
ndzip: A High-Throughput Parallel Lossless

Compressor for Scientific Data

Fabian Knorr, Peter Thoman and Thomas Fahringer

Distributed and Parallel Systems Group
University of Innsbruck, Austria

{fabian,petert,tf}@dps.uibk.ac.at

Abstract

Exchanging large amounts of floating-point data is common in distributed scientific com-
puting applications. Data compression, when fast enough, can speed up such workloads by
reducing the time spent waiting for data transfers. We propose ndzip, a high-throughput,
lossless compression algorithm for multi-dimensional univariate regular grids of single- and
double-precision floating point data. Tailored towards efficient implementation on modern
SIMD-capable multicore processors, it compresses and decompresses data at speeds close
to main memory bandwidth, significantly outperforming existing schemes. We evaluate
this novel method using a representative set of scientific data, demonstrating a competitive
trade-off between compression effectiveness and throughput.

Introduction

In distributed and high performance computing (HPC), interconnect bandwidth con-
tinues to be a significant limiting factor, manifesting across buses, storage, and net-
work links [1]. Data compression can help mitigate this issue, but candidate algo-
rithms are subject to a number of unique constraints: (i) the performance of both
compression and decompression needs to be at least as fast as the transfer or stor-
age medium; (ii) without additional per-application metainformation, the algorithm
needs to be lossless; (iii) data commonly consists of n-dimensional grids of floating
point values, which are smooth in some dimension but individually unique, and can
therefore be difficult to compress with general-purpose algorithms.

We introduce ndzip, a new high-throughput lossless compression algorithm de-
signed specifically for n-dimensional grids of floating point data. Our concrete contri-
butions are as follows: (1) a new compression algorithm, ndzip, based on a fast,
parallel integer approximation of a well-known predictor combined with a hard-
ware-friendly block subdivision scheme; (2) a high-performance multi-level parallel
implementation of ndzip, leveraging both SIMD and thread-level parallelism; (3) an
in-depth performance evaluation across a large set of representative HPC data, with
comparisons against the state of the art in both specialized floating point compressors
and general purpose compression schemes.

Background

Related Algorithms fpzip [2] uses the Lorenzo predictor [3] to exploit smoothness
in the direct neighborhood of points within a scalar n-dimensional grid, compacting
the small residual values using a range coder. The scheme exhibits high compression
efficiency, especially for single-precision values.

{fabian,petert,tf}@dps.uibk.ac.at


FPC [4] uses a pair of hash-table based value predictors to compress an unstruc-
tured double-precision data stream. It offers a tunable parameter trading compression
effectiveness for speed. The thread-parallel pFPC variant [5] allows further prioriti-
zation of compression throughput by processing input data in chunks.

SPDP [6] combines one-dimensional prediction with an LZ77 variant to compress
both single- and double-precision data without specialization for either format.

MPC [7] is a fast compression scheme for GPUs. A simple one-dimensional value
predictor is combined with a bit-regrouping scheme for zero-bit elimination in the
residual which maps well to the targeted hardware.

The APE and ACE compressors [8] adaptively select from multiple value predic-
tors to decorrelate data points in an n-dimensional grid from their already-processed
neighbors. Residuals are compacted using a variant of Golomb coding.

Value Prediction Individual values from scientific floating-point data commonly
exhibit high entropy in the low-order mantissa bits and seldom repeat exactly, low-
ering efficiency of the traditional dictionary coder approach. Instead, specialized
methods try to predict values from already processed data and only encode residuals.

SPDP and MPC use simple fixed-stride value predictors, remembering a history
of k values and predicting each point with the k-th most recently encoded value.

FPC and pFPC maintain larger internal state with a pair of hash table based
predictors to exploit repeating patterns in values and value deltas.

The floating-point Lorenzo predictor employed by fpzip estimates the value on
one corner of a length-2 hypercube within an n-dimensional space by summing up all
other corners reachable via an odd number of edges and subtracting those reachable
via an even number. The prediction accuracy increases with smoothness of the data
and is exact when the hypercube is an implicit polynomial of degree n− 1.

