
ar
X

iv
:1

91
1.

02
88

9v
2

 [
cs

.D
S]

 1
5

N
ov

 2
01

9

Towards Better Compressed Representations

Micha l Gańczorz∗

∗University of Wroc law, Institute of Computer Science
ul. Joliot-Curie 15

Wroc law, PL50383, Poland
mga@cs.uni.wroc.pl

Abstract

We introduce the problem of computing a parsing where each phrase is of length at most
m and which minimizes the zeroth order entropy of parsing. Based on the recent the-
oretical results we devise a heuristic for this problem. The solution has straightforward
application in succinct text representations and gives practical improvements. Moreover,
the proposed heuristic yields structure whose size can be bounded both by |S|Hm−1(S) and
by |S|/m(H0(S) + · · · + Hm−1(S), where Hk(S) is the k-th order empirical entropy of S.
We also consider a similar problem in which the first-order entropy is minimized.

Introduction

As the amount stored data grows exponentially, over the last decade we have seen a
rapid growth of importance of compressed data structures, both in practical applica-
tions and in theoretical research. In this paper we take a closer look at one of the
simplest compressed data structure, which solves the static random access problem,
namely given a text S builds its compressed representation supporting only one op-
eration: access(i) which returns i-th element, S[i]. This structure is already useful in
many applications, such as databases or compressed RAM.

The two main paradigms in lossless data compression are: dictionary compression,
e.g. LZ77 or grammar compression, and entropy-based compression, e.g. PPM. It is
generally acknowledged that the former works better for highly repetitive data, while
the latter for data which does not have many repeating substrings.

There are many theoretical results for compressed representations using the en-
tropy paradigm [1–4], there are even structures that allow not only to read but also
to modify the data [5–7]. For the static random access problem, those structures
achieve the following bounds: for a string S over the alphabet of size σ the space is

bounded by |S|Hk(S) + O
(

|S|
logσ |S|

· (k log σ + log log |S|)
)

and the access query takes

O(1) time. It is also worth noting that some of these structures also allow to read
O(logσ |S|) bits in O(1) time, this is useful in sequential read, which is often used
in RAM. What is somehow surprising, is that the analyses of space usage of those
structures are usually done in the same way: first, it is shown that a structure in-
duces a parsing of the input string, (sometimes the parsing is explicitly constructed
in the structure, sometimes it is defined implicitly); then it is shown that the size of
data structure is dominated by the zeroth order entropy of this parsing, i.e. zeroth

Work supported under National Science Centre, Poland project number 2017/26/E/ST6/00191.

http://arxiv.org/abs/1911.02889v2

order entropy of string made by replacing parsing phrases with new letters; lastly,
this zeroth-order entropy is related to the k-th order entropy of input string S.

A recently shown theorem strengthens and generalizes previous estimations of
parsing’s zeroth-order entropy in terms of input’s k-th order entropy [2, 8].

Theorem 1 ([9, Theorem 1]). Let S, be a string, YS its parsing, n = |S|. Then:

|YS|H0(YS) ≤ |S|Hk(S) + |YS|k log σ + |L|H0(L),

where L is a string over alphabet 1 . . . |YS| whose letters are lengths of factors of YS.

Moreover, if |YS| = O(|S|/ logσ |S|) then this bound becomes:

|YS|H0(YS) ≤ |S|Hk(S) + O

(

|S|

logσ |S|
· (k log σ + log log |S|)

)

.

The aforementioned structures construct a parsing of S into O(|S|/ logσ |S|) phrases
of fixed length; most of them find a naive parsing into phrases of length Θ(logσ |S|).
For example, the simplest one [2] first finds a parsing into equal-length phrases of
length 1

2
logσ |S|, assigns each phrase a prefix-free code and concatenates the codes.

Theorem 1 shows that using Huffman codes for any reasonable parsing yields
a data structure of size |S|Hk(S) (plus the dictionary, which is often small). It is
natural to ask, can we get better upper bounds if we can choose the parsing, it turns
out that by recent result, this is indeed the case:

Theorem 2 ([9, Theorem 2]). Let S be a string over alphabet σ. Then for any integer

l we can construct a parsing YS of size |YS| ≤
⌈

|S|
l

⌉

+ 1 satisfying:

|YS|H0(YS) ≤
|S|

l

l−1
∑

i=0

Hi(S) + O(log |S|).

All phrases except the first and last one have length l, and all phrases lengths are

bounded by l.

As log σ ≥ Hi(S) ≥ Hj(S) for i ≤ j, bound from Theorem 2 is smaller than
the one from Theorem 1. Moreover, in practice entropies tend to get significantly
smaller with i. Observe that there are at most l− 1 parsings satisfying conditions of
Theorem 2, so it basically says that one of them satisfies the improved bound.

While Theorem 2 gives us meaningful insight that some parsings can beat the
bound of Theorem 1, it does not account for significant practical gains. What we are
really interested in is a parsing which will have small entropy and will be (practically)
useful in structures for compressed representation.

The first observation is that existing structures can be generalized so that they
support parsings whose phrases are of length at most m = O(logσ |S|), call such pars-
ing m-bounded, instead of requiring them to be equal. This motivates the following
problem:

Definition 1 (Minimum Entropy Bounded-Factor Parsing Problem). Given an inte-

ger m and a string S compute its m-bounded parsing YS minimizing |YS|H0(YS) over

all m-bounded parsings.

