
ar
X

iv
:2

00
1.

00
65

8v
1

 [
qu

an
t-

ph
]

 2
 J

an
 2

02
0

Compressed Quadratization of Higher Order Binary

Optimization Problems

Avradip Mandal, Arnab Roy, Sarvagya Upadhyay and Hayato Ushijima-Mwesigwa

Fujitsu Laboratories of America, Inc, 1240 E. Arques Ave., Sunnyvale, CA, 94085, USA
{amandal, aroy, supadhyay, hayato}@us.fujitsu.com

Abstract

Recent hardware advances in quantum and quantum-inspired annealers promise sub-
stantial speed up for solving NP-hard combinatorial optimization problems compared to
general purpose computers. These special purpose hardware are built for solving hard in-
stances of Quadratic Unconstrained Binary Optimization (QUBO) problems. In terms of
number of variables and precision these hardware are usually resource constrained and they
work either in Ising space {−1, 1} or in Boolean space {0, 1}. Many naturally occurring
problem instances are higher order in nature. The known method to reduce the degree of
a higher order optimization problem uses Rosenberg’s polynomial. The method works in
Boolean space by reducing degree of one term by introducing one extra variable. In this
work, we prove that in Ising space the degree reduction of one term requires introduction
of two variables. Our proposed method of degree reduction works directly in Ising space, as
opposed to converting an Ising polynomial to Boolean space and applying previously known
Rosenberg’s polynomial. For sparse higher order Ising problems, this results in more com-
pact representation of the resultant QUBO problem, which is crucial for utilizing resource
constrained QUBO solvers.

1 Introduction

As we approach the physical limitation of Moore’s law [1], a number of institutions
have started to develop novel hardware specifically for solving combinatorial opti-
mization problems. These include adiabatic quantum computers [2], CMOS anneal-
ers [3–6], Coherent Ising Machines [7,8], and as well as GPUs [9–11] among others [12].
These novel technologies are designed to find an assignment of the binary variables
z = (z1, · · · , zn) that minimizes the following objective function:

H(z) =
∑

i<j

Jijzizj +
∑

i

hizi. (1)

for Jij , hi ∈ R. If z ∈ {−1, 1}n, then this problem is referred to as the Ising Model.
It is referred to as the Quadratic Unconstrained Optimization Problem (QUBO) if
z ∈ {0, 1}n. The Ising model and QUBO are equivalent via a linear transformation
of the variables.

QUBO and the Ising model are quadratic models by definition. However, many
real world optimization problems consist of multi-body interactions and are naturally
modeled by higher order polynomials. These higher order polynomials have been
referred to by different names in the literature, these include k-local Hamiltonian
[13], psuedo-boolean optimization problem [14], Polynomial Unconstrained Binary

http://arxiv.org/abs/2001.00658v1

Optimisation [15], Higher Order Binary Optimization (HOBO). In particular the
objective is to minimize (or maximize) the following function:

H(z) =
∑

i1

Ji1zi1 +
∑

i1<i2

Ji1i2zi1zi2 + · · ·+
∑

i1<i2<···<iN

Ji1i2···iN

N
∏

j=1

zj (2)

for some N ≥ 3 with either z ∈ {−1, 1}n or {0, 1}n where the coefficients Ji1i2···ik are
real numbers. For ease of exposition, we will refer to the domains {−1, 1}n, and {0, 1}n

as Ising space, and Boolean space respectively and we exclusively use the variables s,x
and z such that s ∈ {−1, 1}n, x ∈ {0, 1}n, and z when a distinction is not necessary.
A natural way to utilize the emerging hardware for solving such problems is to first
transform higher-order problem to a quadratic one, by a process that has been termed
as quadratization, then solve the quadratic problem with the given hardware. Thus,
a large number of studies have focused on techniques for quadratization of HOBOs.
However, to the best of our knowledge, all of these methods take place within the
Boolean space. Thus, current methods for solving HOBOs in Ising space consist of
first transforming them into Boolean space via the transformation s = 2x − 1 and
then applying the known techniques of quadratization. However, this approach has
one major drawback, a sparse problem in Ising space is not necessarily sparse in
Boolean space and vice versa. For example the single term

∏N

i=1
si =

∏N

i=1
(2xi − 1)

in Ising space consists of 2N terms in Boolean space.

