how to store in two different (packed/compressed) rep-
resentations a τ -context string of S. Our representations can be built quickly and
support fast random access.

Our first solution uses word packing. First, we construct the LZ77 representation
of Sτ using Algorithm 2 and decompress it naively. Constructing the representation
takes time O(z lg(n/z)) while decompressing it takes linear time in its length, O(zτ).
A string of length zτ can be stored in O(zτ lg σ/ lg n) words using word packing.



Lemma 4. Let S be a string S of length n from an alphabet of size σ compressed
into an LZ77 representation with z phrases, and let τ be a positive integer. We can
build and store Sτ in O(z(lg(n/z) + τ)) time and O(zτ lg σ/ lg n) space.

As an alternative solution, we show how to store the context string as an SLP
supporting fast random access. The following lemma follows easily from Charikar et
al. [2] and Rytter [1] (for a proof, see Appendix E):

Lemma 5. Let S be a string of length n compressed into an LZ77 representation
with z phrases, and let τ be a positive integer. We can build a balanced SLP of size
O(z lg τ) for Sτ in O(z lg(n/z)) time and O(z lg τ) space. Furthermore, the SLP
supports extraction of any length-` substring of Sτ in O(`+ log τ) time.

4 LZ77 Decompression

We now describe how to apply the techniques described in the previous section to
extract arbitrary substrings of S. Let S be a string of length n compressed into an
LZ77 representation with z phrases and let τ ≤ log(n/z) be a positive integer that
we will fix later. We show how to extract s substrings of total length l.

Split each substring into consecutive blocks of length τ (except, possibly, the last
for each substring), obtaining at most l/τ + s blocks. Process a batch of z blocks
at a time in left-to-right order. There are at most O(1 + l/(τz) + s/z) batches,
each containing z blocks. A batch is processed in O(z log(n/z)) time using Lemma 2
thereby finding a substring s′ in the τ -context of S for every block s in the batch.

Using Lemma 5, we first build the SLP in O(z lg(n/z)) time and O(z lg τ) space.
After that, the z substrings in each batch can be extracted in O(z log τ+zτ) = O(zτ)
time. Summing up, the time to build the SLP (once) and extract and output all

batches is O(z lg(n/z) + (1 + l
τz

+ s/z)(z lg(n/z) + zτ)) = O((s+ z) lg(n/z) + l lg(n/z)
τ

).
The total space is O(z lg τ). This proves Theorem 2. If we instead use Lemma 4,
we spend O(z(lg(n/z) + τ)) time and O(zτ lg σ/ lg n) space to build Sτ . After that,
the z substrings in each batch can be extracted in O(zτ) time. Summing up, the
time to build Sτ (once) and extract and output all batches is O(z(lg(n/z) + τ) + (1 +
l
τz

+ s/z)(z lg(n/z) + zτ)) = O((s + z) lg(n/z) + l lg(n/z)
τ

) while the space becomes

O(zτ lg σ/ lg n) (on top of the input). To prove Theorem 1, we fix τ = lg(n/z)/ lgδ σ
for any constant 0 ≤ δ ≤ 1.

Theorems 1 and 2 immediately yield the following two corollaries on the complex-
ity of decompressing the entire string S (notice that z lg(n/z) = O(n)):

Corollary 1. For any parameter 0 ≤ δ ≤ 1, we can decompress S in O(n lgδ σ) time
using O(z lg1−δ σ) space.

On large alphabets, we can further improve upon this result by plugging τ =
log(n/z) into Theorem 2:

Corollary 2. We can decompress S in O(n) time using O(z lg lg(n/z)) space.
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A Proof of Lemma 1

Proof. Let gapk = max{0, lk − 2τ + 1} be the number of positions inside the k-th
LZ77 phrase that are not in the τ -context of S.

Let i, k, L be three integers initialized as follows: i = 0, k = 1, and L = 0. We
keep the following two invariants:

(i) if i > 0, then k is the smallest integer such that pi < uk + lk, i.e. position pi is in
the k-th phrase, and

(ii) L is the number of positions j < uk such that j is in the τ -context of S (i.e. L is
the length of the prefix of Sτ containing characters from S[1..uk − 1]).