Computing the optimal solution to this problem seems difficult, as entropy is
a global measure and decisions concerning the parsing cannot be done locally; more-
over, entropy minimization problems tend to be hard. We set a more realistic goal of
finding an efficient and simple heuristic.

The main idea of the heuristic comes from the proofs of Theorem 1 and 2: as
computing the exact entropy is difficult, a simpler to compute upper bound H ′(YS) ≥
H0(YS) on the entropy of the parsing. Then instead of trying to compute a parsing
minimizing H(YS), we compute one minimizing H ′(YS). The definition of H ′ is simple
enough so that computing it can be done in almost linear time.

The main drawback of aforementioned structures is that the additional factor
O(|S| (k log σ + log log |S|) / logσ |S|) grows significantly with k. As a solution, Grossi
et al. [6] encoded the parsing with a first order entropy coder; the size of such data
structure is at most |S|Hk(S) + O (|S| log logσ |S|/ logσ |S|). In fact, any parsing of
size O(|S|/ logσ |S|) and which factors are of length at least k satisfies this bound [6].

Even though neither of [6, 9] give explicit bounds for the parsing encoded with
first order entropy, it is easy to apply methods from [6, 9] and obtain the versions of
Theorem 1 and Theorem 2:

Theorem 3. Let S, |S| = n be a string, YS = y1y2 · · · y|YS| its parsing, where |yi| ≥ k,
for all i. Then:

|YS|H1(YS) ≤ |S|Hk(S) + |L|H0(L),

where L is a string over alphabet 1 . . . |YS| which letters are lengths of factors of YS.

Moreover, if |YS| = O(|S|/ logσ |S|) then this bound becomes:

|YS|H1(YS) ≤ |S|Hk(S) + O

(

|S| · log log |S|

logσ |S|

)

.

Theorem 4. Let S be a string over alphabet σ. Then for any integer l we can

construct a parsing YS of size |YS| ≤
⌈

|S|
l

⌉

+ 1 satisfying:

|YS|H1(YS) ≤
|S|

l

2l−1
∑

i=l

Hi(S) + O(log |S|).

All phrases except the first and last one have length l, and all phrases lengths are

bounded by l.

This motivates a generalization of minimum entropy bounded-factor parsing problem:

Definition 2 (Minimum First-Order Entropy Bounded-Factor Parsing Problem).
Given an integer m and a string S compute its m-bounded parsing YS minimizing

|YS|H1(YS) over all m-bounded parsings.

We show that our heuristic can be generalized to this problem.

A Better Parsing

Theorem 1 and 2 utilize the following Lemma to upper-bound the entropy of a parsing:

Lemma 1 ([10]). Let w be a string over alphabet Γ and p : Γ → R
+ be a function

such that
∑

s∈Γ p(s) ≤ 1. Then:

|w|H0(w) ≤ −
∑

s∈Γ

|w|s log p(s) .

Lemma 1 should be understood as follows: we can assign each different phrase y
a value p(y), then each occurrence of y will contribute − log p(y) to the “entropy” of
parsing; the assumption that values p for different phrases sum up to at most 1 is
needed to ensure that p behaves like a probability distributions on phrases. In fact,
for such defined function p we can compute a prefix-free coding that assigns a code of
length roughly − log p(y) to y, e.g. both Huffman and arithmetic coding can be used
to obtain the codes of length − log p(y) + O(1).

The actual functions p utilised by Theorem 1 and 2 are as follows: For a factor
y = a1 · · · aj, define p(y) = plen(|y|) ·

∏j

i=1 pi(ai), where plen(|y|) is the empirical
probability that a factor has a length |y|, i.e. #(|y|)/|Y |, where #(|y|) is number of
factors in Y of length |y|. Theorem 1 and 2 use different pis, for the former it is 1:

pi(a) =

{

1
σ

for i ≤ k, where σ is the size of the alphabet,

pi(ai) =
#(ai−k ···ai)

#(ai−k ···ai−1)
, for i > k,

for the latter it is 1:

pi(ai) =
#(a1 · · ·ai)

#(a1 · · ·ai−1)
,

where #(w) is a number of occurrences of world w in the input string S.
The sum, over all different phrases, of such defined values is at most 1 [9], hence

satisfying conditions of Lemma 1. Observe that these functions estimate not only
the cost of entropy coding of a phrase, but also such cost for each individual letter in
phrase: given a phrase y = a1a2 · · · aj in the first case for i ≤ k the cost of encoding
a letter ai is − log pi(ai), which corresponds to the naive encoding with log σ bits, and
for i > k the cost corresponds to encoding with k-th order entropy coder. Similarly,
in the second case, the cost of encoding the letter, − log pi(ai), corresponds to the cost
of encoding letter ai with i−1-th order entropy coder (i.e. first letter is encoded with
0-th order entropy coder, second with a 1-st order coder and so on). We also note
that

∑

yi∈YS
− log pl(|yi|) sums up to the entropy of phrases’ lengths, i.e. |L|H0(L).

In order to use some function p in a heuristic p should depend only on the string on
not on the parsing itself, then dynamic programming can be used to compute a parsing

1If ai−k · · · ai or a1 · · · ai is the suffix of S the values should be pi(ai) =
#(ai−k···ai)

#(ai−k···ai−1)−1 and

pi(ai) = #(a1···ai)
#(a1···ai−1)−1 respectively, yet as this does not change

∑

yi∈YS
− log pl(|yi|) significantly we

use those values as they simplify both the reasoning and algorithm.