Contribution: In this work, we develop a method of degree reduction within Ising
space. To the best of our knowledge, this is the first method that does not require a
transformation into Boolean space, thus resulting into a compressed quadratization
technique when the polynomial in Ising space is sparse. In addition, we propose two
algorithms to do quadratization of any higher order Boolean polynomial over Boolean
or Ising space.

2 How to encode quadratic equality constraints

Suppose we want to minimize a quadratic function f(x1, x2, y) over binary variables
x1, x2, y, subject to the constraint y = x1x2. However, the given hardware only
supports problems modeled as a QUBO or Ising Model which are unconstrained by
definition. We would like to transform the problem into one suitable for the given
hardware. The equivalent unconstrained optimization problem is the minimization of
g′(x1, x2, y) = f(x1, x2, x3) +M · h′(x1, x2, y), where M is a large positive constant1

and h′(x1, x2, y) = (y − x1x2)
2. Note that, in Ising space we have x2 = 1 and

in Boolean space we have x2 = x. Hence, g′ is actually a cubic polynomial, even
though f is quadratic. We converted the constrained optimization problem to an
unconstrained one, but in the process our quadratic optimization became a cubic
optimization problem. Rosenberg [16] showed that need not be the case if we restrict

1M must be bigger than min f(x1, x2, x1x2)−min f(x1, x2, y)

ourselves to binary variables over Boolean spaces, i.e. x1, x2, y ∈ {0, 1}. One can use
the following quadratic function:

h(x1, x2, y) = 3y + x1x2 − 2x1y − 2x2y. (3)

It is easy to verify that for x1, x2, y ∈ {0, 1},

y = x1x2 ⇔ h(x1, x2, y) = 0 and y 6= x1x2 ⇔ h(x1, x2, y) > 0.

This shows, if our initial goal was to minimize a quadratic function f(x1, x2, y) over
Boolean variables x1, x2, y ∈ {0, 1}, subject to the constraint y = x1x2, we can
minimize the quadratic function g(x1, x2, y) = f(x1, x2, y) +M · h(x1, x2, y) without
any constraint and use any Quadratic Unconstrained Boolean Optimization hardware.

We next explore the question whether we can find an analogue of the Rosenberg
polynomial in the Ising space. The answer turns out to be a little more complicated.
We first show that such a polynomial does not exist when we allow just one extra
variable.

Theorem 1. There is no quadratic polynomial h(s1, s2, y), such that for all s1, s2, y ∈
{−1, 1}

y = s1s2 ⇔ h(s1, s2, y) = 0 and y 6= s1s2 ⇔ h(s1, s2, y) > 0.

Proof. We want to construct a quadratic polynomial h, such that (i) if y = s1s2, then
h(s1, s2, y) = 0; and (ii) if y 6= s1s2, then h(s1, s2, y) ≥ 1 (the choice of 1 on right
hand side is arbitrary; any other positive number will also work). Let

h(s1, s2, y) = a0 + a1s1 + a2s2 + a3y + a12s1s2 + a13s1y + a23s2y
def
= s⊤a,

where

s =
(

1 s1 s2 y s1s2 s1y s2y
)⊤

and a =
(

a0 a1 a2 a3 a12 a13 a23
)⊤

.

Here X⊤ denotes transpose of a matrix X . The set of equality and inequality condi-
tions can be captured by matrices E and F as follows.

E =

1 −1 −1 1 1 −1 −1
1 −1 1 −1 −1 1 −1
1 1 −1 −1 −1 −1 1
1 1 1 1 1 1 1

and F =

1 −1 −1 −1 1 1 1
1 −1 1 1 −1 −1 1
1 1 −1 1 −1 1 −1
1 1 1 −1 1 −1 −1

.

Let e ∈ R
4 denote the vector of all 1’s: e =

(

1 1 1 1
)⊤

. Let 0 ∈ R
4 denote the

vector of all 0’s. Then we have that

Ea = 0 and Fa ≥ e.

From Ea = 0, we get that a is in the right kernel of E, which is given by the following
matrix:

K
def
=

0 1 0 0 0 0 −1
0 0 1 0 0 −1 0
0 0 0 1 −1 0 0

⊤

.

