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Abstract

Neural-network-based compressors have proven to be remarkably effective at compressing
sources, such as images, that are nominally high-dimensional but presumed to be con-
centrated on a low-dimensional manifold. We consider a continuous-time random process
that models an extreme version of such a source, wherein the realizations fall along a one-
dimensional “curve” in function space that has infinite-dimensional linear span. We precisely
characterize the optimal entropy-distortion tradeoff for this source and show numerically that
it is achieved by neural-network-based compressors trained via stochastic gradient descent.
In contrast, we show both analytically and experimentally that compressors based on the
classical Karhunen-Loève transform are highly suboptimal at high rates.

1 Introduction

Artificial Neural-Network (ANN)-based compressors have recently achieved notable
successes on the task of lossy compression of multimedia, spanning an array of
sources and in some cases outperforming compressors that have been extensively
optimized (see, e.g., [1] and the references therein).

One explanation for the exemplary performance of ANNs is that it derives from
their ability to approximate arbitrary functions (e.g., [2]), which in turn enables them
to perform nonlinear dimensionality reduction [3]. To see this, first consider classical
rate–distortion theory for Gaussian sources, which is based on linear dimensional-
ity reduction [4, Sec. 4.5.2]. Specifically, one projects the source realization onto an
orthogonal family of reconstructions obtained from the Karhunen-Loève Transform
(KLT) of the source. One then quantizes the resulting coefficients, say with a uni-
form quantizer followed by entropy coding [5, Sec. 5.5]. At the decoder, the inverse
transform is applied to the quantized coefficients. The size of the orthogonal family
is generally less than the dimensionality of the source, which provides some amount
of compression. The quantization process provides more. For Gaussian sources, this
architecture is provably near-optimal at high rates [5, Sec. 5.6.2]. In particular, using
a nonlinear transform in place of the KLT provides essentially no benefit.

For real-world multimedia sources, however, there is reason to believe that allowing
for nonlinear transforms would be advantageous. The distribution of natural images is
widely suspected to be supported by a low-dimensional manifold in pixel-space (e.g.,
[6]), for instance. That is, while the linear span of the manifold may be high, there
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exists a continuous, presumably nonlinear, map with a continuous, presumably non-
linear, inverse, from the manifold to a low-dimensional Euclidean space. One could
in principle use such a map in place of the linear projections in the classical architec-
ture, with the reduced dimensionality of the output afforded by allowing for nonlinear
transforms translating to a lower bit-rate. State-of-the-art ANN-based compressors
indeed follow this architecture, with nonlinear analysis and synthesis transforms sur-
rounding a conventional uniform quantizer with entropy coding [1]. As a consequence,
one might hypothesize that ANNs are particularly adept at compressing sources for
which there is a large discrepancy between the amount of dimensionality reduction
afforded by linear versus nonlinear transforms.

We provide evidence for this hypothesis by showing that ANNs optimally com-
press a prototypical source of this type, and that their performance beats the linear-
transform-based approach by a large margin. We consider a particular stochastic
process over [0, 1] that can be constructed from a continuous, nonlinear transforma-
tion of a single random variable. We learned of this process and its usefulness as a
test-case for compression algorithms from the survey by Donoho et al. [7], who in
turn credit Meyer [8]. Donoho et al. refer to this process as the Ramp; we shall call
it the sawbridge. We focus on this process because it exposes the largest possible
gap between linear and nonlinear dimensionality reduction. Donoho et al. point out
that the sawbridge has the same autocorrelation, and thus the same KLT, as the
Brownian bridge.1 In particular, the KLT of the sawbridge is infinite-dimensional.
We show that any linear transform requires infinitely many components to recover
the source. In contrast, there is a simple nonlinear transform that can recover the
source realization from a one-dimensional projection.

We show that this discrepancy in dimensionality reduction translates to a large
gap in compression performance. We analytically characterize the performance of
optimal one-shot compression for the sawbridge and numerically show that it is real-
ized by a deep ANN trained via stochastic gradient descent. We also characterize the
performance of KLT-based schemes and show, both numerically and mathematically,
that they are exponentially suboptimal.