The APE and ACE predictors expand on this idea by using higher-dimensional
polynomials in each dimension, which increases prediction accuracy at the expense of
greater computational cost.

Difference Operators In a lossless compression context, floating-point subtrac-
tion is unsuitable for computing prediction residuals. Small-magnitude floating-point
values usually do not manifest in short, compressible bit representations, and the
format’s limited precision make floating-point subtraction a non-bijective operation.
Thus, all studied algorithms compute residuals on bit representations explicitly.

FPC and pFPC use a bit-wise XOR difference, while SPDP and MPC reinterpret
the operand bits as integers and encode the result of integer subtraction. The APE
and ACE schemes offer both variants. fpzip also uses integer subtraction, but negates
the operand depending on the sign bit to improve continuity in the mapping.

Residual Value Encoding Accurate predictions yield small-magnitude residuals
with many identical leading bits, i.e. zeros for the XOR operator and redundant sign
bits for two’s complement integer subtraction. Efficiently encoding these leading bits
is the only data reduction mechanism employed by most studied schemes.

fpzip uses a range coder to compress the number of leading redundant bits, fol-
lowed by a verbatim copy of the trailing bits. The near-optimal bit string produced
by the range coder makes this approach very space-efficient. However, the required
bit-granularity addressing is difficult to implement efficiently.



The APE and ACE schemes take a similar approach, but encode the number of
redundant bits using a symbol-ranking Golomb code.

FPC and pFPC count the number of leading-zero bytes in a double-precision
residual, using a fixed mapping to encode the run length together with the predictor
selection in a four-bit value. The remainder, starting with the first non-zero byte, is
output verbatim. This method is stateless and has an acceptable 1/16 overhead in the
incompressible case at the expense of wasting bits due to its lower granularity.

MPC splits the residual stream into chunks of 32 single- (or 64 double-) precision
values, emitting the 32 (64) most-significant bits followed by the 32 (64) second-most
significant bits, and so on. Zero-words are eliminated from the output stream and
replaced with a 32- or 64-bit mask per chunk encoding the positions of all non-zero
words. This method has very low 1/32 (1/64) overhead in the incompressible case and is
efficiently implemented on GPUs due to its word-granularity addressing, but requires
all residuals within a chunk to have similar bit width to be effective.

SPDP starts with a regrouping scheme similar to MPC, but on a byte level. It
follows up with a byte-granularity integer-subtraction difference operator and encodes
the resulting stream using a LZ77-family coder. This can eliminate repeating patterns
other than leading zeros and makes SPDP work on non-floating-point data as well.

Algorithm

We introduce ndzip, a block-transform-based lossless compression algorithm tailored
towards a highly-efficient implementation on SIMD-capable multicore processors. By
exposing data parallelism both within and across blocks, we are able to compress and
decompress data near the memory bandwidth limit.

Our implementation supports up to three-dimensional grids of arbitrary extent,
although the algorithm is easily generalized to higher dimensions. The expected input
data format is a stream of little-endian IEEE 754 single- or double-precision values,
and out-of-band metadata explaining data dimensionality and extent.

Block
Subdivision

Integer Lorenzo
Transform

n
 p

as
se

s

S
ig

n
 B

it
 R

o
ta

ti
o
n

T

Bit Matrix
Transposition

0 0 0 1 0 1
0 0 0 0 0 0
0 1 0 0 0 0
1 1 0 1 1 1
0 0 0 0 0 0
0 0 1 1 1 1

Zero-Word
Elimination

Zero-Position Bitmap

Non-Zero Words

Conca-
tenation

101101

000101
010000
110111
001111

001011

000101
101000T

o
 S

ig
n
-M

ag
n
it
u
d
e

0 0 0 1 0 0
0 0 1 1 0 0
0 0 0 0 0 1
1 0 0 1 0 1
0 0 0 1 0 1
1 0 0 1 0 1

Chunk
Subdivision

Figure 1: Overview of the ndzip compression pipeline

Overview Compression and decompression in ndzip are symmetric with regard to
their algorithmic building blocks and performance characteristics.