Let us write a
def
= Kb for some b ∈ R

3. Since Fa ≥ e, we have that FKb ≥ e. Since

FK =

−2 −2 −2
−2 2 2
2 −2 2
2 2 −2

, we have that FKb =

−2(b1 + b2 + b3)
−2(b1 − b2 − b3)
2(b1 − b2 + b3)
2(b1 + b2 − b3)

≥ e =

1
1
1
1

.

Observe that sum of entries of the vector FKb is 0, whereas for the inequality to
hold, it should necessarily be at least 4. Hence, no feasible solution exists.

On the other hand, if we allow two variables then we come up with such a polyno-
mial. To this end, we employ an extra variable d and aim to find a positive quadratic
polynomial h(s1, s2, y, d) such that (i) when y = s1s2, h(s1, s2, y, d) = 0 for some
d ∈ {−1, 1}; and (ii) when y 6= s1s2, h(s1, s2, y, d) > 0 for all d ∈ {−1, 1}. By positive
polynomial, we mean that h(s1, s2, y, d) ≥ 0 for all choices of the four variables.

Observe that, for each choice of d as a function of s1, s2, the above constraints
give rise to a linear system of inequalities, similar to the last section. If any of these
16 choices give us a feasible solution, then that solves our problem. We carry out
some of these choices in an ILP solver and obtain the following solution:

h(s1, s2, y, d) = 4 + s1 + s2 − y − 2d+ s1s2 − s1y − s2y − 2s1d− 2s2d+ 2yd

In Section 3 we consider higher order unconstrained binary optimization prob-
lems. We show how introduction of new variables and repeated application of the
above technique can help us reduce the problem to quadratic case. If we restrict
ourselves only to Boolean variables, [17–19] are excellent survey of previous work in
this domain.

3 Quadratization of higher order optimization problem

This section details out our quadratization of higher order Boolean polynomials. A
formal definition of quadratization follows.

Definition 2. Let B denote either of the two sets: {0, 1} and {−1, 1}. Given a
higher order Boolean function f : Bn → R, we say that any function h(z, y) is a
quadratization of f(z) if h(z, y) is a quadratic polynomial depending on z and auxiliary
variables y = (y1, . . . , ym) such that

f(z) = min
y∈Bm

h(x, y), for all z ∈ Bn.

From Definition 2, it is evidently clear that minimizing f(z) is tantamount to min-
imizing h(z, y) over Bn+m. One way to do quadratization is to convert each monomial
into a quadratic polynomial. In literature, family of such quadratization techniques
are known as termwise quadratization. They are usually very effective when the do-
main of each variable is {0, 1} and the higher order polynomial is sparse. In fact,
there are various techniques that reduces the number of auxiliary variable introduced

when converting a monomial. For instance, if one wishes to minimize f(x) and there
is a negative monomial in f(x), then one can use exactly one auxiliary variable and
convert the monomial to a quadratic polynomial [20]. That is, the following two

polynomials are equivalent:
∏d

i=1
xi and miny∈{0,1}

{

(d− 1)y −
∑d

i=1
xiy
}

. Likewise,

Rodrigues-Heck [19] have shown that a positive monomial of degree d can be replaced
by ⌈log d⌉ − 1 auxiliary variables.

Unfortunately, these techniques have two main issues. First of all, the fact that a
monomial over {0, 1} is highly likely to be 0 are crucially important for such termwise
quadratizations. When moving to {−1, 1} domain, these techniques do not work.
Second of all, the termwise quadratization is by definition ”local” in nature and does
not cater to a ”global” replacement of terms. We present two heuristic techniques
that are independent of the domain space and focus on quadratization keeping the
whole expression in mind.

Before we discuss our algorithms for converting higher order Boolean functions
to quadratic Boolean functions respecting Definition 2, we would like to stress on
the fact that such a quadratization in the {−1, 1} domain space can potentially give
significant savings in number of auxiliary variables. As an example, consider the
following monomial

∏n

i=1
si where s = (s1, . . . , sn) ∈ {−1, 1}n. From Section 2, it

is evidently clear that the number of auxiliary variables required to convert this
monomial to a quadratic polynomial over the domain space {−1, 1} is O(n). If we
try to convert the variables xi to variables over {0, 1}, then the resulting polynomial
will be

∏n

i=1
(1−2xi) where xi =

1−si
2

∈ {0, 1}. This polynomial is dense and included
all possible monomial terms in xi. Even if we assume that each monomial can be
quadratized by exactly one variable, the termwise quadratization will still require
at least Ω (2n) auxiliary variables. The algorithms presented below will also require
significantly more variables in {0, 1} domain than O(n) variables required when doing
conversion in {−1, 1} domain space.

