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DZip: improved neural network based
general-purpose lossless compression

Mohit Goyal, Kedar Tatwawadi, Shubham Chandak, Idoia Ochoa

Abstract—We consider lossless compression based on statistical
data modeling followed by prediction-based encoding, where an
accurate statistical model for the input data leads to substantial
improvements in compression. We propose DZip, a general-
purpose compressor for sequential data that exploits the well-
known modeling capabilities of neural networks (NNs) for pre-
diction, followed by arithmetic coding. DZip uses a novel hybrid
architecture based on adaptive and semi-adaptive training. Unlike
most NN based compressors, DZip does not require additional
training data and is not restricted to specific data types. The
proposed compressor outperforms general-purpose compressors
such as Gzip (29% size reduction on average) and 7zip (12% size
reduction on average) on a variety of real datasets, achieves near-
optimal compression on synthetic datasets, and performs close to
specialized compressors for large sequence lengths, without any
human input. While the main limitation of DZip in its current
implementation is the encoding/decoding speed, we empirically
demonstrate that DZip achieves comparable compression ratio
to other NN-based compressors, while being several times faster.
These results showcase the potential of developing improved
general-purpose compressors based on neural networks and hy-
brid modeling. The source code for DZip and links to the datasets
are available at https://github.com/mohit1997/Dzip-torch.

Index Terms—JLossless Compression, Neural Networks, Ge-
nomic Data, Arithmetic Encoding, Adaptive Compression

I. INTRODUCTION

There has been a tremendous surge in the amount of data
generated in the past years. Along with image and textual data,
new types of data such as genomic, 3D VR, and point cloud
data are being generated at a rapid pace [1]], [2]. Thus, data
compression is critical for reducing the storage and transmis-
sion costs associated with these data, and has been studied
extensively from both theoretical and practical standpoints. In
particular, a wide class of (lossless) compressors utilize the
“prediction + entropy coding” approach, wherein a statistical
model generates predictions for the upcoming symbols given
the past and an entropy coder (e.g., arithmetic coder [3]]) uses
the predicted probabilities to perform compression. In this
general framework, a better prediction model directly induces
a better compressor.

Given the close link between prediction and compression,
there has been growing interest in using neural networks
(NN) for compression due to their exceptional performance on
several modeling and prediction tasks (e.g., language modeling
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[4]], [5] and generative modeling [|6]). Neural network based
models can typically learn highly complex patterns in the data
much better than traditional finite context and Markov models,
leading to significantly lower prediction error (measured as
log-loss or perplexity [4]). This has led to the development of
several compressors using neural networks as predictors [7]—
[9]], including the recently proposed LSTM-Compress [10],
NNCP [11]] and DecMac [12]. Most of the previous works,
however, have been tailored for compression of certain data
types (e.g., text [[12] [13] or images [14], [15]), where the
prediction model is trained in a supervised framework on
separate training data or the model architecture is tuned for
the specific data type. This approach is therefore applicable
only in the presence of existing training data and requires
significant domain knowledge, and thus cannot be used for
general-purpose compression.

A. Our Contributions

In this work, we propose a general-purpose lossless com-
pressor for sequential data, DZip, that relies on neural network
based modeling. DZip treats the input file as a byte stream
and does not require any additional training datasets. Hence,
DZip is a standalone compressor capable of compressing any
dataset (regardless of the alphabet size), unlike most existing
neural network based compressors. We use a novel hybrid
training approach which is ideally suited for such a setting and
combines elements of adaptive and semi-adaptive modeling.

We evaluate DZip on datasets from several domains includ-
ing text, genomics and scientific floating point datasets, and
show that it achieves on average 29% improvement over Gzip
[16], 33% improvement over LSTM-Compress [[10] (LSTM
based compressor), and 12% improvement over 7zip, reducing
the gap between general-purpose and specialized compressors.
DZip also outperforms the highly efficient lossless compressor
BSC [17]] on most datasets with 8% improvement on average,
showing the advantages of improved modeling. In compar-
ison to state-of-the-art NN-based compressors CMIX [18]]
and NNCP, we demonstrate that DZip can achieve identical
performance on most datasets of sufficiently large size while
being 3-4 times faster than CMIX and 4 times faster than
NNCP in encoding speed. Our results also indicate that for
some datasets, the performance of DZip is close to that of
specialized compressors, which are highly optimized for the
specific datatypes.

In addition, we perform evaluations on certain synthetic
datasets of known entropy that highlight the ability of the
proposed compressor to learn long-term patterns better than
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the other general-purpose compressors. DZip serves as an
example to showcase the potential of neural networks to boost
compression performance. In contrast to traditional compres-
sors, the current implementation of DZip suffers however from
slower encoding and decoding speeds due to the complex
neural network based modeling. However, compared to other
neural network based compressors such as NNCP [11] and
CMIX [18] (which uses thousands of context models followed
by an NN based mixer), we show that DZip is several times
faster. DZip is available as an open source tool at https:
//github.com/mohit1997/Dzip-torch, providing a framework to
experiment with several neural network models and training
methodologies.