It is clear that (i) and (ii) hold in the beginning of our procedure. We now show how
to iterate through the LZ77 phrases and compute the desired output in one pass.

Assume that we have already computed πτ (p1), . . . , π
τ (pi) (or none of them if

i = 0). To compute πτ (pi+1), we check whether uk ≤ pi+1 < uk + lk, i.e. whether
pi+1 is in the k-th phrase. If not, we find the phrase containing pi+1 as follows. We
set L← L+ lk − gapk, k ← k + 1 and repeat until we find a value of k that satisfies
uk ≤ pi+1 < uk + lk. It is clear that, at each step, L is still the length of the prefix of
Sτ containing characters from S[1..uk − 1] (i.e. invariant (ii) is maintained).

Once such a k is found, we compute πτ (pi+1) simply adding L to the relative
position of pi+1 inside its phrase, and subtract gapk from this quantity if pi+1 is
within τ characters from the end of the phrase. In more detail, if pi+1 < uk + τ , then
πτ (pi+1)← L+1+(pi+1−uk). Otherwise, πτ (pi+1)← L+1+(pi+1−uk)−gapk. The
correctness of this computation is guaranteed by the way we defined L in property
(ii).

Note that k is again the smallest integer such that pi+1 < uk + lk (invariant (i)),
so we can proceed with the same strategy to compute πτ (pi+2), . . . , π

τ (pt).
Overall, the algorithm runs in O(z) time and space.

B Proof and Analysis of Algorithm 1

Correctness Let p(xi) denote the position in G of element xi at any point of the
algorithm. We now show that for any element xi, we have S[ai, bi] = S[p(xi), ei] both
before and after considering the jth member of Z. Initially, p(xi) = ai so this is
trivially true before the first iteration.

Assume by induction that this is true before considering member j. If p(xi) >
uj + lj − τ or p(xi) < uj, then p(xi) will not be changed when considering member i.
Otherwise, uj ≤ p(xi) ≤ uj+lj−τ , and thus S[p(xi), ei] is a substring of S[uj, uj+lj−1]
which also occurs at the same relative position in S[sj, sj + lj − 1]. Now xi is shifted
such that p(xi)← p(xi)− uj + sj thereby maintaining the relative position inside the
two identical strings and it follows that xi still represents S[ai, bi] after considering
member j and thus also before considering member j − 1.

We now show that, for any element xi, the string S[p(xi), ei] is in the τ -context of
S after considering the last member. Observe that when considering member j, every
element positioned in S[uj, uj + lj − τ ] is shifted to a position less than uj, because



sj + lj ≤ uj by definition. As we are considering the members in reverse order, this
means that every element xi must end in a position such that either there is some k
such that uk + lk − τ < p(xi) < uk + lk or p(xi) < 0 which concludes the proof of
correctness.

Complexity Creating the z singleton elements with positions in the range [n] and
merging them to G takes O(z lg n) time. For every member of Z we do O(1) dictio-
nary operations. All positions remain in the range [−σ;n] thus this also takes total
time O(z lg n). We can easily compute and store u1, . . . , uz in O(z) time and space.
Outputting the elements xi in order of their rank i takes linear time as the ranks are
consecutive integers thus the total time is O(z lg n). We never store more than the
O(z) elements, thus the total space is O(z).

C Bucketing

Fix F = dn/ze and transform the parse Z by splitting any phrase that covers a
position kF < n for k = 1, 2, . . ., i.e. replace the element (si, li) by elements (si, l

′
i)

and (si + l′i, li − l′i) if kF ∈ [ui, ui + li] where l′i = kF − ui. Clearly, the parse remains
valid and the number of phrases is at most doubled [15].