Having discussed the importance of quadratization in {−1, 1} domain space, we
present our algorithms below. We stress that the final steps of both the algorithms
are same. Post quadratization, we invoke either the Rosenberg polynomial (over
Boolean space) or the polynomial described in Section 2 (over Ising space) to impose
the constraints between the auxiliary variables and the quadratic term they replace.
Our Algorithm 1 is detailed out next.

The idea of the algorithm is pretty simple. The algorithm starts with a hash table
where keys are all possible pairs {(zi, zj) : 1 ≤ i < j ≤ n} and values corresponding
to a key (zi, zj) are monomials of degree at least 3 containing both zi and zj . Our
algorithm greedily replaces the key with largest number of values by an auxiliary
variable and then update the hash table by introducing the auxiliary variable in the
key. The degree of all values for which the key has been replaced by the auxiliary
variable will decrease by 1. The values with degree 3 containing the replaced key
will become quadratic and they are deleted from the table. This is repeated until the
table is empty. Finally, once the hash table is empty, we invoke either the Rosenberg
polynomial (when B = {0, 1}) or the polynomial described in Section 2 (when B =
{−1, 1}) to impose the constraints between the auxiliary variables and the quadratic

Algorithm 1 Hobo To Qubo 1

Require: A higher order binary optimization (HOBO) over (z1, z2, . . . , zn) ∈ Bn

where B is either {−1, 1} or {0, 1}.
Ensure: A QUBO equivalent to the given higher order binary optimization problem
1: Sort the indices of variables and create a data structure of (key, value) pairs where

key is the set of all quadratic terms appearing in HOBO and value is the set of
all monomials of degree at least 3.

2: while all the keys are deleted do

3: Select the key with largest number of values and replace it with a variable
4: Update the data structure by adding keys and values for new variable
5: Delete all degree 3 terms that involved the key
6: Delete the key if all the values of the key has been deleted
7: Store the variable and the quadratic term it substitutes in a map

8: Invoke the quadratic polynomial corresponding for each map of auxiliary variable
and the quadratic term

9: Return The QUBO equivalent to given HOBO problem.

term they replace.
We now proceed to present our second heuristic as Algorithm 2. This is again a

greedy approach with a different objective to reduce. Simply put, we have a dynamic
weight bipartite graph with quadratic terms on left hand side (LHS) and monomials
of degree at least 3 on right hand side (RHS). There exists an edge between LHS and
RHS vertices if and only if the RHS vertex contains the LHS vertex in the expression;
the edge weight is simply one less the degree of the monomial. In this case, we proceed
to replace the LHS vertex with maximum sum of edge weights with a new auxiliary
variable and update the graph by introducing the quadratic terms involving the new
variable in the graph. We remove all degree three monomials for the replaced LHS
vertex (as they are quadratic now). We repeat these sequence of steps until all the
RHS vertices become quadratic.

4 Applications

Many real-world problems can be modeled as a HOBO. A large number of applications
have been modeled in the quadratic case. For example, in combinatorial scientific
computing [21–24], chemistry [25, 26], and machine learning [27–29] In the following
subsections, we give examples that consist of problems modeled as a HOBO with
higher-order terms greater than two.

4.1 Problems on Hypergraphs

Many NP-hard problems on graphs can easily be encoded in the quadratic case as
a QUBO [30]. A hypergraph is a generalization of a graph such that a (hyper-)
edge may contain more than two nodes. This generalization thus provides an area
rich in problems that can be modeled as a HOBO. For example, the Hypergraph

Algorithm 2 Hobo To Qubo 2

Require: A higher order binary optimization (HOBO) over (z1, z2, . . . , zn) ∈ Bn

where B is either {−1, 1} or {0, 1}.
Ensure: A QUBO equivalent to the given higher order binary optimization problem
1: Sort the indices of variables and construct a weighted bipartite graph
2: All possible combination of quadratic terms appearing in HOBO are left nodes

and all monomials in the HOBO are right nodes
3: Edges exist if monomial contains the quadratic term
4: Edge weights are simply the degree of the monomial - 1
5: while there exists an edge on the graph do