Figure 1 shows all steps of the compression pipeline. It divides input data into
fixed-size hypercubes and employs a multidimensional transform step to decorrelate
data within blocks, yielding residuals with a shorter bit representation. Chunks of the



residual stream are then compacted by eliminating common zero-bits through a bit-
matrix transposition scheme. The compacted chunks are stored alongside a header
revealing positions of the compressed blocks within the output stream.

The decompression pipeline inverts each compression step by expanding the orig-
inal chunks from their compressed form, repeating the bit-matrix transposition step
to obtain residuals and finally applying the inverse block transform step to restore
the uncompressed hypercube.

Block Subdivision Instead of attempting to process the entire n-dimensional grid
of input data at once, ndzip subdivides it into small hypercubes which are compressed
independently. Since the algorithm requires multiple passes over the data, this en-
ables better use of processor caches at the expense of a minor loss in decorrelation
efficiency. By eliminating all dependencies between blocks, this subdivision scheme
exposes additional data parallelism to the implementation.

We choose a size of 4096 elements, which manifests as hypercube sizes of 40961,
642 or 163 for one to three dimensions, respectively. This corresponds to to 16 KB of
memory for single- and 32 KB for double precision. Fixing the block size in advance
allows the generation of highly-optimized machine code for the following steps.

When the grid extent is not a multiple of the block size, border elements are
simply appended to the output uncompressed.

Integer Lorenzo Transform The floating-point Lorenzo predictor is highly effec-
tive on multidimensional data. However, the separate bit-pattern residual compu-
tation step requires the decompressor to reconstruct each prediction from already-
decoded neighboring values, introducing dependences that limit parallelism.

We circumvent this problem in the novel Integer Lorenzo Transform, a multi-pass
operation which directly computes an approximation of Lorenzo prediction residuals
within the integer domain. Figure 2 illustrates this process. Both forward and inverse
transform steps are in-place, and, in the case of multi-dimensional grids, data parallel.

true value

positive coeff.
negative coeff.

1D 2D 3D a b

c d

a b−a
c−a d−c−b+a

Figure 2: Computation of the Lorenzo prediction residual; example for point d in a 2D array

The first pass maps all floating-point values in a block to an integer representation.
This mapping must be reversible and should ideally preserve small floating-point
differences in the input as small integer differences in the output. Reinterpreting
the bits of an IEEE 754 floating-point value as a two’s complement integer of the
same width already yields a monotone mapping in the exponent and mantissa bits.
A discontinuity arises near zero due to the input’s sign-magnitude representation of
floating-point values. Inverting exponent and mantissa bits depending on the sign to
obtain a two’s complement integer as proposed by Lindstrom et al. [2] is not optimal
since opposite-sign, similar-magnitude values usually share exponent bits. We found
the best solution to be a simple left-rotation of the floating-point representation by
one bit, which puts the sign at the least-significant position.

The following passes iteratively obtain the Lorenzo prediction residual of each
value in the integer domain. For the one-dimensional case, this means replacing all



input values (but the first) with the difference to its predecessor, following Figure 2.
For the higher-dimensional case, we observe that residual computation is separa-

ble: remainders in two dimensions are calculated by first performing one-dimensional
subtraction along each row, followed by one-dimensional subtraction along each col-
umn. This is trivially generalized to arbitrary n-dimensional grids, requiring n passes
over the data. All subtraction operations within one pass are data-independent, so a
fully parallel transform requires just O(n) steps.

The inverse operation, restoring input values from residuals, is separable in the
same way. In each pass, it adds the restored predecessor to each residual value. Since
this introduces a dependency chain along each row, the inverse transform passes are
fully parallel in only n− 1 dimensions. Using a parallel scan for summation yields a
complexity of O(n log(k)) steps for a block width of k.

Residual Value Encoding ndzip uses the same residual value encoding scheme
as MPC [7], which can be implemented very efficiently on modern CPUs.

Since residuals use a two’s complement representation, small values will start with
a string of leading-zero or leading-one bits depending on their sign. To encode both
through zero-elimination, residuals are first converted to a sign-magnitude represen-
tation by flipping all but the first bit whenever the residual is negative.