YS minimizing
∑

yi∈YS
− log p(yi). Unfortunately, plen depends on the parsing. We

thus modify plen and set it to be 1/m: we are interested in factors of length at most
m, so plen is a probability distribution on {1, . . . , m}. Such modification should have
little effect on the encoding size—we are interested in a parsing with short factors,
hence the factor corresponding to the entropy of lengths |L|H0(L) should be small.

We will use a variant of pσ of Theorem 2, as it carries more information on the
string structure that the other one (and gives significantly better practical results).

Definition 3. Given a string S and integer m denoting the maximum substring

length, we define p for a substring y = a1a2 · · · aj of S as

pH0(y) =
1

m
· p1(a1) · p2(a2) · · ·pj(aj), where pi(ai) =

#(a1a2 · · · ai)

#(a1a2 · · · ai−1)

and phrase cost of y as: − log pH0(y).

Fact 1. For a phrase y, pH0(y) = 1
m
· #(y)

|S|

We can now give a heuristic for minimum entropy bounded-factor parsing problem:

Lemma 2. For a string S we can compute in O(|S| ·m) time an m-bounded parsing

which minimizes the sum, over all phrases, of values pH0.

Proof. We apply standard dynamic programming, let the cost of a parsing be the
sum of p over all its phrases. Let dp(i) denote the smallest cost of parsing of
S[1 . . . i]. Assuming we computed dp(j) for j < i we can compute dp(i) using:
dp(i) = min{dp(i− j) + p(S[i− j . . . i]) | 1 ≤ j ≤ m}.
Computing each dp(i) takes O(m) time, assuming we can access p(·) value in O(1)
time. To this end we preprocess the input to get the number of occurrences of y in
S, e.g. by constructing suffix tree with appropriate structures, and use Fact 1. We
retrieve the parsing by backtracking.

Observe that the algorithm finds a parsing whose cost with respect to the function
p(·) is not greater than both of the estimates used in proof (not considering the
|L|H0(L)), thus by Lemma 1, we obtain the following bounds:

Lemma 3. For a given string S over alphabet of size σ and a parameter m algorithm

from Lemma 2 finds a parsing YS of S such that both the following inequalities holds:

|YS|H0(YS) ≤
|S|

m

∑

0≤i≤m−1

Hi(S) + |YS| logm

|YS|H0(YS) ≤ |S|Hk(S) + |YS| logm + |YS|k log σ, for each0 ≤ k < m.

In the following we develop a heuristic for minimum first-order entropy bounded-
factor parsing. To this end we analyze the main idea of proofs of Theorem 4 and 3:
we want to assign each phrase a probability p (or a prefix-free code) and apply
Lemma 1. However, Lemma 1 works only for the zeroth order entropy. Still, H1

is defined through H0 of appropriate strings: for a string T ∈ Σ∗, |T |H1(T) =

∑

Tσ ,σ∈Σ
|Tσ|H0(Tσ), where Tσ is a string made by concatenating all letters of T which

occur in one-letter context σ (e.g. for T = abacaac, Ta = bcac). Thus, for a parsing
YS, we construct Ty for each different phrase y of a parsing and apply Lemma 1 to it.

The main reason, why we can obtain better (theoretical and practical) bounds for
H1 of a parsing, is that for a given factor y = a1a2a3 · · ·a|y| from Ty′ we know that
y′ precedes y, thus we can include y′ in a context. As a result, in the definition of
p(·) = 1

m
· p1(a1) · p2(a2) · · ·p|y|(p|y|) we define pi(ai) as empirical probability of ai in

|y′|+i−1-letter context, i.e. pσ(a1a2 · · · ai) = #(y′a1a2 · · ·ai)/#(y′). This corresponds
to the first letter of the factor being encoded with |y′|-order entropy coder, second
with |y′| + 1-order entropy coder and so on.

In the H1 variant our algorithm we use the p(·) values used to prove the Theorem 4:

Definition 4. Given a string S, integer m denoting the maximum substring length

and a substring y′y, where y′ = b1b2 · · · bh, y = a1a2 · · · aj, we define value pH1 for

a substring y = a1a2 · · ·aj of S:

pH1(y, y
′) =

1

m
· p1(a1) · p2(a2) · · · · · pj(aj), where pi(ai) =

#(y′a1 · · · ai)

#(y′a1 · · · ai−1)
,

and phrase cost of y preceded by phrase y′ as − log pH1(y, y
′)

Such defined values pH1(·) are still easy to compute:

Fact 2. For a phrase y and phrase y′ preceding y, pH1(y, y
′) = 1

m
· #(y′y)

#(y′)

We can extend our dynamic programming so that it computes the optimal parsings
with respect to the phrase cost defined above; note that the time complexity increases,
as now the phrase cost is dependent on the previous phrase cost, hence we loop not
only on the possible phrase lengths, but also on the lengths of the previous phrase.

Lemma 4. For a string S we can compute in O(|S| ·m2) time an m-bounded parsing

minimizing the sum, over all phrases, of values pH1.

Proof. Let dp(i, u) denote the smallest cost of computing a parsing of S[1 . . . i] with
the last factor of length u. Assuming we computed dp(j, v) for j < i, we can compute
dp(i, u) follows:

dp(i, u) = min{dp(i−u, v)+pH1(S[i−u+1 . . . i], S[i−v−u+1 . . . i−u]) | 1 ≤ v ≤ m}.

Smallest cost is equal to min{dp(|S|, u), 1 ≤ u ≤ m}. We retrieve the parsing by
backtracking.