6: Replace the quadratic term with variable with largest sum of edge weights
7: Remove all degree 3 terms that involved the quadratic term
8: Remove quadratic terms if there is no edge originating from it
9: Update the graph after adding quadratic terms involving new variable
10: Store the variable and the quadratic term it substitutes in a map

11: Invoke the quadratic polynomial corresponding for each map of auxiliary variable
and the quadratic term

12: Return The QUBO equivalent to given HOBO problem.

Max-Covering problem [31]. Given a hypergraph H = (V,E) with vertex set V and
hyperedge set E, with an associated edge weight w(e) ∈ R, for each e ∈ E. The
problem is to find a subset of nodes V ′ ⊂ V such that the total weight of hyperedges
completely covered by V ′ is maximized. If xi ∈ {0, 1} is 1 when xi ∈ V ′ and 0
otherwise, then this problem is simply

max
∑

e∈E

w(e)
∏

i∈e

xi. (4)

Another example is finding the min-vertex cover of a hypergraph where the problem
is to determine a minimum carnality set V ′ ⊂ V such that every hyperedge contains
at least one node in V ′. This is simply equivalent to solving

min

n
∑

i=1

(1− xi) +M
∑

e∈E

∏

i∈e

xi, (5)

for any M > n. In this case xi = 0 if vi ∈ V ′. These problems have applications to
scheduling problems [32]. Within the Ising space, the Hypergraph Partitioning Prob-
lem and the Hypergraph MAX-CUT problem are natural examples. The hypergraph
partitioning deals with partitioning the vertex set equally such that the number of
cut-edges is minimized, while the Hypergraph MAX-CUT problem is to partition the
vertex set such that the number of cut-edges is maximized, where a cut-edge is defined
as a hyperedge that contains nodes in more than one part. If si ∈ {−1, 1} represents
the decision variable for node i belonging to one part or the other, then we can show

that the Hypergraph MAX-CUT problem is given by

max
∑

e∈E

(

1−
1

4|e|

∏

i∈e

(sie + si)
2

)

(6)

where ie represents the smallest index of the nodes in e. Likewise the Hypergraph
Partitioning Problem would minimize the same objective function subject to the
balancing constraint

∑

i si = 0, which can be added as a quadratic penalty to give

min
∑

e∈E

(

1−
1

4|e|

∏

i∈e

(sie + si)
2

)

+ A(
∑

i

si)
2 (7)

for a large enough A > 0.

4.2 (Weighted) Maximum satisfiability problem

Maximum satisfiability (MAX-SAT) is a generalization of the well known Boolean
satisfiability problem. Given a Boolean formula in conjunctive normal form, the goal
is to find the assignment that maximizes the number of satisfying clauses. This
problem is known to be NP-hard, because a MAX-SAT solver can be used for solving
NP-complete SAT problems, where the goal is to decide whether there exists an
assignment that satisfies all clauses or not. In weighted MAX-SAT problem, every
clause is associated with a positive penalty score. The goal is to minimize the total
penalty due to all non satisfying clauses. This can naturally be expressed as a higher
order Boolean optimization problem as follows.

Consider a clause c, which is associated with a penalty pc > 0. Let, S+
c and S−

c be
the sets of variables which are not negated and negated in c. E.g. if c = x0∨x1∨x2∨x4,
then S+

c = {x1, x2} and S−
c = {x0, x4}. If C is the set of all clauses in a MAX-SAT

problem, it is equivalent to minimization of the following polynomial over Boolean
variables:

∑

c∈C pc
∏

u∈S+
c
(1− u)

∏

v∈S−

c
v

4.3 Electronic Structure calculations on adiabatic quantum annealers

In recent works, Xia et al [13] and Streif et al [33] considered quantum chemistry
problems of finding the exact ground state energy of various molecules using com-
mercially available quantum annealers from D-Wave. D-Wave’s quantum annealer
is essentially a quadratic Ising solver and supports problem hamiltonian of the form
Hp =