The scheme then divides the residual stream into chunks of 32 single-precision or
64 double-precision values and performs a 32× 32 (64× 64) bit matrix transposition
on each chunk to group bits from the same position into words. All zero-words are
stripped from the output, and a 32-bit (64-bit) header is prepended to each chunk,
encoding the position of non-zero words as a bitmap.

Implementation

ndzip is tailored towards efficient use of SIMD units in modern CPUs. Although mod-
ern compilers can autovectorize certain code patterns, our implementation requires
manual vectorization using platform intrinsics. We chose the AVX2 instruction set,
available on most x86_64 processors since 2013. AVX2 vector registers are 256 bit
wide and can thus operate on 8 single- or 4 double-precision values simultaneously.

Integer Lorenzo Transform Within an n-dimensional block, we identify the di-
mension with the fastest-changing index as the horizontal dimension.

In the horizontal dimension of the forward transform, 8 (4) residuals can be com-
puted in parallel by loading two 256-bit registers with an offset of 4 (8) bytes and
performing a single vector subtraction. This offset incurs one unaligned load, which
newer processors do not penalize significantly.

The inverse exhibits limited parallelism in the horizontal dimension since a true
dependence exists between adjacent values. Rows are still independent, but the trans-
position step required to load multiple values from a stride into one register would
outweigh the speedup from parallel vector addition. We thus chose to only parallelize
the inverse transform along n− 1 dimensions.

Implementing the higher-dimension passes of both forward and inverse transform
is trivial. An aligned 256-bit load or store will operate on 8 (4) values from distinct,
independent rows, allowing them to be processed in parallel.

All transform passes profit from software pipelining, i.e. the widening of vector
instructions by operating on multiple registers in lock-step, to a small degree.



Residual Value Encoding A naive implementation of the bit matrix transposition
step consists of a nested loop performing 32 · 32 = 1024 (or 64 · 64 = 4096) bitwise-
and, bitwise-or and shift operations, or around 3 instructions per bit. This can be
significantly improved by using vector operations to first reorder the input at a byte
granularity and then extract neighboring bits in parallel.

The reordering step uses a sequence of AVX2 vpunpck, vpshuf and vperm instruc-
tions to rearrange input bytes such that the 32 (64) most significant residual bytes
are followed by the 32 (64) second-most significant bytes, and so on. Clang 10.0.1
compiles this step to a sequence of 28 vector instructions for a 32 × 32 matrix and
241 instructions for a 64× 64 matrix.

The extraction step then leverages the vpmovmskb instruction, which interprets a
256-bit word as a vector of 32 8-bit integers and extracts its 32 most-significant bits.
Followed by a 1-bit left-shift of the vector register and a store of the 32-bit transposed
column (or half-column, in the 64-bit case) to memory, this step produces 32 bits every
3 instructions. In total, the vectorized implementation requires 28 + 32 · 3 = 124
instructions for a 32×32 bit matrix and 241+64 ·2 ·3 = 625 instructions for a 64×64
bit matrix to complete, a small fraction of the naive implementation.

Zero-words are eliminated using a simple loop with one branch per word. A quick
but effective optimization lies in the observation that the compressed representation
of an all-zero chunk is just an all-zero bitmap header. Common in highly-correlated
input data, this pattern can be handled efficiently by zero-testing the chunk of resid-
uals and conditionally skipping both transposition and zero-word elimination.

Thread Parallelism The scheme’s subdivision into hypercubes exposes a high de-
gree of parallelism between blocks that allows simple and efficient distribution of work
among threads. Compression is an input-parallel problem, and while blocks can easily
be transformed in parallel, more complex synchronization is required to concatenate
the variable-length compressed representations in the output stream. Decompression
on the other hand is output-parallel, making the implementation straightforward.

m threadsm threadsm threadsm threads

0000101
0101000
0001010
1101111
0010111

0 0 0 1 0 1 0

1 1 0 1 1 1 1

0010111

Input Grid
Output Stream

Write buffer
free list

16
Pending writes
priority queue

358

is
queue.front()

next in
stream?