The next section introduces the sawbridge process and its properties. Section 3
shows how to optimally compress the sawbridge. Section 4 characterizes the perfor-
mance of schemes based on the KLT and entropy coding. Section 5 numerically shows
that the sawbridge is optimally compressed by existing neural network architectures
and training methods, and that linear-based methods are highly suboptimal. All
proofs have been omitted due to space constraints but are available in the extended
version of the paper [9].

2 The Sawbridge

The focus of this paper is the following stochastic process.
1The two processes also share the property that they start and end at zero, which motivates our

choice of the former’s name.
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Figure 1: Realizations of the sawbridge. The bold line represents one full realization; others
show additional samples.

Definition 1 (cf. [7]). The sawbridge is the process

X(t) = t− 1(t ≥ U) t ∈ [0, 1], (1)

where U is uniformly distributed over [0, 1]. We use X or X(·) to refer to the entire
process {X(t)}1

t=0.

See Fig. 1 for sample realizations. In words, the process jumps from the “rail” t to
the “rail” t−1 at the random time U . Alternatively, one can view −X as the centered
empirical cumulative distribution function of a single unif[0, 1] random variable.

As noted in the introduction, we are interested in the sawbridge because it exposes
the largest possible gap between the performance of linear and nonlinear dimension-
ality reduction. Call a map f : L2[0, 1] 7→ Rk a transform (of dimension k) if it
is continuous and there exists a continuous function g : Rk 7→ L2[0, 1] (the inverse
transform) such that

g(f(X)) = X a.s. (2)

We call Rk the latent space.
If f and, especially, g are permitted to be nonlinear, then a transform of dimension

one exists, which is clearly the lowest possible. Specifically, the choices

f(x) =

∫ 1

0

x(t) dt (3)

and
(g(y))(t) = t− 1(y ≤ t− 1/2) (4)

suffice. This comports with the intuition that the process is completely described by
U . In fact, the f(·) in (3) satisfies f(X) = U −1/2 a.s. if X and U are related by (1).
Note that this f happens to be a linear map.

On the other hand, if f and g are both required to be linear maps then (2) is
impossible for any finite k. This follows from the following result on the Karhunen-
Loève expansion of the process. Note that the sawbridge is zero mean and let

K(s, t) = E[X(s)X(t)] = min(s, t)− st (5)



denote its autocorrelation.

Theorem 1. The functions

φk(t) =
√

2 · sin(πkt) t ∈ [0, 1], k = 1, 2, . . . , (6)

form an orthonormal basis for L2[0, 1]. They are eigenfunctions of K(·, ·) with corre-
sponding eigenvalues

λk =
1

π2k2
, (7)

meaning that ∫ 1

0

K(s, t)φk(t) dt = λk · φk(s) (8)

for all k and s ∈ [0, 1]. If we define

Yk :=

∫ 1

0

X(t)φk(t) dt (9)

= −
√

2λk cos(πkU), (10)

then {Yk/
√
λk}∞k=1 is a sequence of uncorrelated, zero-mean, unit-variance random

variables such that the sawbridge can be written as

X(t) =
∞∑
k=1

Ykφk(t), (11)

in the sense that

lim
n→∞

sup
0≤t≤1

E

(X(t)−
n∑
k=1

Ykφk(t)

)2
 dt = 0. (12)

Proof. It is straightforward to verify that {φk(·)}∞k=1 forms an orthonormal family
satisfying (8). To show that it forms an orthonormal basis for L2[0, 1], consider any
g(·) in L2[0, 1] such that ∫ 1

0

g(t) sin(πkt) dt = 0 for all k. (13)

Consider the odd extension of g(·) to [−1, 1],

go(t) =

{
−g(−t) if t ∈ [−1, 0]

g(t) if t ∈ (0, 1].
(14)

From (13), we have ∫ 1

−1

go(t) sin(πkt) dt = 0 k = 1, 2, 3, . . . . (15)



At the same time, since go(·) is odd, we have∫ 1

−1

go(t) cos(πkt) dt = 0, k = 0, 1, 2, . . . . (16)

The completeness of the Fourier basis implies that g(·) ≡ 0 and hence {φk(·)}∞k=1 is
also an orthonormal basis (e.g., [10, Theorem 8.16], [11, Theorem 5.27]; note that
the set of Riemann integrable functions is dense in L2 [11, Prop. 6.7]). The rest of
the conclusion then follows from the Karhunen-Loève theorem (e.g., [12, Prop. 4.1];
note that the sawbridge is quadratic-mean continuous, even though its realizations
are obviously not continuous), except for (10), which follows by integrating (9) by
parts.