∑

i hiσ
i
z+
∑

i,j Jijσ
i
zσ

j
z. In their work, initially Xia et. al. reduced the molecular

structure Hamiltonian problem to a ’k-local’ Ising Hamiltonian problem of the form
∑

i1
hi1σ

i1
z +

∑

i1,i2
Ji1i2σ

i1
z σ

i2
z +

∑

i1,i2,i3
Ji1i2i3σ

i1
z σ

i2
z σ

i3
z + · · · . Afterwards, they con-

verted the problem to Boolean domain and applied Rosenberg polynomial (Equation
(3)) iteratively to convert the problem to 2-local Hamiltonian supported by D-Wave
annealers. As discussed in Section 3, this method introduces exponentially many aux-
iliary variables. In fact, [13] mentions a single σ1

xσ
2
xσ

3
yσ

4
y term in the original molecular

Hamiltonian corresponds to more than 1000 terms in the final 2-local Ising Hamilto-
nian form. By performing the conversion directly in the Ising domain, we should be
able to drastically reduce the number of auxiliary variables and terms.

5 Experimental Results and Discussion

A synthetic dataset of sparse instances of HOBO problems over Ising space was de-
veloped for experimentation purposes. The data set is available at [34]. Table 1
describes distribution of monomials in the dataset, after performing some basic pre-
processing. For example, if a linear term has a relatively large positive coefficient, we
know the corresponding variable must be −1. For converting the higher order problem
to a quadratic one, we have four options: we can either convert it to Boolean space
and use Rosenberg Polynomial to reduce its degree, or we can use our polynomial
and directly perform the degree reduction in Ising space. In either of the option we
can also choose to use either Algorithm 1 or Algorithm 2 for variable choice heuris-
tic. Table 2 describes the number of variables and terms in the resultant quadratic
polynomial. The performance of Algorithm 1 and Algorithm 2 are comparable to
each other. However, as original problems are sparse in Ising domain, converting the
problem using our polynomial results in significantly more compact representation
compared to Boolean domain degree reduction using Rosenberg polynomial.

Dataset Variables Terms in Degree
1 2 3 4 5 6 7 8 9 10 11 12 13 14

D20A 15 15 105 60 53 49 49 48 37 20 23 12 4 - -
D20B 14 14 91 60 55 38 31 10 5 6 - - - - -
D20C 15 15 105 62 47 52 33 46 49 26 22 26 17 7 1
D30A 17 17 136 98 61 50 30 28 22 23 6 3 1 2 -
D30B 18 18 153 130 66 50 41 35 14 12 4 2 - - -
D30C 20 20 190 114 65 58 50 44 24 23 7 - 2 - -

Table 1: Distribution of number of monomials of different degrees in the dataset

Dataset Ising, Algo 1 Ising, Algo 2 Boolean, Algo 1 Boolean, Algo 2
variables terms variables terms variables terms variables terms

D20A 561 2581 585 2685 597 26025 583 25983
D20B 274 1290 278 1307 303 4273 314 4306
D20C 621 2857 629 2888 730 33429 1035 34344
D30A 545 2493 541 2489 1034 31189 1003 31096
D30B 512 2405 526 2466 751 15397 800 15544
D30C 706 3230 716 3269 1478 28103 1414 27911

Table 2: Experimental Results

Our experimental results demonstrate that the proposed approach facilitates com-
pressed quadratization of higher order Ising problems. Future work includes integrat-
ing this methodology into real-world applications.

References

[1] Robert R Schaller, “Moore’s law: past, present and future,” IEEE spectrum, vol. 34,
no. 6, pp. 52–59, 1997.

[2] Mark W Johnson, Mohammad HS Amin, Suzanne Gildert, Trevor Lanting, Firas
Hamze, Neil Dickson, R Harris, Andrew J Berkley, Jan Johansson, Paul Bunyk, et al.,
“Quantum annealing with manufactured spins,” Nature, vol. 473, no. 7346, pp. 194,
2011.

[3] Maliheh Aramon, Gili Rosenberg, Elisabetta Valiante, Toshiyuki Miyazawa, Hirotaka
Tamura, and Helmut Katzgrabeer, “Physics-inspired optimization for quadratic un-
constrained problems using a digital annealer,” Frontiers in Physics, vol. 7, pp. 48,
2019.