Transform
Transpose

Zero-Eliminate
Concatenate

Flush
yesno

Figure 3: Producer-consumer scheme for thread-parallel compression

Figure 3 shows the parallel compressor, where a configurable number of identical
threads work cooperatively on a set of pre-allocated write buffers in a producer-
consumer scheme. In a loop, they load, transform and compact individual blocks,
writing the compressed representation to a buffer taken from a shared buffer free list.



The filled buffer is then placed in a shared priority queue that orders buffers by their
position in the output stream. When a task observes that the next item in the queue
is the successor of the block most recently written to the output stream, it flushes
the write, placing the buffer back into the free list.

For decompression, a simple work-sharing for-loop decompresses blocks by looking
up the compressed stream offsets in the file header and decoding blocks in parallel.

Evaluation

Third-Party Software ndzip was compared against the original implementations
of several floating-point compressors, namely fpzip 1.3.01, FPC 1.12, pFPC 1.02 and
SPDP 1.12. MPC, although related, was not considered since it only features a
GPU implementation2 and is thus not directly comparable to CPU algorithms. No
implementation could be obtained for the APE and ACE compression schemes.

For context, we include state-of-the-art general-purpose compressors in our evalu-
ation. zlib 1.2.113 is the de-facto standard implementation of the Deflate format. xzu-
tils 5.2.5’s liblzma4 implements the expensive but effective LZMA scheme. LZ4 1.9.25

provides he throughput-optimized compressor of the same name. Zstd 1.4.56 is the ref-
erence implementation of the relatively new, efficient Zstandard compression scheme.

Test Data Compression strength and performance was evaluated on data of varying
dimensionality from real-world applications [9], shown in Figure 4.

dataset single double extent

msg_sppm X X 34,874,483
msg_sweep3d X X 15,716,403
snd_thunder X 7,898,672
ts_gas X 4,208,261
ts_wesad X 4,588,553
hdr_night X 8,192× 16,384
hdr_palermo X 10,268× 20,536
hubble X 6,036× 6,014
rsim X X 2,048× 11,509
spitzer_fls_irac X 6,456× 6,389
spitzer_fls_vla X 8,192× 8,192
spitzer_frontier X 3,874× 2,694

dataset single double extent

asteroid X 500× 500× 500
astro_mhd X 128× 512× 1024
astro_mhd X 130× 514× 1026
astro_pt X X 512× 256× 640
flow X 16× 7,680× 1,0240
hurricane X 100× 500× 500
magrecon X 512× 512× 512
miranda X 1,024× 1,024× 1,024
redsea X X 50× 500× 500
sma_disk X 301× 369× 369
turbulence X 256× 256× 256
wave X X 512× 512× 512

Figure 4: Scientific sample datasets used in compressor comparisons

Environment Our test system was a 12-core, 24-thread AMD Ryzen 9 3900X pro-
cessor with 64 GB of DDR4-3200 memory in a dual-channel configuration, running
Linux 5.8.14 with the ondemand CPU frequency governor. The ndzip source code was
compiled using Clang 10.0.1 and the -O3 -march=native optimization flags.

Methodology We define the compression ratio of a dataset as compressed size
divided by uncompressed size in bytes, with lower ratios indicating stronger com-
pression. This definition directly relates to the reduction of bandwidth required to

1https://github.com/LLNL/fpzip/releases/tag/1.3.0
2https://userweb.cs.txstate.edu/~burtscher/research/{FPC,pFPC,SPDPcompressor,MPC}
3https://www.zlib.net/
4https://tukaani.org/xz
5https://github.com/lz4/lz4/releases/tag/v1.9.2
6https://github.com/facebook/zstd/releases/tag/v1.4.5

https://github.com/LLNL/fpzip/releases/tag/1.3.0
https://userweb.cs.txstate.edu/~burtscher/research/{FPC,pFPC,SPDPcompressor,MPC}
https://www.zlib.net/
https://tukaani.org/xz
https://github.com/lz4/lz4/releases/tag/v1.9.2
https://github.com/facebook/zstd/releases/tag/v1.4.5


transfer a dataset. Where ratios need to be aggregated, the unweighted arithmetic
mean of compression ratios over datasets is reported.