B. Related Works

Ever since Shannon introduced information theory [[19] and
showed that the entropy rate is the fundamental limit on the
compression rate for any stationary process, several attempts
have been made to achieve this optimum. Several classes
of general-purpose lossless compressors have been developed
since then, including dictionary-based compressors (e.g., Gzip
[16], 7zip/LZMA (https://www.7-zip.org/)) and sorting trans-
form based compressors (e.g., Bzip2 [20], BSC [17]). In ad-
dition, several specialized compressors have been developed,
often using a statistical approach combining prediction models
with arithmetic coding. For example, ZPAQ is a publicly
available general purpose compressor which is specialized for
text data. It uses several context models, context mixing, LZ77
coding, secondary symbol estimation and various other meth-
ods to improve compression performance while maintaining
relatively fast compression and decompression speeds. ZPAQ
handles text and non-text inputs differently, resulting in better
performance on the former datasets.

Inspired by the performance of neural networks (NNs) in
modeling and prediction tasks, several lossless compressors
based on NNs have been proposed. [8] proposed the appli-
cation of a character-level recurrent neural network (RNN)
model and showed competitive compression performance as
compared to the existing compressors on text data. How-
ever, as vanilla RNNs were used, the performance was rel-
atively subpar for complex sources with longer memory.
More recently, LSTM-Compress [10] was proposed, which
uses an LSTM (Long Short Term Memory Cells) model to
adaptively learn the source distribution while encoding with
an arithmetic coder. CMIX [18]], the current state-of-the-art
NN-based general-purpose lossless compressor, uses several
thousand context models, most of which are based on PAQS8
(http://mattmahoney.net/dc/). This is further followed by an
LSTM byte level mixer (to combine predictions) and a bit level
NN based context mixer, which are trained through backpropa-
gation adaptively while encoding the input data. NNCP [11]] is
another RNN based compressor which adaptively compresses
the input sequence while simultaneously updating the weights
of the RNN. NNCP uses seven stacked LSTM layers which
incorporate feature normalisation layers, further adding to
the overall runtime. Moreover, the compressor only supports
CPU based training and inference, resulting in extremely

slow encoding speed. There has also been work on designing
specialized text compressors that exploit the generalization
ability of NN, using similar datasets for training the model
to be used for compression (e.g., DecMac [[12] or [[13] for text
and BitSwap [[14] or PixelVAE [15] for images). Most of these
compressors are heavily specialized for a specific data type
and require a model pretrained on similar data, thus limiting
their applicability as general-purpose compression tools for
arbitrary data types.

In parallel to the work on compression, there has been
significant progress in language modeling (e.g., BERT [4],
GPT-2 [3]]) and generative prediction models for images (e.g.,
PixelCNN++ [6]). In principle, these can be used for com-
pression leading to significant improvements over the state-
of-the-art, e.g., bringing the text compression rate below 1
bit per character. However, in practice, the model itself is
typically quite large and needs vast amounts of data for
training, which limits their direct applicability to general-
purpose compression.

II. BACKGROUND

Consider a data stream SV = {S1,S5,...,Sx} over an
alphabet S which we want to compress losslessly. We consider
the statistical coding approach consisting of a prediction model
followed by an arithmetic coder. For a sequence S, the aim of
the model is to estimate the conditional probability distribution
of the " symbol S, based on the previously observed K
symbols, denoted as P(S;|S,—1,...,S—K), where K is a
hyperparameter. An estimate of this probability and S, are
then fed into the arithmetic encoding block which recursively
updates its state. This state serves for the compressed rep-
resentation at the end of this process. The compressed size
using this approach is equivalent to the cross entropy (C'E)
loss shown in Eg. , where |S| is the alphabet size, Y., gr
(vectors of size |S|) are the one-hot encoded ground truth and
the predicted probabilities, respectively, and IV is the sequence
length.

N NS
. 1
L= CE(y,.5)=>_> ymlogs— (1)
r=1 r=1k=1 Yrk
The model that estimates the probability
P(S.|Sr—1,...,5—K), where » € {K + 1,...,N},

should be trained so as to minimize the cross entropy loss on
the data to be compressed. This training can be performed in
several ways [21]] as discussed below:

Static: Here the model is first trained on some external
training data and it is made available to both the compressor
and the decompressor. The performance in this case is highly
dependent on the generalization abilities of the model. This
approach is restricted to cases where similar training data is
available and is not directly applicable to general-purpose
compression tasks.

Adaptive: Here both the compressor and the decompressor
are initialized with the same random model which is updated
adaptively based on the sequence seen up to some point. This


https://github.com/mohit1997/Dzip-torch
https://github.com/mohit1997/Dzip-torch
https://www.7-zip.org/
http://mattmahoney.net/dc/

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

(Sr—l ..

Compressed
I Output
Trained
Bootstrap
model

- V¥ vy

. Sr—K)

Trained
Bootstrap
model

Sequence

(S17---7SN)

Bootstrap model
training

Stage I

Supporter
model

Stage II

Fig. 1. DZip compression overview: In Stage I, the boostrap model is trained by scanning the sequence multiple times. In Stage II, the bootstrap model
is combined with the supporter model to predict the conditional probability of the current symbol given the past K symbols (K = 64 by default). The
current symbol and the predicted probabilities are then fed into the arithmetic coder. The combined model is updated as the sequence is compressed. The
final compressed output consists of the parameters of the trained bootstrap model and the output of the arithmetic coder.

approach does not require the availability of training data
and works quite well for small models. For large models,
however, this approach may suffer due to the difficulties in
training the model in a single pass and adapting quickly to
changing statistics (e.g., for non-stationary data).

