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Abstract

In this paper, we propose a new geometry coding method for point cloud compression
(PCC), where the points can be fitted and represented by straight lines. The encoding of
the linear model can be expressed by two parts, including the principle component along
the line direction and the offsets from the line. Compact representation and high-efficiency
coding methods are presented by encoding the parameters of linear model with appropriate
quantization step-sizes (QS). To maximize the coding performance, encoder optimization
techniques are employed to find the optimal trade-off between coding bits and errors, in-
volving the Lagrangian multiplier method, where the rate-distortion behavior in terms of
QS and multiplier is analyzed. We implement our method on top of the MPEG G-PCC ref-
erence software, and the results have shown that the proposed method is effective in coding
point clouds with explicit line structures, such as the Lidar acquired data for autonomous
driving. About 20% coding gains can be achieved on lossy geometry coding.

1 Introduction

Nowadays, point clouds have becoming a new popular immersive multimedia and
have been applied in a wide range of applications. In terms of the ultimate utility,
the applications include human-oriented ones such as virtual reality (VR), augmented
reality (AR) [1, 2], and machine-involved ones such as autonomous driving and geo-
graphic information system. The human-oriented applications target on immersive
and photo-realistic viewing experiences and therefore require relative high-resolution
of point clouds. However, the machine-involved applications aim at high-precision
in computer vision related tasks, where point clouds are generally acquired by Lidar
sensors and the points are relatively sparser with weaker correlations across space.

A point cloud is generally a set of three-dimensional (3D) points, and each point is
associated with extra attribute information including colors, reflectance, time stamps,
etc. The uniqueness of point clouds lies on the sparse and irregular distribution of the
points in the space. Traditional image and video representations are pixels in regular
2D grids, where each position in the rectangular region is occupied and associated
with a pixel value. However, for point clouds, only a small portion of the whole 3D
space is occupied by physical points, while the rest of the space is empty.

With ever-increasing number of point cloud related applications, point cloud com-
pression (PCC) becomes a critical issue, otherwise the storage and transmission of
point clouds would be expensive and unrealistic. To resolve this, MPEG-3DG group
has started the MPEG-PCC standard [3], and it draws a lot of interests from both
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Figure 1: Zoom-out and zoom-in views of the “Ford 01 q 1mm-0100” point cloud.

academic and industrial people and thus absorbs the most state-of-the-art PCC tech-
niques. In MPEG-PCC, there are two separate standards targeting at different ap-
plication scenarios, i.e., video-based PCC (or V-PCC) and geometry-based PCC (or
G-PCC). V-PCC is essentially projecting 3D points onto 2D planes and then using
existing video codec to compress the 2D planes, while G-PCC achieves compression
in original 3D space by utilizing the 3D spatial and temporal correlations. For now,
V-PCC is more efficient in coding dense point clouds and G-PCC is better for sparse
point clouds in general. In this work, we focus on the geometry coding in G-PCC.

In G-PCC, the geometry of point clouds is coded by octree partition. The root
node representing the whole 3D space is partitioned into 8 sub-nodes (sub-spaces),
where the sub-nodes with occupied points can be further partitioned into 8 sub-nodes
recursively until reaching the leaf nodes. To encode the octree structure, a ‘1’ is coded
if the sub-node is occupied and a ‘0’ is coded otherwise. Thus for a non-leaf octree
node, an 8-bit occupancy code is used to represent its 8 sub-node occupancy informa-
tion. To further improve the coding efficiency, neighboring occupancy information of
current sub-node is utilized as the context information in the bit-wise coding of the
occupancy code.