Performance was evaluated by measuring wall-clock time to compress and decom-
press from and to system memory, excluding any file I/O and initialization overhead.
Third-party implementations were adapted to allow in-memory operation where nec-
essary. We report the throughput of uncompressed bytes per second, which translates
to compression input and decompression output bandwidth. Measurements for each
algorithm–dataset pair were repeated until the total runtime exceeded one second.
Before each iteration, input data was evicted from the CPU cache.

Predictor Approximation Quality To evaluate effectiveness of the novel Integer
Lorenzo Transform (ILT), we replace the transform step of our implementation with
other prediction methods and compare the resulting compression ratios. The gain
from exploiting multidimensionality is measured by transforming higher-dimensional
datasets with an equivalent one-dimensional transform instead. The quality of the
ILT approximation, which attempts to match the decorrelation efficiency of floating-
point Lorenzo prediction (FLP), is assessed by replacing the ILT step with FLP and a
difference operator. For all predictors and transforms, both a simple XOR difference
and the rotate-and-subtract integer difference from ndzip are evaluated.

0.75 0.80 0.85 0.90 0.95 1.00
Compression ratio relative to worst for this dimensionality (smaller is better)

XOR with predecessor
Subtract predecessor

XOR pseudo-Lorenzo Transform
Integer Lorenzo Transform (ndzip)

XOR with FP Lorenzo prediction
Subtract FP Lorenzo prediction

1D datasets
2D datasets
3D datasets

Figure 5: Relative compression ratios of different prediction and transform schemes

Figure 5 shows compression ratios averaged over all datasets of Figure 4 with the
same dimensionality, scaled relative to the worst compression ratio observed in the
respective dimension. For one-dimensional datasets, all schemes are roughly equiva-
lent. Overall, FLP together with integer subtraction, similar to the scheme employed
by fpzip, yields the best results, closely followed by XOR-remainder FLP and ILT.
The worst options are the two one-dimensional predictors, showing that the Lorenzo-
based components significantly benefit from higher dimensionality. Comparison with
the XOR-difference variant of ILT, equivalent to calculating the XOR remainder of a
length-2 hypercube for each value, demonstrates that careful choice of the remainder
operation is essential for approximating the relevant features of FLP.

Compressor Efficiency Figure 6 compares throughput and compression ratios
achieved by the examined compressor implementations on our test data. By design,
not all algorithms can process both single- and double-precision values.

Some algorithms have one or more tunable parameters, in which case we report
all configurations on the pareto front of the compression operation as a continuous
line. Others schemes, notably including ndzip, have no tunable behavior.



0.5

0.6

0.7

ar
ith

m
et

ic 
m

ea
n 

co
m

pr
es

sio
n 

ra
tio

sin
gle

 p
re

cis
ion

compression decompression

101 102 103 104

arithmetic mean uncompressed throughput [MB/s]

0.4

0.5

0.6do
ub

le 
pr

ec
isi

on

102 103 104

ndzip
ndzip (st)
Deflate
FPC
pFPC
fpzip
LZ4
LZMA
SPDP
Zstandard

Figure 6: Compression ratio and throughput achieved by examined compressors

1 102 3 4 6 20
number of threads

10

2

3
4

6

un
co

m
pr

es
se

d 
th

ro
ug

hp
ut

 [G
B/

s] 12 physical cores

single compression
single decompression
double compression
double decompression

Figure 7: ndzip scaling up to 24 threads

We observe that general-purpose al-
gorithms can achieve high compression
ratios on floating-point data, but only
at the expense of significant computa-
tional resources. LZMA achieves the
highest compression ratio on double-
precision values and rivals the strongest
single-precision compressor fpzip, while
spending almost 90 minutes compress-
ing our largest dataset from Figure 4.
LZ4 achieves higher compression and de-
compression throughput than any other
single-threaded algorithm reviewed, while
also delivering the worst data reduction.
Zstandard provides an exceptionally good trade-off, dominating Deflate and the spe-
cialized SPDP on single-precision data.