Semi-adaptive: Here the model is trained based only on the
input sequence and the training procedure can involve multiple
passes through the input data. The trained model parameters
are included as part of the compressed file, along with the
arithmetic coding output. This additional cost is expected to
be compensated by the fact that the sequence-specific training
will lead to a better predictive model and result in a smaller
arithmetic coding output. Note that there is a trade-off involved
between having an accurate model and the bits required to
store that model’s parameters, as described by the minimum
description length (MDL) principle [22]]. Essentially, a larger
model can lead to better compression, but the gains might
be offset by the size of the the model itself, particularly for
smaller datasets.

In the next section we describe the proposed compressor
DZip, which combines elements of semi-adaptive and adaptive
approaches to achieve better prediction using NN-based mod-
els, while storing only a small model as part of the compressed
file.

IIT. METHODS

The proposed compressor DZip utilizes a hybrid training
scheme that combines semi-adaptive and adaptive training
approaches by means of two models, a bootstrap model and a
supporter model, as shown in Figure [T} The bootstrap model
is a parameter efficient RNN-based model that is trained in
a semi-adaptive fashion by performing multiple passes on
the sequence to be compressed (prior to compression). Its
parameters are saved and form part of the compressed output.
The size of the bootstrap model is kept relatively small due to

the trade-off associated with semi-adaptive modeling discussed
above.

To achieve further improvements in compression, we use the
supporter model, which is a larger NN initialized with prede-
fined pseudorandom parameters at the initiation of encoding
and decoding. The outputs of the bootstrap and supporter
models are combined to generate the final predictions used
for compression. The parameters of the combined model are
updated in an adaptive manner during encoding (symmetri-
cally during decoding). Due to the use of adaptive training,
the weights of the supporter model do not need to be stored
as part of the compressed file.

The parameter efficient bootstrap model provides a good ini-
tialization for the combined predictor, avoiding the issues with
the adaptive training of large models. With this initialization,
the larger combined model provides a powerful adaptively-
trained predictor for large datasets, without incurring the cost
associated with storing the parameters of the supporter model.
The number of previous symbols used for prediction is set
by default to K = 64. As there exists a trade-off between
compression performance and encoding/decoding speed, DZip
also supports the use of the boostrap only model for prediction,
avoiding the cost of adaptively training the large supporter
model. We next describe the model architecture and the
training procedure in more detail.

A. Model architecture

Bootstrap model: The bootstrap model architecture is
designed keeping in consideration the trade-off between model
size and prediction capability, leading to the choice of an
RNN based design with parameter-sharing across time steps.
The model is as shown in the top half of Figure 2] and
consists of an embedding and two biGRU layers (bidirectional
gated recurrent units [23[]) followed by linear and dense (fully
connected) layers. The output of every m™ time step after
the biGRU layers is stacked and flattened out into a vector
(m = 16 by default). Choosing only the m™ output helps in



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Bootstrap model

biGRU .
(x2) Flatten

sbuippaquig

Input

m

3

8

Q-

=y

S

@ b Residual
ense

Supporter model Block (x2)

Linear
Dense Linear logit
x2) 0gItsg

logits,
Convex Probabilities
Combination

Fig. 2. Combined model architecture consisting of bootstrap and supporter models. Dense layers correspond to fully connected layers with ReLU activation.
Linear layers are also fully connected layers but do not incorporate a non linear transformation. Concat block denotes concatenation of all the input vectors.

reducing the number of parameters in the next layer while
still allowing the network to learn long-term dependencies.
The small bottleneck dense layer (with ReLU activation) helps
further increase the depth of the architecture and its output
is added to that of the linear layer to generate the unscaled
probabilities (logits) denoted as logits,. This dense layer is
important for learning long-term relationships in the inputs
and showed improved performance on synthetic datasets.

The layer widths of the bootstrap model are automatically
chosen depending on the vocabulary size of the input
sequence, since a higher vocabulary size demands larger
input and output sizes. As the vocabulary size varies, the
embeddings’ dimensionality varies form 8 to 16; hidden state
for biGRU varies from 8 to 128; and the dense layer’s width
(prior to logits) varies from 16 to 256. Note that the maximum
possible alphabet size is 256 since the data is parsed at a byte
level. The above hyperparameters were chosen empirically
based on experimental results.

Supporter model: The supporter model architecture is
designed to adapt quickly and provide better probability
estimates than the bootstrap model, without any constraints
on the model size itself. The input to this model consists of
the embeddings and the intermediate representations from the
bootstrap model (see Figure 2). The supporter model consists
of three sub-NNs which act as independent predictors of
varying complexity. The first sub-NN is linear and learns
quickly, the second sub-NN has two dense layers and the
third sub-NN uses residual blocks [24] for learning more
complex patterns [4]. We employ ReLU activation by default
in all dense layers and the residual blocks. Then, each of the
output vectors from these sub-NNs are linearly downsized
into a vector of dimensionality equal to the vocabulary size
and added together. The result of this operation is interpreted
as the logits for the supporter model, denoted as logitss.
Based on empirical evaluation, the widths for the dense
and residual layers are automatically set to 1024 or 2048
depending on the vocabulary size.