However, the octree coding in current G-PCC has some limitations. First, it is not
easy to utilize explicit geometry features in the octree structure especially for sparse
point clouds, thus the compression efficiency may not be optimal. Second, octree
coding introduces latency because of the hierarchical top-down tree structure and
reference relationship to neighboring nodes. A triangular-model based geometry cod-
ing method [4] tries to fit triangular surfaces in 3D space and encodes the triangular
parameters, which achieves good performance for dense point clouds at low bitrates
and is adopted in G-PCC. To demonstrate another particular geometry structure in
Lidar obtained point clouds for autonomous driving, the “Ford 01 q 1mm” sequence
is a typical example. As shown in Figure 1, one can observe explicit line structures
where points lie close to straight lines.
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Figure 2: Framework of the linear model based geometry coding.

In light of above observations, in this work, we propose a new model-based method
for geometry coding in G-PCC. More specifically, it is a linear model that takes the
explicit line structures shown in Figure 1 as a prior knowledge to improve the coding
efficiency. The methods of line detection and refinement and the encoding of line
parameters are introduced in this work. Moreover, the encoder-side techniques used
to optimize the rate-distortion performance are presented as well. The experimental
results have shown that the proposed method is able to achieve significant gains on
geometry coding for the Lidar acquired data, indicating the effectiveness and potential
of the proposed linear model in the related application scenario.

The rest of the paper is organized as follows. In Section 2, we present the linear
model and encoder optimization methods, followed by evaluation of the efficiency of
the proposed method in Section 3. Finally, we conclude this paper in Section 4.

2 Linear Model based Geometry Coding for PCC

The framework of the linear model based geometry coding is illustrated in Figure 2.
The proposed method is embedded into the octree coding in current G-PCC structure.
For each sub-node in the octree, the eligibility of applying linear model is checked
first. If it is eligible, the linear model is applied; otherwise, the same octree coding
procedure as in current G-PCC is applied. The linear model starts from line detection
procedure, in which the potential line candidates are detected from all the points in
current sub-node. Subsequently, the line candidates are refined by optimizing the
rate-distortion performance. Finally, the points close to the lines are encoded by
line parameters. Note that the remaining points in current sub-node that cannot be
efficiently represented by the linear model are then encoded by octree coding. The
geometry coding ends when all the sub-nodes reach leaf nodes. The algorithm details
will be elaborated in the following subsections.

2.1 Line Detection

The eligibility of the linear model is determined by point density, i.e., the number
of points in current node and the octree partition depth. Since this method targets
at the sparse data obtained by Lidar systems, the point density criterion prevents
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Figure 3: Illustration of linear model in 2D. Blue dots are the original points, and red dots
are their projections on the fitted line. The line can be represented by vectors a and b, a
point on the line and the direction of the line, respectively.

applying linear model on dense point clouds where there is no obvious line structure.
Furthermore, it would be inefficient and inaccurate to detect lines at the very begin-
ning of the octree partitioning, because there will be extensive outliers and noises in
line detection from a global point of view. Therefore, we only enable the line detec-
tion when the number of points in current node is within a reasonable range or the
octree partition depth reaches a certain threshold. Figure 1 is a good example, one
would expect more efficient and accurate line detection from the local region on the
right-hand side, instead of from the whole space on the left-hand side.

If the current node is eligible for linear model, lines are detected from the points
in current node. Line detection is a mature algorithm in computer vision, any line
detection methods can be applied here. In this work, we use the Iterative Hough
Transform [5] to detect lines in the 3D space. In a nutshell, it detects most possible
lines in Hough space and uses Principle Component Analysis (PCA) to iteratively
refine the lines.

Let X = {x1,x2, . . . ,xN} be the collection of the points near a line detected by
Hough transform, where xi ∈ R3×1 denotes the Cartesian coordinates of a point in
3D space and N is the number of points that are close to the line. The line can then
be represented by two vectors a and b, where a is a point right on the line and b is
the angular vector which is a unit vector and parallel to the line. a can be initialized
as the mass center of X, i.e., a = (

∑
xi)/N . b is the eigenvector corresponding to

the largest eigenvalue of QTQ ∈ R3×3, where Q = (xi − a)T ∈ RN×3.