Most specialized algorithms are able to outperform general-purpose schemes in at
least one dimension. fpzip is the strongest single-precision compressor at the cost of
only moderate throughput. For double-precision datasets, SPDP and FPC are able
to slightly outperform Zstandard on compression but lose the throughput comparison
for decompression, while fpzip provides no significant advantage in either step.

ndzip is the fastest specialized compressor and decompressor by a significant mar-
gin, with single-threaded execution (“st”) achieving 2.8 GB/s (3.0 GB/s) in compres-
sion throughput and 2.2 GB/s (2.7 GB/s) decompression throughput for single (dou-
ble) precision datasets. Thread-parallel execution peaked between 9 and 12 GB/s. On
our test system, the maximum input bandwidth for a multithreaded, uncompressed
copy operation is 16.3 GB/s as measured by the STREAM benchmark7.

7https://www.cs.virginia.edu/stream

https://www.cs.virginia.edu/stream


Our compressor delivers a lower compression ratio compared to some slower algo-
rithms, but significantly outperforms its only throughput rival LZ4 in that regard.

Figure 7 shows the throughput of parallel ndzip scaling with the thread count, up
to the 24 hardware threads of our test system.

Conclusion and Future Work

We demonstrated that by designing a specialized compression algorithm with char-
acteristics of the target architecture in mind, excellent resource usage and a very
competitive trade-off between compression rate and throughput can be achieved.

Based on our novel data-parallel Integer Lorenzo Transform of small hypercubes
and a hardware-friendly residual coding scheme, the ndzip compressor makes use of
both SIMD and thread parallelism to achieve compression and decompression speeds
in excess of 10 GB/s on consumer hardware. Evaluation with real-world floating-point
data shows that significant data reduction is possible with this approach.

Our implementation of ndzip is publicly available on GitHub8.
With its small internal state and minimal synchronization requirements, a fu-

ture GPU implementation of ndzip could be a great candidate for speeding up data
transfers from and to devices by increasing the effective uncompressed bandwidth.

Acknowledgements

This research is supported by the FFG Bridge project INPACT (868018) and the
D–A–CH project CELERITY, funded by FWF project I3388.

References

[1] N. Jain, A. Bhatele, S. White, T. Gamblin, and L. V. Kale, “Evaluating HPC networks
via simulation of parallel workloads,” in SC ’16: Proc. of the International Conference

for High Performance Computing, Networking, Storage and Analysis, 2016, pp. 154–165.

[2] P. Lindstrom and M. Isenburg, “Fast and efficient compression of floating-point data,”
IEEE Transactions on Vis. and Comp. graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[3] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-of-core compression and
decompression of large n-dimensional scalar fields,” in Computer Graphics Forum. Wiley
Online Library, 2003, vol. 22, pp. 343–348.

[4] M. Burtscher and P. Ratanaworabhan, “FPC: A high-speed compressor for double-
precision floating-point data,” IEEE Tr. on Computers, vol. 58, no. 1, pp. 18–31, 2008.

[5] M. Burtscher and P. Ratanaworabhan, “pFPC: A parallel compressor for floating-point
data,” in 2009 Data Compression Conference. IEEE, 2009, pp. 43–52.

[6] S. Claggett, S. Azimi, and M. Burtscher, “SPDP: An automatically synthesized lossless
compression algorithm for floating-point data,” in 2018 DCC. IEEE, 2018, pp. 335–344.

[7] A. Yang, H. Mukka, F. Hesaaraki, and M. Burtscher, “MPC: a massively parallel com-
pression algorithm for scientific data,” in 2015 IEEE International Conference on Cluster

Computing. IEEE, 2015, pp. 381–389.

[8] N. Fout and K. Ma, “An adaptive prediction-based approach to lossless compression of
floating-point volume data,” IEEE Transactions on Visualization and Computer Graph-

ics, vol. 18, no. 12, pp. 2295–2304, 2012.

[9] F. Knorr, P. Thoman, and T. Fahringer, “Datasets for Benchmarking Floating-Point
Compressors,” arXiv e-prints, p. arXiv:2011.02849, Nov. 2020.

8https://github.com/fknorr/ndzip

https://github.com/fknorr/ndzip