Combined model: The combined model takes the logits
from the bootstrap model (logitsy) and the output logits from
the supporter model (logitss) to generate the final logits
(logits.) through a convex sum as shown below,

logits. = A x logitsy + (1 — ) * logitss s.t. A € [0,1],

where ) is a learnable parameter. We restrict the parameter A
to [0, 1] through sigmoid activation. This allows the combined
model to weigh the logits from the two models appropriately.
At the initialisation, the prediction of supporter model can be
expected to be poor, hence the convex combination allows the
model to give more weight to logits;, as compared to logitsg.
The final output logits. is scaled to probabilities through
softmax activation which are then used with arithmetic coding.
This idea is similar to context mixing which is commonly
used to mix the predictions of multiple models resulting in
superior compression performance.

B. Model Training

The first stage of DZip involves model selection based on
the vocabulary size of the input data, which is detected by
doing a preliminary pass over the data. DZip reads the input
file byte-by-byte and automatically selects hyperparameters
for the bootstrap and the supporter model. The second
stage consists of training the bootstrap model by performing
multiple passes through the sequence. The model is typically
trained for 8 epochs with a batch size of 2048, gradient
clipping and Adam optimizer (learning rate 0.005) with
learning rate decay while minimizing categorical cross
entropy loss (Eq. [I). For smaller datasets, the epoch number
can be increased so as to sufficiently train the bootstrap model.
After training, this model is saved as part of the compressed
file after being losslessly compressed with general-purpose
compressor BSC [17]. Once the bootstrap model is trained,
DZip can be used in two modes which trade-off compression
ratio with encoding/decoding speed.

Combined Model (Hybrid): In this case, the prediction is
done using the combined model, where the trained bootstrap
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TABLE I
REAL AND SYNTHETIC DATASETS USED FOR EVALUATION. |S‘ DENOTES THE ALPHABET SIZE. BPC STANDS FOR BITS PER CHARACTER.

Name Length |S| Description

Real Datasets

a) Text

webster 41.1M 98 HTML data of the 1913 Webster Dictionary, from the Silesia corpus

text8 100M 27 First 100M of English text (only) extracted from enwiki9

enwiki9 500M 206  First 500M of the English Wikipedia dump on 2006

b) Executables

mozilla 51.2M 256  Tarred executables of Mozilla 1.0, from the Silesia corpus

h. chr20 64.4M 5 Chromosome 20 of H. sapiens GRCh38 reference sequence

¢) Genomic Data

h. chrl 100M 5 First 100M bases of chromosome 1 of H. Sapiens GRCh38 sequence

c.e. genome 100M 4 C. elegans whole genome sequence

ill-quality 100M 4 100MB of quality scores for PhiX virus reads sequenced with Illumina
np-bases 300M 5 Nanopore sequenced reads (only bases) of a human sample (first 300M symbols)
np-quality 300M 91 Quality scores for nanopore sequenced human sample (first 300M symbols)

d) Floating Point

num-control 159.5M 256  Control vector output between two minimization steps in weather-satellite data assimilation
obs-spitzer 198.2M 256 Data from the Spitzer Space Telescope showing a slight darkening
msg-bt 266.4M 256 NPB computational fluid dynamics pseudo-application bt
e) Audio (wav)
audio 264.6M 256  First 600 files (combined) in ESC Dataset for environmental sound classification
Synthetic Datasets
XOR-k 10M 2 Pseudorandom sequence Sp11 = Sp + Sn—k (mod 2).
Entropy rate O bpc.
HMM-k 10M 2 Hidden Markov sequence S, = X, + Z, (mod 2), with Z,, ~ Bern(0.1),

Xn+t1 = Xn + Xpn—r (mod 2). Entropy rate 0.46899 bpc.

model serves as a prior. The parameters for the supporter
model are randomly initialized. During encoding and decod-
ing, we symmetrically optimize the supporter model, while the
bootstrap model’s parameters are kept fixed. Since encoding
one symbol at a time is extremely slow, we divide the sequence
into 64 equally sized parts, and use a common model to
generate predictions for each part in a single batch. This choice
was made based on experimental results showing improved
compression. After encoding a symbol y (represented as a
one-hot vector), the parameters for the combined model are
optimized by minimizing the following loss function:

Leom = CE(y, fs(logits.)) + CE(% fs(logitss)),

where f; denotes the softmax activation, and C'E is the
cross entropy loss defined earlier. The second term in this
loss function forces the supporter model to learn even if
the logits. are assigning more weight to the logits,. The
weight updates are performed after encoding/decoding every
20 symbols (per part) while keeping the learning rate low
(0.0005) to avoid divergence. To update this model, we use
the Adam optimizer [26] with 81 = 0 and B2 = 0.999 to
quickly adapt to the non-stationary sequence statistics. The
hyperparameters such as the context length and the batch size
used during adaptive encoding affect both the runtime and the
compression performance of DZip. Details on the selection
and the impact of these hyperparameters are provided in the
supplementary data.

Bootstrap Only Mode: The sequence is divided into 1024
parts and the first K symbols of each part are encoded

using uniform probabilities. Note that the batch size used
in this mode is 1024 as opposed to 64 for the combined
modeling approach. Then we encode the (K + 1) symbol
in each part using the probability estimates obtained from the
bootstrap model, where the prediction for each part is done in
a single batch. This procedure is repeated until all parts are
successfully encoded. The length of the sequence is stored as
part of the encoded file. Decoding is performed in a symmetric
fashion using the stored bootstrap model.

DZip uses the combined (hybrid) mode by default, as it
offers better compression results, although at the cost of
increased encoding/decoding times.