[4] Fujitsu Limited, “Digital annealer,” https://www.fujitsu.com/jp/digitalannealer/.

[5] Masanao Yamaoka, Chihiro Yoshimura, Masato Hayashi, Takuya Okuyama, Hidetaka
Aoki, and Hiroyuki Mizuno, “24.3 20k-spin ising chip for combinational optimiza-
tion problem with cmos annealing,” in 2015 IEEE International Solid-State Circuits
Conference-(ISSCC) Digest of Technical Papers. IEEE, 2015, pp. 1–3.

[6] Chihiro Yoshimura, Masanao Yamaoka, Hidetaka Aoki, and Hiroyuki Mizuno, “Spatial
computing architecture using randomness of memory cell stability under voltage con-
trol,” in 2013 European Conference on Circuit Theory and Design (ECCTD). IEEE,
2013, pp. 1–4.

[7] David Kielpinski, Ranojoy Bose, Jason Pelc, Thomas Van Vaerenbergh, Gabriel Men-
doza, Nikolas Tezak, and Raymond G Beausoleil, “Information processing with large-
scale optical integrated circuits,” in 2016 IEEE International Conference on Rebooting
Computing (ICRC). IEEE, 2016, pp. 1–4.

[8] Peter L McMahon, Alireza Marandi, Yoshitaka Haribara, Ryan Hamerly, Carsten Lan-
grock, Shuhei Tamate, Takahiro Inagaki, Hiroki Takesue, Shoko Utsunomiya, Kazuyuki
Aihara, et al., “A fully programmable 100-spin coherent ising machine with all-to-all
connections,” Science, vol. 354, no. 6312, pp. 614–617, 2016.

[9] Tameem Albash and Daniel A Lidar, “Demonstration of a scaling advantage for a
quantum annealer over simulated annealing,” Physical Review X, vol. 8, no. 3, pp.
031016, 2018.

[10] Takahiro Inagaki, Yoshitaka Haribara, Koji Igarashi, Tomohiro Sonobe, Shuhei Ta-
mate, Toshimori Honjo, Alireza Marandi, Peter L McMahon, Takeshi Umeki, Koji
Enbutsu, et al., “A coherent ising machine for 2000-node optimization problems,”
Science, vol. 354, no. 6312, pp. 603–606, 2016.

[11] James King, Sheir Yarkoni, Jack Raymond, Isil Ozfidan, Andrew D King, Mayssam Mo-
hammadi Nevisi, Jeremy P Hilton, and Catherine C McGeoch, “Quantum annealing
amid local ruggedness and global frustration,” Journal of the Physical Society of Japan,
vol. 88, no. 6, pp. 061007, 2019.

[12] Carleton Coffrin, Harsha Nagarajan, and Russell Bent, “Evaluating ising processing
units with integer programming,” in International Conference on Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research. Springer, 2019,
pp. 163–181.

[13] Rongxin Xia, Teng Bian, and Sabre Kais, “Electronic structure calculations and the
ising hamiltonian,” The Journal of Physical Chemistry B, vol. 122, no. 13, pp. 3384–
3395, 2017.

https://www.fujitsu.com/jp/digitalannealer/

[14] Richard Tanburn, Emile Okada, and Nike Dattani, “Reducing multi-qubit interac-
tions in adiabatic quantum computation without adding auxiliary qubits. part 1: The”
deduc-reduc” method and its application to quantum factorization of numbers,” arXiv
preprint arXiv:1508.04816, 2015.

[15] Fred Glover, Jin-Kao Hao, and Gary Kochenberger, “Polynomial unconstrained binary
optimisation–part 1,” International Journal of Metaheuristics, vol. 1, no. 3, pp. 232–
256, 2011.

[16] Ivo G Rosenberg, “Reduction of bivalent maximization to the quadratic case,” Cahiers
du Centre detudes de Recherche Operationnelle, vol. 17, pp. 71–74, 1975.

[17] Nike Dattani, “Quadratization in discrete optimization and quantum mechanics,”
arXiv preprint arXiv:1901.04405, 2019.

[18] Martin Anthony, Endre Boros, Yves Crama, and Aritanan Gruber, “Quadratic refor-
mulations of nonlinear binary optimization problems,” Mathematical Programming,
vol. 162, no. 1-2, pp. 115–144, 2017.