We now change the way we merge the sets. Initially, create an array M of length
z − 1. Now for each of the pairs (ai, bi) we create the singleton set Gi with element
xi at position (ai mod F ) and store a pointer to Gi in position bai/F c of M . If the
position is occupied by some set Gj merge the sets Gi and Gj and update the position
to point at the new set Gi ∪ Gj. Assume that τ ≤ n/z (this will be true later for
the values of τ we will use). When considering the members of Z in reverse order we
process member (si, li) as follows:

1. If li ≤ τ skip to the next member.

2. Otherwise let

(a) (A,B)← split(M [bui/F c], ((ui mod F ) + li − τ)).

(b) (A′, B′)← split(A, ui − 1).

(c) Let M [bui/F c] point to A′.

(d) B′′ ← shift(B′, si − ui mod F ).

(e) If si − ui < 0 continue with the next member.

(f) Otherwise let G′ ← merge(M [b(si − ui)/F c], B′′).

(g) Let M [b(si − ui)/F c] point to G′.



After processing all members, scan each set in G and proceed as originally de-
scribed. It is fairly easy to verify that this procedure positions all elements identically
to the original procedure. Therefore, the correctness follows from above. There are
still O(1) dictionary operations for each of the O(z) members, but the positions of
the elements are now in the range [n/z] thus the total time becomes O(z lg(n/z)).
To retrieve all the elements, let p(xi) denote the new position in G of element xi.
We then output the pairs (p(x1), e1), . . . , (p(xt), et) in order of their rank i where
ei = p(xi) + bi − ai.

D Proof and Analysis of Algorithm 2

Correctness Let (a1, b1), . . . , (at, bt) be the relevant pairs in order of creation,
(a′1, b

′
1) . . . (a

′
t, b
′
t) be the related source pairs, (a′′1, b

′′
1) . . . (a′′t , b

′′
t ) be the output of Al-

gorithm 1, and let li = bi − ai + 1.
Our goal is to show that Zτ = (π(a′′1), l1), . . . , (π(a′′t ), lt) is a valid LZ77 represen-

tation of Sτ , that is: (i) the concatenation of the phrases of Zτ yields Sτ , (ii) phrases
of Zτ are equal to their sources, and (iii) phrases of Zτ do not overlap their sources.
Note that Zτ consists of at most 2z phrases

(i-ii) It follows directly from Definition 2 that the concatenation of the strings
represented by the relevant pairs in order of creation is S[a1, a1] · · ·S[at, bt] = Sτ .
Since S[ai, bi] = S[a′i, b

′
i] and, by Lemma 2, S[a′′i , b

′′
i ] = S[a′i, b

′
i] then we also have

that Sτ = S[a′′1, a
′′
1] · · ·S[a′′t , b

′′
t ]. Now, observe that since S[ai, bi] and S[a′′i , b

′′
i ] are

in the τ -context of S then by Property 2 we have S[ai, bi] = Sτ [π(ai), π(bi)] and
S[a′′i , b

′′
i ] = Sτ [π(a′′i ), π(b′′i )]. This proves properties (i) and (ii).

(iii) By definition of the LZ77 representation of S and since the substring repre-
sented by the pair (ai, bi) is entirely contained in a phrase we must have a′i + li ≤ ai
and therefore, by Lemma 2, a′′i ≤ a′i. But this means that a′′i + li ≤ ai and therefore,
by Property 1, π(a′′i + li) ≤ π(ai), i.e. property (iii) holds.

Complexity For every member of Z we create at most two relevant substrings
taking total O(z) time and space. Applying Algorithm 1 takes time O(z lg(n/z))
and O(z) space. We can easily compute and store u1, . . . , uz by computing πτ (a′) for
every substring reported by Algorithm 1. This takes total O(z) time and space using
Lemma 1, thus the total time is O(z lg(n/z)) and the total space is O(z).

E Proof of Lemma 5

Proof. We build the LZ77 representation of Sτ using Lemma 3 and then convert it
into an SLP using the procedure described by Charikar et al. and Rytter:

Theorem 6 (Charikar et al. [2], Rytter [1]). Let z be the number of phrases in a
LZ77 representation of a string S ′ of length n′. We can build a balanced SLP for S ′

with height O(lg n′) in O(z lg(n′/z)) space and time.