Again, we have theoretical guarantees on the size of the computed parsing:

Lemma 5. For a given string S over alphabet of size σ and a parameter m algorithm

from Lemma 4 finds a parsing YS of S such that both the following inequalities holds:

|YS|H1(YS) ≤
|S|

m

∑

m≤i≤2m−1

Hi(S) + |YS| logm

|YS|H1(YS) ≤ |S|Hm(S) + |YS| logm.

Experimental results — Entropy Comparison

In the next sections we present the experimental results. Our implementation make
use of sdsl library [11]. The implementation is available at https://github.com/

iguana-ben/compressed-representation. Test data is from Pizza & Chilli cor-
pus http://pizzachili.dcc.uchile.cl/texts.html.

Table 1 contains the comparison of the parsing returned by H0 version of our
parsing algorithm (denoted by A) compared to parsing obtained by applying Theo-
rem 2 (denoted by B), i.e. by evaluating m naive parsings and returning the one with
smallest entropy. In general, both the entropy of parsing and number of different
phrases (denoted by |Σ|) are smaller for the algorithm’s parsing: while the |A|H0(A)
is smaller than |B|H0(B) by a couple percent, the number of different phrases is re-
duced significantly, even halved. Note that |Σ| corresponds closely to the encoding
size of dictionary (e.g. Huffman) when using zeroth order entropy coder: on average
Θ (|Σ| log |Σ|) bits are both sufficient and necessary for a random sequence over alpha-
bet of size |Σ|; moreover with arithmetic coding we still need to store |Σ| frequencies,
which gives similar bound.

Table 1 also shows an interesting phenomenon: for small m Theorem 2 seems to be
tight. Also, the dna sequence was the only one on which there was no improvement;
note that in this case first m entropies are almost equal, so the overall text seems
random for small m, thus we cannot get much information from pH0 (and we lose on
encoding entropy of lengths).

Table 2 contains the comparison of the parsing returned by H1 version of our
parsing algorithm (denoted by A) to the parsing from Theorem 4 (denoted by B).
Again, we see decrease of entropy, however this time the number of different phrases,
|ΣA|, is larger. This is not so important, though, as for the first order entropy coder
the encoding of the dictionary closely corresponds to the number of different two-
letter words, as for each letter we build a separate dictionary and store which letters
belong to it, hence we store |pairs(A)| numbers, similarly in the first order arithmetic
coding we store |pairs(A)| frequencies. Hence, the number |pairs(A)| log |ΣA| seems
to better reflect the encoding size of the dictionary. And while |ΣA| is larger than
|ΣB|, |pairs(A)| is smaller than |pairs(B)|. Overall, the |A|H0(A) can be about 5 −
20% smaller than the |B|H0(B), and the |pairs(A)| can be about 10% smaller than
|pairs(B)|.

Application — Compression

While the results in Table 1 and Table 2 show that indeed the algorithm performs
better than the naive partition, it is hard to measure how well it can actually compress
the data. Especially because the entropy of parsing gives accurate estimation, we still
have to encode additional data and structures.

For H0 to retrieve the input string S, we store: Huffman compressed parsing
YS, where distinct phrases are replaced with new letters; Huffman dictionary; set of
distinct phrases. We show that the last two can be encoded efficiently; moreover,
such encoding can be easily extended to support queries, so they will be helpful in

File m 1
m

∑

i<m

Hi(S) |B|
|S|H0(B) |S|

|B| |ΣB|
|A|
|S|H0(A) |S|

|A| |ΣA|

english

2 4.0677 4.0676 2. 5.3 · 103 4.0610 1.831 3.1 · 103

4 3.3607 3.3570 4. 2.0 · 105 3.1928 3.629 .93 · 105

6 2.8698 2.8431 6. 1.1 · 106 2.6457 5.447 .44 · 106

8 2.5166 2.4383 8. 2.3 · 106 2.2773 7.302 .97 · 106

dblp.xml

2 4.2616 4.2615 2. 5.7 · 103 4.1718 1.849 2.5 · 103

4 2.9622 2.9569 4. 2.9 · 105 2.8095 3.759 1.4 · 105

6 2.2562 2.2328 6. 8.3 · 105 2.1294 5.775 4.9 · 105

8 1.8431 1.8025 8. 1.1 · 106 1.6911 7.735 .73 · 106

sources

2 4.7877 4.7866 2. 8.1 · 103 4.7230 1.826 3.0 · 103

4 3.7004 3.6894 4. 5.4 · 105 3.4833 3.613 2.1 · 105

6 2.9813 2.9341 6. 1.7 · 106 2.7636 5.504 .81 · 106

8 2.4884 2.3994 8. 2.5 · 106 2.2843 7.450 1.4 · 106

dna

2 1.9584 1.9584 2. 1.0 · 102 2.0317 1.941 .87 · 102

4 1.9402 1.9402 4. 7.4 · 102 2.0204 3.837 6.6 · 102

6 1.9295 1.9294 6. 4.7 · 103 2.0087 5.699 5.5 · 103

8 1.9158 1.9149 8. 6.6 · 104 1.9899 7.501 7.1 · 104

pitches

2 5.1835 5.1833 2. 1.0 · 104 5.2284 1.786 .43 · 104

4 4.4908 4.4438 4. 2.0 · 106 4.4235 3.504 .95 · 106

6 3.5928 3.4137 6. 4.6 · 106 3.3805 5.680 3.4 · 106

8 2.8309 2.6216 8. 4.4 · 106 2.5949 7.823 3.7 · 106

proteins

2 4.1840 4.1840 2. 5.7 · 102 4.2448 1.967 5.0 · 102

4 4.1369 4.1340 4. 1.9 · 105 4.2075 3.793 1.7 · 105

6 3.8301 3.6291 6. 5.8 · 106 3.6772 5.635 4.2 · 106

8 3.0066 2.7316 8. 5.4 · 106 2.7257 7.948 5.1 · 106

Table 1: Entropy comparison for H0 variant, entropy values are divided by |S| to get the
bps, all files of size 50MB, A denotes parsing generated by our algorithm, while B is obtained
by application of Theorem 2 (i.e. parsing minimizing |B|H0(B) among m naive parsings).