[19] Elisabeth Rodriguez-Heck, Linear and quadratic reformulations of nonlinear optimiza-
tion problems in binary variables, Ph.D. thesis, Université de Liége, Belgique, 2018.

[20] Daniel Freedman and Petros Drineas, “Energy minimization via graph cuts: Settling
what is possible,” in 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05). IEEE, 2005, vol. 2, pp. 939–946.

[21] Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Ilya Safro, Susan Mniszewski, and
Yuri Alexeev, “Community detection across emerging quantum architectures,” arXiv
preprint arXiv:1810.07765, 2018.

[22] Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Ilya Safro, Susan Mniszewski, and Yuri
Alexeev, “Network community detection on small quantum computers,” Advanced
Quantum Technologies, p. 1900029, 2019.

[23] Hayato Ushijima-Mwesigwa, Christian FA Negre, and Susan M Mniszewski, “Graph
partitioning using quantum annealing on the d-wave system,” in Proceedings of the
Second International Workshop on Post Moores Era Supercomputing. ACM, 2017, pp.
22–29.

[24] Hayato Ushijima-Mwesigwa, Ruslan Shaydulin, Christian FA Negre, Susan M
Mniszewski, Yuri Alexeev, and Ilya Safro, “Multilevel combinatorial optimization
across quantum architectures,” arXiv preprint arXiv:1910.09985, 2019.

[25] Maritza Hernandez, Arman Zaribafiyan, Maliheh Aramon, and Mohammad Naghibi,
“A novel graph-based approach for determining molecular similarity,” arXiv preprint
arXiv:1601.06693, 2016.

[26] James P Terry, Prosper D Akrobotu, Christian FA Negre, and Susan M Mniszewski,
“Quantum isomer search,” arXiv preprint arXiv:1908.00542, 2019.

[27] Daniel Crawford, Anna Levit, Navid Ghadermarzy, Jaspreet S Oberoi, and Pooya
Ronagh, “Reinforcement learning using quantum boltzmann machines,” arXiv preprint
arXiv:1612.05695, 2016.

[28] Amir Khoshaman, Walter Vinci, Brandon Denis, Evgeny Andriyash, and Moham-
mad H Amin, “Quantum variational autoencoder,” Quantum Science and Technology,
vol. 4, no. 1, pp. 014001, 2018.

[29] Christian FA Negre, Hayato Ushijima-Mwesigwa, and Susan MMniszewski, “Detecting
multiple communities using quantum annealing on the d-wave system,” arXiv preprint
arXiv:1901.09756, 2019.

[30] Andrew Lucas, “Ising formulations of many np problems,” Frontiers in Physics, vol.
2, pp. 5, 2014.

http://arxiv.org/abs/1508.04816
http://arxiv.org/abs/1901.04405
http://arxiv.org/abs/1810.07765
http://arxiv.org/abs/1910.09985
http://arxiv.org/abs/1601.06693
http://arxiv.org/abs/1908.00542
http://arxiv.org/abs/1612.05695
http://arxiv.org/abs/1901.09756

[31] Simai He, Zhening Li, and Shuzhong Zhang, “Approximation algorithms for discrete
polynomial optimization,” Journal of the Operations Research Society of China, vol.
1, no. 1, pp. 3–36, 2013.

[32] Nikhil Bansal and Subhash Khot, “Inapproximability of hypergraph vertex cover and
applications to scheduling problems,” in International Colloquium on Automata, Lan-
guages, and Programming. Springer, 2010, pp. 250–261.

[33] Michael Streif, Florian Neukart, and Martin Leib, “Solving quantum chemistry prob-
lems with a d-wave quantum annealer,” in International Workshop on Quantum Tech-
nology and Optimization Problems. Springer, 2019, pp. 111–122.

[34] “Higher order ising dataset,” https://github.com/flacrypto/hising-dataset.

https://github.com/flacrypto/hising-dataset

	1 Introduction
	2 How to encode quadratic equality constraints
	3 Quadratization of higher order optimization problem
	4 Applications
	4.1 Problems on Hypergraphs
	4.2 (Weighted) Maximum satisfiability problem
	4.3 Electronic Structure calculations on adiabatic quantum annealers

	5 Experimental Results and Discussion