2.2 Representation and Encoding of Lines

In a nutshell, we represent the points close to a line by two parts, the first part is
their projections on the line, which reflect the principle component of these points;
and the second part is the offsets from the line. This representation is more compact
because of the fact that the principle component can be coded more efficiently and
can recover the positions with high accuracy.

The line representation is shown in Figure 3. Each point xi can be projected to



the line by x′i = Pxi +a−Pa, where x′i is the projected point and P = (bTb)−1bbT

is the corresponding projection matrix, which can be further simplified as P = bbT ,
as b is unit. We then reorder these points by their projection position on the line
relative to point a, i.e., for any pair of xi and xj(i < j), they satisfy that pi < pj,
where pi = bT (x′i−a) = bT (xi−a) is the projection position of xi on the line relative
to point a. Without loss of generality, one can let a = x′1 such that p1 = 0 and pi > 0
for i > 1.

To be efficient, we propose to represent and encode the points close to a line by
three parts, including line parameters, projection parameters and offset parameters.

First of all, line parameters include the starting point a and the angular vector
b. Encoding the starting point a = (ax, ay, az)

T is straightforward by its Cartesian
coordinates relative to the origin of current octree node. The angular vector b =
(bx, by, bz)

T is proposed to encode in spherical coordinates, i.e., (θ, φ)T , where θ =

arctan( by
bx

) and φ = arctan( bz√
b2x+b2y

). The benefit of introducing spherical coordinates

is not only reducing one redundant dimension (with the prior of b is unit), but also
enabling more efficient context modeling in entropy coding. As shown on the right-
hand side in Figure 1, one can observe that the lines detected from a local region
are appeared to be parallel to each other, indicating they may have similar values in
(θ, φ) across space and thus it would be more efficient for compression. Moreover,
redundancies can be further reduced by considering the symmetric property of b, this
can be achieved by restricting φ ≥ 0 and restricting θ ≥ 0 when φ = 0. Note that the
number of points on each line N should be specified in the bitstream as well.

Next, projection parameters are a sequence of {pi} for i = 1, . . . , N . Because of
the reordering process, pi is in ascending order. Instead of encoding the value of pi
directly, we propose to encode their differences, i.e., {di}, where di = pi+1 − pi and
p1 is always 0 because a = x′1. Note that the projection from the original point xi to
the line x′i does not have to be orthogonal for the purpose of efficient compression.
Figure 4 shows three projection modes in 1D, where 7 points are projected onto a line.
Arbitrary mode in Figure 4(a) encodes the differences of two neighboring projections
directly, i.e., d1, . . . , d6. However, this mode would be expensive at lower bitrate.
An alternative option would be encoding an average value of di, i.e., d̄ =

∑
di

N
, by

assuming all the projection positions are evenly distributed along the line as shown
in Figure 4(b). This may inevitably decrease the approximation accuracy, but it is a
better trade-off of saving much more coding bits at low bitrate. The third possible
mode is a compromise between the two aforementioned modes, which is the piece-wise
even mode, where projection positions are assumed to be piece-wise evenly distributed
along the line as shown in Figure 4(c).

Finally, offset parameters are the residual vectors from the projection position
x′i to the original position xi, i.e., ri = xi − x′i. Lossless coding can be achieved if
offsets are compressed losslessly. From the compression point of view, encoding line
parameters plus projection parameters resembles predictive coding while encoding
offset parameters are residual-like coding.
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Figure 4: 1D illustration of three encoding modes of projection parameters.

2.3 Quantization and Reconstruction

Note that all the parameters can be quantized before encoding for different bitrate
conditions. In this work, we mainly focus on lossy geometry coding. Therefore, we
apply the even-distribution mode as shown in Figure 4(b) and ignore the offset pa-
rameters, indicating the points are assumed to be evenly located right on the detected
line. In other words, we only encode the principle component of the points along the
line.