compressed structure described later.
We start with encoding the set of phrases: let y = a1a2 · · ·ai ∈ Σ≤m be a phrase.

We treat y as a number over |Σ|+1 base, where each letter σ ∈ Σ is assigned a number
from {1, |Σ| + 1} (we do not use 0 to avoid problematic trailing 0’s). Then we sort
obtained numbers, call the list of such sorted numbers P . We encode P as a list:
P ′ = {P [1], P [2]−P [1], P [3]−P [2], . . . , P [|ΣA|]−P [|ΣA|−1]}, where each element of
P ′ is encoded with Elias Delta code. Note, that on average the encoding should give
similar result to succinct encoding of Trie made of different phrases. We also assume
that the new letters in YS correspond to order of phrases in P .

We now move to the Huffman dictionary. Observe that, the Huffman dictionary
can be encoded with 2|ΣA|+ |ΣA| log |ΣA| bits, where 2|ΣA| bits comes from succinct
encoding of a Huffman tree and |ΣA| log |ΣA| is for encoding labels in leafs of the
tree. This is also the required number of bits, on average. Let ci be the code for
a letter σi ∈ ΣA. We append 1 into ci and treat it as a number over binary alphabet.
Consider the list C made of sorting the numbers. We encode it as: C ′ = {C[1], C[2]−
C[1], C[3] − C[2], . . . , C[|ΣA|] − C[|ΣA| − 1]}, with Elias Delta codes.

We also have to encode the order L of letters corresponding to codes, i.e. for a
given code C[i] we must know which code letter σi ∈ ΣA corresponds to C[i]: although

File m
∑

m≤i<2m

Hi(S)
m

|B|
|S|H1(B) |S|

|B| |ΣB| |pairs(B)| |A|
|S|H1(A) |S|

|A| |ΣA| |pairs(A)|

english

2 2.6537 2.6510 2. 5.34 · 103 2.54 · 105 2.6286 1.89 5.64 · 103 2.03 · 105

3 2.0540 2.0285 3. 4.56 · 104 1.53 · 106 1.9819 2.85 5.02 · 104 1.29 · 106

4 1.6726 1.5882 4. 2.01 · 105 3.64 · 106 1.5161 3.83 2.27 · 105 3.23 · 106

dblp.xml

2 1.6628 1.6589 2. 5.71 · 103 3.72 · 105 1.5205 1.92 5.93 · 103 3.05 · 105

3 1.0030 0.9802 3. 7.37 · 104 1.26 · 106 0.8509 2.90 7.81 · 104 1.07 · 106

4 0.7240 0.6818 4. 2.86 · 105 1.82 · 106 0.6102 3.89 3.09 · 105 1.65 · 106

sources

2 2.6130 2.6038 2. 8.16 · 103 7.00 · 105 2.5597 1.90 8.40 · 103 5.61 · 105

3 1.7667 1.7223 3. 1.30 · 105 2.48 · 106 1.6322 2.87 1.41 · 105 2.25 · 106

4 1.2764 1.1848 4. 5.43 · 105 4.03 · 106 1.0658 3.85 6.19 · 105 3.86 · 106

dna

2 1.9220 1.9220 2. 1.01 · 102 1.02 · 103 1.9795 1.97 1.12 · 102 1.09 · 103

3 1.9119 1.9119 3. 3.34 · 102 5.29 · 103 1.9756 2.94 3.72 · 102 8.09 · 103

4 1.8914 1.8906 4. 7.25 · 102 .68 · 105 1.9633 3.86 8.92 · 105 1.14 · 105

pitches

2 3.7981 3.7589 2. 1.02 · 104 2.81 · 106 3.7413 1.83 1.06 · 104 2.21 · 106

3 2.3500 2.1569 3. 2.70 · 105 7.99 · 106 2.0447 2.91 2.86 · 105 7.26 · 106

4 1.1711 0.9522 4. 1.98 · 106 7.98 · 106 0.8233 3.93 2.15 · 106 7.35 · 106

proteins

2 4.0899 4.0874 2. 5.62 · 102 1.97 · 105 4.2007 1.88 5.90 · 102 1.97 · 105

3 3.4890 3.2761 3. 1.07 · 104 9.84 · 106 3.2574 2.87 1.12 · 104 8.18 · 106

4 1.8763 1.5245 4. 1.88 · 105 1.03 · 107 1.4758 3.99 1.98 · 105 9.81 · 106

Table 2: Entropy comparison for H1 variant, entropy values are divided by |S| to get bps,
all files of size 50MB, A denotes parsing generated by our algorithm, while B is obtained
by application of Theorem 4 (i.e. parsing minimizing |B|H1(B) among m naive parsings).

the list is not sorted we still encode it as L[i]−L[i− 1] with Elias Delta coding (plus
additional bit per sign). This is beneficial, as the symbols in dictionary with the same
frequency may be ordered arbitrarily, so L contains monotonic sublists.