C. Reproducibility

The arithmetic coding procedure works symmetrically at the
encoder and the decoder, and requires identical probability
models at both ends for successful decoding of the data.
We use the PyTorch guidelines on reproducibility [27] to
ensure identical training and inference during encoding and
decoding. Since DZip utilizes a GPU to reduce runtime, its
current implementation requires decoding to be performed on
the same hardware that was used for encoding (a limitation
of the PyTorch library). DZip can be fairly easily adapted to
the appropriate deep learning framework once reproducibility
across GPUs becomes available. It is also possible to perform
CPU based encoding/decoding which is reproducible across
platforms, but is significantly slower. Note that the bootstrap
model training can still be done on a GPU without any
such concerns, since the trained model is included in the
compressed file.
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BITS PER CHARACTER (BPC) ACHIEVED BY THE TESTED COMPRESSORS ON THE REAL DATASETS. BEST RESULTS ARE BOLDFACED. lOg2 |S| REPRESENTS
THE BPC ACHIEVED ASSUMING AN INDEPENDENT UNIFORM DISTRIBUTION OVER THE ALPHABET OF SIZE |S‘ FOR DZIP, WE SPECIFY THE TOTAL BPC

TABLE I

AND THE SIZE OF THE MODEL (IN % SPACE OCCUPIED). SPEC. COMP. STANDS FOR SPECIALIZED COMPRESSOR.

FILE LEN/logz|S| Gzip BSC 7zip  ZPAQ Cgﬁg}i‘g s NNCP CMIX | ?ZBX'LDEL gg‘ifl;.
webster  41.IM/6.61 232 129 1.70  1.09 1.23 0.98  0.83 | 1.44 31.33% | 0.83
mozilla  51.2M/8.00 2.9 252 2.1 188 2.05 163 1.39 | 215 2537% | 1.39
hochr20  644M/232 205 173 177  1.68 7.82 166  1.62 | 1.63 0.92% | 1.62
h. chrl 100M/2.32  2.14 178 1.83  1.74 7.36 1.67 1.67 | 1.67 058% | 1.65

ce genome  100M/2.00  2.15 1.87 1.89  1.80 7.51 180 174 | 1.81 053% | 1.72
ill-quality  100M/2.00 050 035 035  0.34 6.48 034 033 | 034 279% | 051
text8 100M/4.75  2.64 1.68 193 152 1.76 148 131 | 1.74  938% | 1.31
np-bases  300M/2.32  2.16 1.86 1.93  1.79 7.34 170 173 | 173 0.19% | 1.75
np-quality  300M/6.51 595 569 571  5.53 5.51 550 549 | 556 1.13% | 535
enwiki9  SOOM/7.69 272 1.64 194  1.43 1.66 121 1.05 | 1.47 3.67% | 1.05
num-control  159.5M/8.00 7.57 7.66 7141  6.96 6.82 672 6.63 | 683 2.67% | 7.12
obs-spiizer  198.2M/8.00  6.50 2.51 227  2.20 2.87 173 1.58 | 2,18 670% | 7.74
msg-bt  266.4M/8.00 7.08 696 576 629 6.22 536 524 | 521 208% | 667
audio  264.6M/8.00 575 463 498  4.17 492 349 344 | 3.40 329% | N/A

IV. EXPERIMENTS

We benchmark the performance of our neural network
based compressor DZip on real and synthetic datasets, and
compare it with state-of-the-art general-purpose compressors
Gzip, BSC [17]], 7zip [28], and ZPAQ [29], as well as
with RNN based compressors LSTM-Compress [[10], NNCP
[11] and CMIX [18]. We also provide a comparison with
specialized compressors for the real datasets when available.
Certain neural network based compressors such as DecMac
[12] were not considered for comparison as they require a
pretrained model or additional training data. Unless otherwise
stated, all results corresponding to DZip are obtained using the
combined model (default setting). DZip results are reported
on a 16 GB NVIDIA Tesla P100 GPU and NNCP results are
reported on 8 Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
cores. 7zip, LSTM-Compress, BSC, ZPAQ, Gzip and CMIX
results are reported on Intel Xeon Gold 6146 CPUs.

A. Datasets

We consider a wide variety of real datasets with different
alphabet sizes and sequence lengths, including genomic data
(h. chrl, h. chr20, c.e. genome, np-bases, np-quality, ill-
quality), text (webster [30], textS, enwiki9), executable files
(mozilla [30]), double precision floating point data (num-
control, obs-spitzer, msg-bt), and audio data (audio [31]]). To
further understand the capabilities of DZip, we also test it on
synthetic datasets [32] with known entropy rate and increasing
complexity. See Table [[] for a detailed description. Links to
the considered datasets are provided on the GitHub repository
https://github.com/mohit1997/Dzip-torch.

B. Results on real data

We first analyze the performance of DZip on the real
datasets (see Table . On each dataset, we include results for
specialized compressors (when available) as their performance

serves as a baseline for achievable compression. In particular,
we use CMIX [18] for webster, mozilla, text8, and enwiki9,
GeCo [33] for h. chr20, h. chrl, c.e. genome, and np-base
DualCtx [34] for np-quali QVZ [35] for ill-quali and
FPC [36] for msg-bt, num-control, and obs-spitzer datasets.
Since ZPAQ is also specialized for text data, we discuss
its comparison with DZip on webster, text8 and enwiki9.
We do not experiment with any specialized compressors for
audio dataset since we generate the binary audio file by
concatenating multiple audio files together.