The quantization of the angular vector b = (θ, φ) is performed by dividing the
sphere space. Since θ ∈ [−π, π] and φ ∈ [0, π/2], we divide φ into Qa equal segments
and divide θ into Qa×4 equal segments to make sure the quantization in two directions
has the same resolution. In our experiments, we set Qa = 40, which gives the best
trade-off between coding overheads and approximation accuracy.

The quantization of the line starting point a = (ax, ay, az) and the averaged
projection difference d̄ are relevant, as they directly reflect the expected geometry
accuracy. Suppose the quantization step-size (QS) of geometry coding is Qg, we then

set the QS of a to be Qs = Qg and the QS of d̄ to be Qd = Qg

N−1 . Note that Qd equals

to Qg divided by N − 1, because the errors caused by d̄ would be accumulating.

The quantized parameters are then coded by entropy coder. Let â, b̂ and d̂ be
the dequantized parameters of a, b and d̄, respectively. The reconstructed geometry
position of point xi on the line can be simply done by x̂i = â+p̂ib̂, where p̂i = (i−1)·d̂
is the reconstructed projection parameter. Note that if the offset parameters are
encoded as well, the reconstruction would be x̂i = â + p̂ib̂ + r̂i, where r̂i indicates
the reconstructed offsets after dequantization.



2.4 Rate-Distortion Optimization

A proper rate-distortion optimization (RDO) is indispensable to adaptively deter-
mine a “best” mode in terms of data characteristics and bitrate conditions. In this
subsection, we propose a fast RDO scheme, in which a subset of points is selected out
of the points that are initially detected as on a line, such that the optimal rate and
distortion trade-off can be approximated.

RDO theory states that the best mode minimizes the distortion under a rate con-
straint, or equivalently the best mode minimizes the rate with a distortion constraint.
In the context of PCC, the distortion and rate terms actually indicate the average
distortion and average rate over the total number of encoded points, which can be
formulated as follows,

min
R

N
, s.t.,

D

N
< D̄c, (1)

where R and D are the overall rate and distortion, respectively, and N is the number
of points, and D̄c denotes the maximum tolerant distortion on average.

Suppose we have a group of points X = {x1,x2, . . . ,xN} that is close to a detected
line, and denote their projection positions relative to a as {pi} and the distance
between two adjacent projection positions as di = pi+1 − pi for (i = 1, 2, . . . , N − 1).
The problem then is to find an optimal subset X(i,j) = {xi, . . . ,xj} from X that
minimizes the following equation,

min
1≤i<j≤N

R̄(i,j), s.t., D̄(i,j) < D̄c, (2)

where R̄(i,j) and D̄(i,j) represent the average bitrate and average distortion when
encoding the subset X(i,j), respectively. However, it would be rather costly to perform
a full RDO for every subset, because the number of all possible subsets is at least
O(N2). Therefore, we propose the following fast algorithm by simplifying the rate-
distortion model in (2).

First, the rate model can be simplified as R̄(i,j) = R
j−i+1

, where the total rate R

can be viewed as a constant, because only the averaged projection parameter d̄ is
encoded regardless of which subset is opted. Therefore, the longer the subset is, the
less averaged bits can be achieved. Second, the distortion model can be estimated by
the `1 norm as follows,

D̄(i,j) =
‖(ei, ei + ei+1, . . . ,

∑j−1
k=i ek)‖1

j − i
, (3)

where et = dt −
∑j−1

k=i dk
j−i is the error between dt and the averaged projection distance

of X(i,j). By substituting R̄(i,j) and D̄(i,j) into (2), the RDO model can be simplified
to finding a longest subset whose average distortion is below the maximum tolerant
distortion D̄c as follows,

max
1≤i<j≤N

(j − i), s.t., D̄(i,j) < D̄c, (4)

which can be solved much more efficiently.