In the case of H1 we build the dictionary for each σ ∈ ΣA separately. The C ′

lists are encoded separately, while the lists of letters are concatenated and encoded
together, as in the case for H0.

The presented methods can be successfully applied to data compression and
achieve compression ratios competitive to other compression methods (though the
results are still far behind ppmdi). Note that at some point, when increasing m the
size of the dictionary grows significantly (this is true for both H0 and H1 variant),
which causes the bitsize to grow with m, however while increasing |S| dictionary size
should stay the same for a fixed distribution of letters.

Application — Structure

We now show how to construct a structure which allows random access. The high-level
idea of previous solutions (e.g. [2, 3]) was to encode the parsing with entropy coding
(e.g. Huffman), store set of phrases in array indexed by codes (i.e. A[ci] = w,w ∈ Σm

S),
and store additional structure which is able to retrieve i-th encoded code in entropy
coded bitstring (this can be done with O(|YS| log log |S| bits). Then the letter S[i] can
be easily retrieved in constant time, assuming that we can read the code in constant
time: as phrases are equal, letter S[i] will be in i/m block.

The case for H1 is similar [6], but we store |ΣYS
| dictionaries, and every l-th phrase

File gzip bzip ppmdi H0 H1
naive algorithm naive algorithm

m total string dict total string dict m total string dict total string dict

english 3.002 2.272 1.948
4 3.430 3.36 0.07 3.237 3.201 0.04 2 2.749 2.67 0.08 2.718 2.65 0.07
7 3.360 2.64 0.72 2.817 2.46 0.36 3 2.523 2.04 0.48 2.449 2.00 0.45
8 3.557 2.44 1.11 2.857 2.28 0.58 4 2.823 1.60 1.23 2.743 1.53 1.22

dblp.xml 1.379 0.898 0.737
4 3.051 2.97 0.08 2.864 2.82 0.05 2 1.866 1.76 0.11 1.743 1.65 0.10
7 2.480 2.00 0.48 2.182 1.86 0.32 3 1.479 1.05 0.42 1.326 0.94 0.38
8 2.434 1.81 0.63 2.134 1.69 0.44 4 1.444 0.72 0.72 1.355 0.66 0.69

sources 1.863 1.583 1.337
4 3.867 3.70 0.17 3.569 3.49 0.08 2 2.842 2.63 0.21 2.775 2.59 0.19
7 3.751 2.65 1.10 3.172 2.51 0.67 3 2.632 1.74 0.89 2.523 1.66 0.86
8 3.898 2.40 1.49 3.257 2.29 0.97 4 2.852 1.20 1.65 2.782 1.09 1.70

dna 2.164 2.078 1.945
4 1.948 1.95 0.00 2.029 2.03 0.00 2 1.948 1.95 0.00 1.997 2.00 0.00
7 1.935 1.93 0.01 2.013 2.00 0.01 3 1.924 1.92 0.00 1.989 1.99 0.00
8 1.945 1.92 0.03 2.022 1.99 0.03 4 1.920 1.90 0.02 2.011 1.97 0.04

pitches 2.686 2.890 2.439
4 4.926 4.45 0.47 4.707 4.43 0.28 2 4.415 3.77 0.64 4.318 3.76 0.56
7 5.522 2.99 2.53 5.175 2.97 2.20 3 4.986 2.17 2.82 4.797 2.06 2.74
8 5.570 2.63 2.94 5.221 2.60 2.62 4 5.102 0.97 4.14 4.851 0.84 4.01

proteins 3.791 3.645 3.364
4 4.197 4.14 0.06 4.268 4.22 0.05 2 4.165 4.10 0.06 4.281 4.22 0.07
7 5.171 3.14 2.03 5.028 3.14 1.88 3 5.100 3.29 1.81 4.966 3.27 1.70
8 5.170 2.74 2.43 5.082 2.73 2.35 4 5.344 1.54 3.81 5.198 1.49 3.71

Table 3: Compression results, values in bps, every file is 50MB, string and dict denote the
size of encoding of string and dictionary respectively, algorithm — parsing generated by
our algorithm (H0/H1), naive — parsing minimizing |B|H0(B)/|B|H1(B) among m naive
parsings.

is stored explicitly (note that to decode the phrase we have to have the previous one).
Hence the decoding starts at explicitly stored phrases, and decodes at most l − 1
phrases to the right, thus decoding takes O(l) time.

It turns out that both the above structures can be modified to support parsing
returned by our algorithms: the only difficulty is that we do not have equal-length
phrases, hence when queried for S[i] we do not know which code to return. This can be
solved by using succinct partial sum structure on length of phrases: queried for S[i],
we know that i is in phrase j such that

∑j−1
k=1 |yk| < i ≤

∑j

k=1 |yk|. Such structure uses
|YS| logm+o(|YS|) bits, which is O(|S| log log / logσ |S|) for |YS| = O(|S|/ logσ |S|) and
m = logσ |S| (in this case we get the same redundancy as for structures from [2, 3, 6]).

We also use more practical encoding of dictionary: we use succinct partial sums
for sequences P ′ and C ′, this allows to answer queries in O(1) time. To store the
sequence of letters which corresponds to codes, L, we use Elias Delta compressed
array. Such encoding clearly gives much better result than storing all of the possible
phrases explicitly.