Note that, in our case, n′ = |Sτ | ≤ zτ and the SLP’s size is O(z lg(n′/z)) =
O(z lg(zτ/z)) = O(z lg τ). To reduce the SLP’s height to O(log(n′/z)) = O(log τ), we



expand the starting nonterminal until obtaining a sequence of t = Θ(z) nonterminals
X1, . . . , Xt (which happens at depth Θ(log z), the SLP being balanced). We cut
those levels from the SLP and add a new starting nonterminal S ′ → X1 . . . Xt. By
navigating the grammar in O(z log τ) time, we can associate to each nonterminal
the length of the text substring it expands to. This is already sufficient to navigate
the grammar (by standard techniques) in O(log τ) time starting from one of the
symbols of the expansion of S ′. To get the precise starting symbol, we need one
additional predecessor query on the cumulative sizes of the expansions of X1, . . . , Xt,
which however can be performed in O(log(n′/z)) = O(log τ) time using, e.g. an
Elias-Fano predecessor data structure. To conclude, once reached the leaf (terminal)
corresponding to the first character to be extracted, the remaining characters can
be retrieved in amortized constant time each by standard techniques, i.e. moving to
the next sibling or, if this belongs to a different nonterminal, moving upwards until
reaching an ancestor of the next symbol to be extracted, and then descending again
to the corresponding leaf. Overall, this procedure visits a sub-tree (of the grammar
tree) of size O(`).

F Applications in Pattern Matching

In this section we show how our techniques can be applied as a black box in combi-
nation with existing pattern matching results.

Let S be a string of length n and let P be a pattern of length m. The classical
pattern matching problem is to report all starting positions of occurrences of P in
S. In the approximate pattern matching problem we are given an error threshold k
in addition to P and S. The goal is to find all starting positions of substrings of
S that are within distance k of P under some metric, e.g. edit distance where the
distance is the number of edit operations required to convert the substring to P .
When considering the compressed pattern matching problem, the string S is given in
some compressed form. Sometimes, we are only interested in whether or not P occurs
in S.

Pattern matching on LZ77 compressed texts usually takes advantage of the prop-
erty that any substring of a phrase also occurs in the source of the phrase. This means
that if an occurrence of P is contained in single phrase, then there must also be an
occurrence in the source of that phrase. The implication is that the occurrences of P
can be split into two categories: the ones that overlap two or more phrases and the
ones that are contained inside a single phrase — usually referred to as primary and
secondary occurrences, respectively [22]. The secondary occurrences can be found
from the primary in O(z + occ) time and space [8] where z is the number of phrases
in the LZ77 representation of S and occ is the total number of occurrence of P in S.

Approximate pattern matching in small space Consider the $-padded m-
context string of S denoted S$m obtained by replacing each of the maximal substrings
of S that are not in the m-context by a single copy of the symbol $. This string has
length O(zm). Observe that all the primary occurrences of P in S are in this string,



that any occurrence of P in this string corresponds to a unique primary or secondary
occurrence of P in S and that we can map these occurrences to their position in S
in O(occ + z lg z) time and O(z) space using the same technique as Lemma 1 but by
adding the gap lengths instead of subtracting them.

We now prove Theorem 3. LetA be the (approximate) pattern matching algorithm
from the theorem using t(z, n,m, k) time and s(z, n,m, k) space. The idea is to run
algorithm A on an LZ77 representation of S$m to find all the primary occurrences.

Our algorithm works as follows. First create an LZ77 representation Z$m of S$m

using Algorithm 2. If two consecutive phrases of Z$m are both induced by the same
phrase of Z of length 2m or more we add a phrase between them representing only the
symbol $. This is easy to do as part of Algorithm 2 without changing its complexity
and the result is exactly an LZ77 representation of S$m with O(z) phrases. The
pattern P occurs in S if and only if it occurs in S$m. Thus we can run algorithm
A on Z$m to detect an (approximate) occurrence of P in S. Constructing Z$m

takes O(z lg(n/z)) time and O(z) space thus the total time becomes O(z lg(n/z) +
t(z, zm,m, k)) and the space is O(z + s(z, zm,m, k)).