After determining the optimal subset by the fast RDO, a full RDO can be per-
formed to calculate the actual rate-distortion score (RDS) by linear model as follows,

RDSl = Pl(Qg)− λRl(Qg), (5)

where Pl and Rl are the actual geometry PSNR and the actual coding bits by linear
model, respectively, which are functions of the geometry QS, i.e., Qg. Note that we
use the geometry PSNR instead of geometry distortion because the range of geometry
distortion may vary dramatically for different scenes and geometry PSNR is a nor-
malized distortion in terms of the maximum geometry value. λ is the well-known La-
grangian multiplier. The larger RDSl indicates a better rate-distortion performance
under a certain value of λ. If the RDS of linear model is larger than a threshold, i.e.,
RDSl > T , it indicates that linear model has a better rate-distortion trade-off than
octree coding, and linear model will be applied for current node in this case, as T is
a threshold that reflects the RDS by octree coding. Otherwise, the octree coding is
applied. The training of optimal Qg and T in terms of λ is elaborated in Section 3.1.

3 Experimental Results

We implement the linear model on top of the MPEG G-PCC reference software, i.e.,
TMC13v6 [6]. Three Lidar acquired point clouds, “Ford 01 q 1mm”, “Ford 02 q 1mm”
and “Ford 03 q 1mm” are utilized to demonstrate the effectiveness of the proposed
method. One frame of “Ford 01 q 1mm” is shown in Figure 1.

3.1 Rate-Distortion Optimization

To derive the optimal rate-distortion behavior, a training process is involved to obtain
the optimal geometry QS, i.e., Qg, and the threshold T in terms of λ. The training
resembles that in video coding and feature coding [7, 8]. First, for each fixed λ,
we sweep possible combinations of Qg and T , and then find the optimal one that
minimizes the rate-distortion cost in (5). Then, we vary λ from 0 to 30 by a step of
5 and optimize Qg and T accordingly.

The relationship between optimal Qg and λ is fitted by an exponential function,
and the relationship between optimal T and λ is fitted by a reciprocal exponential
function, as shown in Figure 5. From the figure, one can observe that with the
increasing of λ the optimal Qg increases and the optimal T decreases monotonously.
It makes sense because a larger λ indicates the situation that the bitrate is more
important than distortion, in which a larger Qg is applied for achieving lower bitrate
and a smaller T estimates a lower RDS of octree coding at low bitrate conditions.

3.2 Experimental Results

The lossy geometry coding under C2 condition [9] was tested, where two extra op-
eration points are added to make the bitrate increases more smoothly. The quality
of the reconstructed geometry is evaluated by D1 and D2 metrics. D1 measures the
point-to-point distortions while D2 measures the point-to-plane distortions [10].
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Figure 5: Fitting optimal Qg and T as functions of λ with 95% confidence bounds.

Table 1: BD-rate against TMC13 of lossy geometry coding.

C2 Geometry BD-rate
Sequences D1 D2

ford 01 q1mm -5.7% -16.5%
ford 02 q1mm -4.4% -20.5%
ford 03 q1mm -3.2% -22.2%

Average -4.4% -19.8%

We compare the linear model with the TMC13 anchor by BD-rate [11]. As shown
in Table 1, the linear model can achieve 4.4% coding gains in terms of D1 and 19.8%
coding gains in terms of D2, on average, for the Lidar acquired data. In the context of
machine-oriented application scenarios, it is acknowledged that D2 is a more impor-
tant metrics because it measures the structure similarity in 3D and those structural
features are critical in computer vision tasks. The results indicate that the proposed
linear model is able to preserve more geometry structures than octree coding at the
same bitrate, because compressing the points on a line along the principle component
is more efficient. Two rate-distortion curves are shown in Figure 6, where one can see
that the linear model shows more gains at middle and lower bitrates.

4 Conclusion

In this paper, we present a model-based geometry coding method for Lidar acquired
point clouds, where the linear model fits the points to straight lines. The linear model
can be efficiently encoded by the principle component of the line. Rate-distortion opti-
mization (RDO) techniques are introduced to improve the overall coding performance.
We implement the linear model on top of the MPEG G-PCC reference software, and
the experimental results have shown significant coding gains for Lidar acquired data.
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