We implemented the structures for H0, the results of experiments are in Table 4.
The increased Tr and δs for structure for our parsings is due to the need for additional
structure, our implementation supports the tradeoff between those two.

file m uncompressed naive algorithm
bps Tr Tb bps δs Tr Tb bps δs Tr Tb

english
7

8 0.008 0.003
4.205 0.845 3.14 16.06 3.911 1.094 14.38 18.88

8 4.332 0.775 3.16 14.36 3.870 1.013 14.61 16.82

dblp
7

8 0.008 0.003
3.215 0.735 3.20 16.49 3.174 0.992 12.76 16.31

8 3.101 0.668 3.20 14.55 3.006 0.872 13.37 15.12

sources
7

8 0.008 0.003
4.692 0.940 3.18 15.94 4.308 1.136 14.26 18.11

8 4.743 0.845 3.24 14.70 4.293 1.036 16.63 16.47

dna
7

8 0.009 0.003
2.573 0.637 2.90 14.92 2.926 0.913 12.36 15.91

8 2.582 0.637 3.02 12.28 2.874 0.851 12.22 13.84

Table 4: Structure for H0, comparison of bps/time[sec] for operations, δs — difference
between bps of compressed file (using our encoding) and bps of queryable structure, Tr —
read time for a random list of 106 letters, Tb — read time for a read of 103 blocks of 50KB.
Ran on Intel i5-7400. All files are of size 50MB.

References

[1] Kunihiko Sadakane and Roberto Grossi, “Squeezing succinct data structures into
entropy bounds,” in SODA. Society for Industrial and Applied Mathematics, 2006,
pp. 1230–1239.

[2] Paolo Ferragina and Rossano Venturini, “A simple storage scheme for strings achieving
entropy bounds,” Theor. Comput. Sci., vol. 372, no. 1, pp. 115–121, 2007.

[3] Rodrigo González and Gonzalo Navarro, “Statistical encoding of succinct data struc-
tures,” in CPM, Moshe Lewenstein and Gabriel Valiente, Eds. 2006, vol. 4009 of Lecture
Notes in Computer Science, pp. 294–305, Springer.

[4] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro, “Compressed
representations of sequences and full-text indexes,” ACM Trans. Algorithms, vol. 3,
no. 2, pp. 20, 2007.

[5] Gonzalo Navarro and Yakov Nekrich, “Optimal dynamic sequence representations,” in
SODA, Philadelphia, PA, USA, 2013, pp. 865–876, Society for Industrial and Applied
Mathematics.

[6] Roberto Grossi, Rajeev Raman, Srinivasa Rao Satti, and Rossano Venturini, “Dynamic
compressed strings with random access,” in ICALP. 2013, pp. 504–515, Springer.

[7] Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung, “Cram: Compressed random
access memory,” in ICALP, Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger
Wattenhofer, Eds., Berlin, Heidelberg, 2012, pp. 510–521, Springer Berlin Heidelberg.

[8] S. Rao Kosaraju and Giovanni Manzini, “Compression of low entropy strings with
Lempel-Ziv algorithms,” SIAM J. Comput., vol. 29, no. 3, pp. 893–911, 1999.

[9] Micha l Gańczorz, “Entropy bounds for grammar compression,” CoRR, vol.
abs/1804.08547, 2018.

[10] Janos Aczél, “On Shannons inequality, optimal coding, and characterizations of Shan-
nons and Rényis entropies,” in Symposia Mathematica, 1973, vol. 15, pp. 153–179.

[11] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri, “From theory to practice:
Plug and play with succinct data structures,” in SEA, 2014, pp. 326–337.

Appendix

.1 Proofs

Proof of Lemma 3. Consider the function p′(y) = p1(a1) · p1(a2) · · ·p1(aj) i.e. the
function which does not take into the account phrases’ lengths. Proof of Theorem 4 [9]
states that there exist a parsing Y ′

S satisfying:

∑

y∈Y ′

S

log p′(y) ≤
|S|

m

∑

0≤i≤m−1

Hi(S) .

The algorithm finds a parsing YS which minimizes

∑

y∈YS

log p(y) =
∑

y∈YS

log p′(y) + |YS| logm .

Hence,
∑

y∈YS

log p(y) − |YS| logm ≤
|S|

m

∑

0≤i≤m−1

Hi(S) .

Now we argue that for all substrings of length at most m the sum of values p(·)
summed over different substrings is at most 1. For a fixed string S over alphabet
Σ and fixed length z it holds:

∑

w∈Σz p′(w) ≤ 1, i.e. p′(·) for all possible strings of
length z sums up to at most 1 [9, proof of Theorem 7]). As there are at most m
different lengths, the claim holds. Thus by applying Lemma 1 the first inequality of
the Lemma holds. The second inequality follows from the first one and the fact that
log σ ≥ H0(S) ≥ H1(S) ≥ · · · ≥ Hi(S) for every i.

sketch of proof of Theorem 3. We define p(·) values for each phrase y = a1a2 · · · aj
preceded by phrase y′ = b1b2 · · · bh (so y′y is a substring of S):

p(y, y′) = pl(|y|) · p1(a1) · p2(a2) · · · · · pj(aj)

where pl(|y|) = #(|y|)
|YS |

and

pi(ai) =

{

#(bh−(i−k)+1···bh−1bha1···ai)

#(bh−(i−k)+1···bh−1bha1···ai−1)
, for i ≤ k;

#(ai−k ···ai)

#(ai−k ···ai−1)
, for i > k.