When compared against Gzip, BSC, 7zip, and LSTM-
Compress, DZip offers the best compression performance for
all datasets except for the webster and mozilla, in which BSC,
LSTM-Compress or 7zip perform better than DZip. On np-
quality and text8 datasets, the bpc achieved by DZip is com-
parable to BSC which outperforms Gzip, LSTM-Compress
and 7zip on most of the datasets. DZip, on average, offers
about 29% improvement over Gzip, 12% improvement over
7zip, 9.4% improvement over BSC and 33% improvement over
LSTM-Compress. While ZPAQ, which is specialized for text
datasets, consistently outperforms DZip on webster, mozilla,
text8 and enwiki9, this improvement becomes smaller as the
length of the sequence increases. For example, for mozilla
dataset (length 51.2M), the difference in bpc is 0.27 and for
enwiki9 (length 500M) the difference is reduced to 0.04 bpc.
On other datasets, DZip always outperforms ZPAQ (except
for np-quality and c.e. genome where the difference is small).
We also observe that the performance of LSTM-Compress
varies significantly across datasets, in some cases performing
worse than the bpc (bits per character) achievable using an

'GeCo is a specialized compressor for genomic sequences, and is not
optimized for nanopore genomic read bases.

2By default, DualCtx uses read bases as an additional context for quality
value compression. However, we do not use the read base context to allow
fair comparison with other tools.

3QVZ is optimized for lossy compression, but also provides a mode for
lossless compression.
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TABLE III
BITS PER CHARACTER FOR SYNTHETIC DATASETS. BEST RESULTS ARE BOLDFACED. NOTE THAT 1 BPC CAN BE ACHIEVED SIMPLY BY USING 1 BIT PER
SYMBOL FOR BINARY SEQUENCES.

COMPRESSOR XOR-20 XOR-30 XOR-50 XOR-70 HMM-20 HMM-30 HMM-50 HMM-70

Gzip 1.20 1.20 1.19 1.19 1.19 1.19 1.19 1.19

BSC 0.10 1.01 1.01 1.01 0.69 1.01 1.01 1.01

7z1P 0.05 0.69 0.65 0.62 0.92 1.03 1.02 1.03
ZPAQ 0.08 0.95 1.00 1.00 0.99 0.99 0.99 0.99
LSTM-COMPRESS 4.23 3.19 4.77 3.43 3.02 5.19 3.64 1.01
NNCP 0.125 0.9 1.00 1.00 0.57 1.00 1.00 1.00
CMIX 0.02 0.87 0.93 0.96 0.50 0.85 0.99 0.99
DZip 0.01 0.01 0.01 1.01 0.48 0.48 0.48 1.01

independent uniform distribution. This might be attributed
to the issues with training LSTMs (exploding and vanishing
gradients) and also the hyperparameters such as the learning
rate which cannot be externally controlled in the case of
LSTM-Compress.

When compared with NNCP, we observe that NNCP
achieves better performance on webster, mozilla, textS, enwiki9
and obs-spitzer with around 20% improvement over DZip.
NNCP performs better than DZip on the text and executable
datasets, while the performance on the remaining datasets is
near-identical. On a few datasets such as msg-bt and audio,
DZip provides slight improvement over NNCP. Finally, CMIX
was observed to perform consistently better than all other
compressors on all datasets except msg-bt and audio where
DZip performs slightly better (0.03 and 0.04 improvement in
bpc, respectively). Since CMIX is specialized for text and
executable files, the bpc is significantly better for webster,
mozilla, text8 and enwiki9 datasets. On other datasets, CMIX
on average provided approximately 3-4% improvement over
DZip. Note that CMIX is expected to outperform DZip,
as CMIX uses several thousand context models which are
specialized for specific data types. In contrast, DZip uses a
single model and does not incorporate any data type specific
knowledge. Nevertheless, the results of DZip demonstrate
that deep learning based lossless compression techniques can
perform comparably to CMIX (while being faster, as shown
in subsection on datatypes such as audio, floating point
and genomic data, for which CMIX has not been specialized.

It is important to note that the performance of DZip is
sensitive to the alphabet size and the sequence length because
of the overhead associated with storing the bootstrap model
parameters. Specifically, for small length and large alphabet
sequences, the bootstrap model size contributes a significant
percentage to the overall compressed size, hurting the overall
compression ratio. This is reflected for example in the webster
and mozilla datasets, where the model occupies 31% and
25% of the compressed file size, respectively, resulting in
worse compression performance than LSTM-Compress, 7zip
and BSC. However, as the sequence length increases, DZip
outperforms BSC, LSTM-Compress, and 7zip on all datasets
as the model size contribution gets amortized. For example,
on enwiki9 dataset, which is 5 times larger than text8, DZip
obtains 10% improvement over BSC and LSTM-Compress,
and gives comparable performance to ZPAQ which is special-

ized for this data type. With the increase in sequence length,
DZip is also able to achieve a performance close to that of
NNCP and CMIX, such as on np-bases, np-quality, msg-bt
and audio datasets. However, this might not always be the
case, as reflected in obs-spitzer dataset which is of comparable
length. Note that this analysis serves to compare DZip more
fairly to other methods that do not need to store the model. As
discussed, storing the model parameters incurs a cost in the
overall achieved bpc, specially for small datasets, but on the
other hand, it allows for much faster decoding (see subsection
[[V-E), which is an important practical consideration.