All primary occurrences are found by finding all occurrences of P in S$m, mapping
them to their positions in S and filtering out the secondary occurrences. Hereafter,
all the secondary occurrences can be found in O(z+occ) time and space [8]. Mapping
and filtering also takes O(occ + z) time and space. Thus, if algorithm A reports all
(approximate) occurrences of P in S in t(z, n,m, k) time and s(z, n,m, k) space we can
report all (approximate) occurrences of P in S in O(z lg(n/z) + t(z, zm,m, k) + occ)
time and O(z + s(z, zm,m, k) + occ) space.

We now prove Theorem 4. Let A be the streaming algorithm from the theo-
rem that reports all (approximate) occurrences of P in a stream of length n using
t(n,m, k) time and s(n,m, k) space. The idea is to run algorithm A on the string
S$m, which we will stream in chunks to find all the primary occurrences. We use the
same technique as above to first filter the primary occurrences and then find all the
secondary occurrences in O(z + occ) time and space.

We stream the string S$m consisting of O(z) substrings of total length O(zm).
We can easily compute when to output a $ during the substring extraction. Thus
using Theorems 1 or 2 we can stream S$m in either O(zm) time using O(z lg lg(n/z))
space or O(zm lgδ σ+ z lg(n/z)) time using O(z lg1−δ σ) space. The total time is then
either:

• O(t(zm,m, k) + z log(n/z)) time and O(s(zm,m, k) + z lg lg(n/z) + occ) space
or

• O(t(zm,m, k) + z lg(n/z) + zm lgδ σ) time and O(s(zm,m, k) + z lg1−δ σ+ occ)
space.

Compressed Existence Gawrychowski [5] shows how to decide if P occurs in S
given P and the LZ77 representation of S using O(z lg(n/z) + m) time and space.
Applying Theorem 3 we get the following:

Corollary 3. We can detect an occurrence of a pattern P of length m given the LZ77
representation of S in O(z lg(n/z) +m) time using O(z lgm+m) space.



Approximate Pattern Matching

By combining the Landau-Vishkin and Cole-Hariharan [6, 7] algorithms all approx-
imate occurrences with at most k errors on a stream of length n can be found in
O(min{nk, nk4/m + n}) time using O(m) space. Gagie et al. [8] shows how this
algorithm can be used to solve the same problem given an LZ77 representation of S
in O(z lg n+z ·min{mk, k4 +m}+occ) time and O(z lg n+m+occ) space. Applying
Theorem 4 to the combined Landau-Vishkin and Cole-Hariharan algorithm we get
the following new trade-offs:

Corollary 4. We can report all approximate occurrences of a pattern P of length m
with k errors given the LZ77 representation with z phrases of a string S of length n
in:

• O(z lg(n/z) + z ·min{mk, k4 +m}+occ) time using O(z lg lg(n/z) +m+occ) space
or

• O(z lg(n/z)+z ·min{mk, k4+m}+zm lgδ σ+occ) time using O(z lg1−δ σ+m+occ)
space.

G Conclusions

In this paper we have described the first solution for decompressing Lempel-Ziv 77
in linear time using a space proportional to the input’s size on constant alphabets.
On general alphabets, we presented a trade-off that allows getting either linear time
or linear space. Our solutions can, in general, decompress any subsequence of the
text. Our work leaves several open problems. First of all, our solutions for general
alphabets cannot achieve both linear time and space. We also note that our running
times could be improved by fully exploiting packed computation; while it is definitely
possible to slightly improve running times of Theorems 1 and 2 in this sense (at the
price of a higher space usage), the (opportunely adjusted) case analysis of Corollaries
1 and 2 would not yield optimal packed extraction times. We therefore suspect that
a different technique is needed in order to achieve optimality. Finally, for simplicity
of exposition we did not consider self-referential LZ77: allowing overlaps represents a
further interesting line of extension of our work.
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