In short, every letter is assigned the empirical probability of occurring in the k-th
letter context preceding this letter.

By definition, for a string T ∈ Σ∗, |T |H1(T) =
∑

Tσ,σ∈Σ
|Tσ|H0(Tσ), where Tσ is a

string obtained by concatenating all the letters of T which occur in one-letter context
σ (e.g. for T = abacaac, Ta = bcac).

Now the proof is straightforward: for a parsing YS we derive its alphabet ΣYS
,

constructs strings Tσ′ for σ′ ∈ ΣYS
, and apply Lemma 1 for each Tσ′ . Observe that

as each letter is assigned its empirical probability of occurring in k-th letter context

preceding this letter, by definition of Hk(S) all the values − log p(y) summed over all
factors sum up to the claimed bounds, i.e.:

∑

σ′∈ΣYS

∑

y∈T ′

σ

log p(y, σ′) = |S|Hk(S) + |L|H0(L) ,

where |L|H0(L) is the entropy of lengths. To apply Lemma 1 we need the fact that
∑

σ′′∈ΣTσ

p(σ′′) ≤ 1, where ΣTσ
is the alphabet of Tσ (we need this for each Tσ), yet

it can be shown analogously as the claim used in [9, proof of Theorem 1].

sketch of proof of Theorem 4. We define p(·) values for each phrase y = a1a2 · · · aj
preceded by phrase y′:

p(y, y′) = pl(|y|) · p1(a1) · p2(a2) · · · · · pj(aj)

where pi(ai) = #(y′a1···ai)
#(y′a1···ai−1)

and pl(|y|) = #(|y|)
|YS |

.

This should be understood as follows: if the previous factor has length |y′|, then we
look at the empirical probability that i-th letter of factor y occurs in S in an |y′|+i−1
letter context. Or equivalently, we assign the letter ai the cost, i.e. − log p(ai), which
roughly corresponds to cost of encoding of ai with |y′| + i− 1-order entropy coder.

As in the proof of Theorem 3, we have: for a string T ∈ Σ∗, |T |H1(T) =
∑

Tσ ,σ∈Σ
|Tσ|H0(Tσ), where Tσ is a string made by concatenating all the letters of T .

Again we must show that
∑

σ′∈ΣTσ

p(σ′) ≤ 1, so we can apply Lemma 1. This can

be shown in exactly the same way as in proof of Theorem 4, see [9].

It was left to show the parsing YS for which
∑

y∈YS
− log p(y) ≤ |S|

l

∑2l−1
i=l Hi(S) +

O(log |S|). We use similar arguments as in proof of Theorem 4: we look at l possible
parsings where each phrase is of length l, except for the first and the last one, which
can be shorter. Summing up all the values

∑

y∈YS
− log p(y, y′) for the l parsings we

end up with

|S|
2l−1
∑

i=l

Hi(S) +
∑

i<l

∑

y∈Y i

S

pl(|y|).

Note that the second term is the sum of entropies of lengths for each parsing, i.e.
the entropy of strings made of lengths of phrases. Note that the

∑

i<l

∑

y∈Y i

S

pl(|y|) =

O(l log |S|), as
∑

y∈Y i

S

pl(|y|) = O(log |S|) due to the fact that only the first and last

phrases can have different lengths. Hence we can conclude that for at least one of
those parsings it holds:

∑

y∈YS

− log p(y) ≤
|S|

l

2l−1
∑

i=l

Hi(S) + O(log |S|),

which yields the claim.

sketch of proof of Lemma 4. Analogously as in the proof of Lemma 2, there exist
a parsing (by the proof of Theorem 4) where

∑

y∈Y ′

S

log p′(y′, y) ≤
|S|

m

∑

0≤i≤m−1

Hi(S) , (1)

where p′(y′, y) = p(y′, y)/pl(|y|). As our algorithm finds a parsing YS which minimizes
the

∑

y∈Y ′

S

log p′(y′, y) the (1) must hold for YS. Hence, by repeating the reasoning

from the proof of Theorem 4, we get the first inequality. Again, the second inequality
follows from the fact that log σ ≥ H0(S) ≥ H1(S) ≥ · · · ≥ Hi(S) for every i.

.2 Implementation details

To realize the succinct sums we use rrr-vector from sdsl library [11]. With the use of
rrr-vector we encode: Huffman codes lengths for each phrase of parsing, (we subtract
minimum code length before applying this structure); and sorted Huffman codes (C).

We use (difference) delta-encoded vectors with random access from sdsl library
(enc vector), different phrases (P) and list L.

For structure on lengths of phrases (which allows to get phrase containing i-th
letter) we develop our own structure: we build an array of |S|/d elements Z where
Z[j] is the index of factor containing j-th letter, similarly we store offsets O[j], which
gives position of j-th letter in factor. Z is encoded with enc vector, O is an array of
bit-packed integers of logm bits. Note that instead of storing smaller structure for j
values not being multiplies of d we can just decode a few factors to the right—thus
we have space/time tradeoff for a parameter d. Observe that setting d = Θ(m) gives
a solution which on average, have constant query time (when average factor length is
O(m) which, as the experiments show, is the case in practice).

The bottleneck of our solution is the rrr-vector structure, thus improving this
part should give much better query times.

On the side note one could save additional space by encoding factors of different
lengths separately, as now it seems like we are storing the information on lengths of
factors twice (both in a entropy of parsing and in external structure).