Focusing on the specialized compressors, we observe that
they outperform general-purpose compressors in all cases
except for the genomic files ill-quality, np-bases, msg-bt, num-
control and obs-spitzer. Regarding the genomic files, this result
may be explained because QVZ and GeCo are not optimized
for lossless compression of quality data and nanopore bases,
respectively. Similarly, FPC (used to compress msg-bt, num-
control and obs-spitzer) is optimised for encoding/decoding
speed rather than compression performance. When compared
to DZip on the other genomic datasets, GeCo provides less
than 2% reduction on Human chromosomes and 5% reduction
on the C. Elegans genome. Similarly, for the webster; text8 and
enwiki9 datasets, ZPAQ results in 22%, 12% and 5% improve-
ment over DZip, respectively, while CMIX provides 42%, 24%
and 28% improvement over DZip, respectively. Moreover,
for mozilla dataset, CMIX provides 35% improvement as
compared to DZip. These results are expected, since the
specialized compressors typically involve handcrafted contexts
and mechanisms which are highly optimized for the particular
dataset statistics and are based on large training datasets.
Nevertheless, DZip achieves a performance reasonably close to
that of the specialized compressors. The gap is further reduced
if the model size is not taken into account, even outperforming
the specialized compressors in some cases. For example, in
comparison to ZPAQ, the compression rate for DZip without
the model size would be 10% lower for webster, similar for
enwik9, and only 3% larger for text8.

C. Results on synthetic data

We further evaluate DZip on synthetic datasets with sim-
ple structure (i.e., low Kolmogorov complexity) but long-
term dependencies, which make them difficult to compress
using traditional compressors. Specifically, we tested on two
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sequence classes with known entropy rates, XOR-k (entropy
rate 0) and HMM-k (entropy rate 0.469), where k represents
the memory of the sequence (see Table [I).

Table |I1I| shows the results for increasing values of k for the
two sequence classes. Note that these are binary sequences
and hence it is possible to achieve 1 bpc just by packing
the sequence in bits. We observe that DZip achieves the best
compression performance in all cases, almost achieving the
entropy rate of the corresponding sequences when k& < 70,
with slight overhead due to the bootstrap model size. Note
that DZip uses 64 previous symbols for prediction, making it
impossible to learn dependencies beyond this range. While this
hyperparameter can be increased by the user, it would result
in slower encoding/decoding speeds reducing the practicality
of our method. Also note that Gzip, BSC, ZPAQ and LSTM-
Compress fail to achieve any meaningful compression, except
for k£ = 20 in which case BSC and ZPAQ are able to capture
the dependency to some extent. For example, Gzip requires
1.2 bpc in all cases, and LSTM-Compress employs more than
3 bpc except for the HMM-70 dataset. 7zip on the other
hand gives lower than one bpc for XOR-k datasets, but its
performance is still worse than DZip for k£ < 70. However, on
HMM-k datasets, 7zip is also unable to capture the dependency
in the input sequence. Similarly, NNCP also fails to learn the
relationships, resulting in poor compression performance on
all synthetic data-sets for £ > 20. Note that RNNs generally
face difficulties capturing these long term dependencies [37]]
and do not scale well to large context sizes. Lastly, CMIX
gives similar trends in compression as the other compressors
and only gives meaningful compression for sequences with
k = 20.

TABLE IV
COMPRESSION IN BPC OBTAINED BY (I) ONLY THE BOOTSTRAP MODEL
AND (11) DZ1P (COMBINED MODEL). IMPROV. STANDS FOR THE
IMPROVEMENT OF THE COMBINED MODEL WITH RESPECT TO THE
BOOTSTRAP MODEL (IN BPC).

BOOTSTRAP IMPROV.
FILE LENGTH ONLY DZip (BPC)
webster 41.1M 1.474 1.443 0.031
mozilla 51.2M 2.233 2.150 0.083
h. chr20 64.4M 1.672 1.634 0.038
h. chrl 100M 1.720 1.673 0.047
c.e. genome 100M 1.826 1.814 0.012
ill-quality 100M 0.343 0.343 0.000
text8 100M 1.789 1.737 0.052
np-bases 300M 1.755 1.725 0.03
np-quality 300M 5.588 5.562 0.026
enwiki9 500M 1.596 1.470 0.126
num-control ~ 159.5M 6.838 6.834 0.004
obs-spitzer 198.2M 2.445 2.181 0.264
msg-bt 266.4M 5.259 5.214 0.045
audio 264.6M 3.405 3.389 0.016
XOR-30 10M 0.011 0.011 0.0
HMM-30 10M 0.482 0.482 0.0

D. Tradeoff between “bootstrap only” and combined model-
ing approaches

To understand the benefits of the combined modeling ap-
proach adopted by DZip, we conduct ablation experiments
where we compare the two modes for DZip: (i) compression
using only the trained bootstrap model and (ii) compression
using the combined DZip hybrid model with adaptive training
(default setting). Table shows the results for the real
datasets and two synthetic datasets that serve as representative
datasets. On average, we observe that using the proposed
combined model improves the compression by 0.055 bpc on
the real datasets. No significant difference in performance
is observed on the selected synthetic datasets between the
two approaches. This improvement is obtained at the cost
of higher encoding and decoding time, since the combined
model is more complex and needs to be adaptively trained. In
particular, as shown in Table the encoding and decoding
speed is on average 1.5 and 4 times faster for the bootstrap
only mode. Nevertheless, DZip in bootstrap only mode still
outperforms Gzip, 7zip, BSC and LSTM-Compress on most
of the selected datasets, while being more practical due to
its reduced running time. For example, we observe 27%
improvement with respect to Gzip, 31% improvement with
respect to LSTM-Compress, 9% improvement with respect
to 7zip, and 6% improvement over BSC. Hence, depending
on speed and performance requirements, one mode may be
preferred over the other.

Finally, we observe that the improvement provided by the
combined model varies across the different datasets. Specif-
ically, the improvement is smaller on ill-quality, np-quality,
num-control and audio datasets. The reason might be that the
bootstrap model is already close to the compression limit of
the sequence. This is the case for example on the synthetic
datasets, where the performance of the bootstrap model is
already close to the entropy rate and hence the improvement
offered by the hybrid (combined) model is negligible.

E. Computational requirements

The first stage of DZip, which consists on training the
bootstrap model with a batch size of 2048, employs 2-5
minutes/MB (depending on the alphabet size). We typically
train the bootstrap model on every dataset for 8 epochs. In
the bootstrap only mode, the encoding and decoding typically
take 0.4 minutes per MB and 0.7 minutes per MB, respec-
tively. With the combined modeling approach, since it requires
weight updates after every 20 symbols, the encoding time rises
to roughly 2.5 minutes per MB. The decoding speed is 15%
slower than encoding speed in this case due to the method
used for creating batches in the current implementation. A
detailed run time analysis is provided in Table [V] for various
vocabulary sizes evaluated in this work.

DZip outperforms other NN-based compressors in terms
of computational performance because it relies on simpler
models and it uses GPU along with various parallelisation
schemes adopted during both training and encoding. LSTM-
Compress takes on average 3 minutes/MB for encoding and
4 minutes/MB for decoding. Therefore, LSTM-Compress is
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TABLE V
RUNNING TIME OF DZIP IN MINUTES PER MB FOR VARIOUS ALPHABET SIZES. THE DECODING SPEED WITH THE COMBINED MODEL IS 15% SLOWER
THAN ENCODING. FOR BOOTSTRAP MODEL THE ENCODING AND DECODING SPEEDS ARE SIMILAR. THE BOOTSTRAP TRAINING TIMES SHOWN ARE FOR 8

EPOCHS.

STEP |S|=2 |S|=4 |S|=5 |S|=27 |S|=91 |S|=98 |S|=206 |S|=256
Bootstrap Training 1.5 2.0 2.0 5.2 5.2 5.2 5.5 5.5
Bootstrap Encoding 0.3 0.3 0.3 0.4 0.4 0.4 0.6 0.7
Bootstrap Decoding 0.5 0.5 0.5 0.7 0.7 0.7 0.9 1.1
Combined Encoding 1.9 2.2 2.2 2.4 2.4 2.4 2.7 2.9
Combined Decoding 2.0 2.5 2.5 2.7 2.7 2.7 3.0 33

2 times faster in encoding speed and 5 times slower in
decoding speed than DZip in bootstrap only mode. Compared
to DZip in combined mode, LSTM-Compress is 3 times faster
in encoding speed and 1.3 times slower in decoding speed.
Note that while LSTM-Compress gives somewhat compara-
ble encoding/decoding speeds, DZip consistently outperforms
LSTM-Compress on the majority of datasets in terms of
compression ratio. Compared to NNCP, DZip in bootstrap
only mode compresses 5-6 times faster and decompresses 60
times faster. In combined mode, DZip compresses 3-4 times
faster and decompresses 15 times faster than NNCP. CMIX
uses specific preprocessing transformations based on the data
type and has variable encoding/decoding speed. On average,
DZip in combined mode is more than 4 times/10 times
faster in encoding/decoding speed than CMIX. CMIX averages
around 20-32 minutes/MB even with its highly optimized
implementation for both compression and decompression. In
bootstrap only mode, DZip is 5 times faster for compression
and 25 times faster for decompression than CMIX.

In comparison, Gzip, 7zip and BSC take on average 4.9
seconds/MB, 0.13 seconds/MB, and 0.07 seconds/MB for
compression, respectively, and 0.005 seconds/MB, 0.04 sec-
onds/MB and 0.02 seconds/MB for decompression, respec-
tively. ZPAQ’s compression speed is variable for different
datasets and different modes. In the mode used for the
experiments (mode five), ZPAQ requires approximately 1-2
seconds per MB for encoding and around 5-10% more time
for decompression. The difference in compression speeds is
expected since training and inference for NNs are expensive,
but they can provide better compression rates due to superior
modeling capabilities.

V. CONCLUSION

In this work, we introduce a general-purpose neural net-
work prediction based framework for lossless compression
of sequential data. The proposed compressor DZip uses a
novel NN-based hybrid modeling approach that combines
semi-adaptive and adaptive modeling. We show that DZip
achieves improvements over Gzip, 7zip, BSC, ZPAQ and
LSTM-Compress for a variety of real datasets and near op-
timal compression for synthetic datasets. DZip also compares
favorably with the other NN-based compressors, achieving
similar compression while being substantially faster. Although
the practicality of DZip is currently limited due to the required
encoding/decoding time, we believe the proposed framework

and experiments can shed light into the potential of neural
networks for compression, as well as serve to better understand
the neural network models themselves.

Future work includes reducing the computational require-
ments to build a more practical tool, improved compression
of the trained bootstrap model parameters, and support for
incorporating domain specific knowledge when available.
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