This implies that if the transform and inverse must be linear, then an infinite
number of dimensions is required to represent the sawbridge, as shown in the following
corollary.

Corollary 1. For any finite k, if f : L2[0, 1] 7→ Rk and g : Rk 7→ L2[0, 1] are linear
maps then they cannot satisfy (2).

Proof. Suppose f and g are linear and let Y = g(f(X)). Then we can write

Y (t) =
k∑
i=1

Aiψi(t) (17)

for some random variables A1, . . . , Ak and orthonormal functions ψ1(·), . . . , ψk(·).
Then the autocorrelation of Y has at most k nonzero eigenvalues and hence X and
Y have distinct distributions.

The large gap between linear and nonlinear dimensionality reduction for the saw-
bridge has consequences for compression, to which we turn next.

3 Optimal Compression

We consider a one-shot form of compression in which the goal is to minimize the
entropy of the compressed representation for a given mean squared error.

Definition 2. An encoder is a map f : L2[0, 1] 7→ N. Its entropy and distortion are

H(f) = −
∑
i∈N

Pr(f(X) = i) log Pr(f(X) = i)

D(f) = E

[∫ 1

0

(X(t)− E[X(t)|f(X)])2 dt

]
,

respectively.2

2Throughout, all logarithms are base two.



Note that Definition 2 assumes that the reproduction E[X(t)|f(X)] need not be
a valid sawbridge realization. Also note that an encoder is distinct from a transform
in that it maps the source realization to a discrete set and is therefore not invertible.
In practice, compression involves mapping the source realization to a variable-length
bit string, whose expected length one might wish to minimize. The minimum such
expected length, L∗(f), is known to satisfy H(f) ≤ L∗(f) < H(f) + 1 if one requires
that the codewords are prefix-free (e.g., [13, Theorem 5.4.1]) and

L∗(f) ≤ H(f) (18)
H(f) ≤ L∗(f) + (1 + L∗(f)) log(1 + L∗(f))− L∗(f) logL∗(f), (19)

if one does not [14, Theorem 1]. As such, it is reasonable to focus on H(f) as the
figure-of-merit, especially at high rates.

Definition 3. The entropy-distortion function of the sawbridge is

H(∆) = inf
f
H(f), (20)

where the infimum is over all encoders f such that D(f) ≤ ∆.

Theorem 2. If ∆ ≥ 1/6, then H(∆) = 0. For any 0 < ∆ < 1/6, we have

H(∆) = −
⌊

1

p

⌋
· p log p− q log q, (21)

where q =
(

1−
⌊

1
p

⌋
· p
)
and p is the unique number in (0, 1) such that⌊

1

p

⌋
· p2 + q2 = 6∆. (22)

Proof. If ∆ ≥ 1/6, then a trivial encoder with a singleton range achieves D(f) ≤ ∆
and H(f) = 0. Suppose 0 < ∆ < 1/6. Each realization of X can be identified with
a unique realization of U , so the realizations of X are in one-to-one correspondence
with [0, 1]. Thus for any encoder f and any i, f−1(i) can be identified with a subset
of [0, 1], say Ai, such that

E

[∫ 1

0

(X(t)− E[X(t)|f(X)])2 dt

∣∣∣∣f(X) = i

]
= E

[∫ 1

0

(X(t)− E[X(t)|U ∈ Ai])2 dt

∣∣∣∣U ∈ Ai] .
Now consider an arbitrary A ⊂ [0, 1] such that µ(A) > 0, where µ(·) is the Lebesgue
measure. We will show the inequality

E

[∫ 1

0

(X(t)− E[X(t)|U ∈ A])2 dt

∣∣∣∣U ∈ A] ≥ µ(A)

6
. (23)



To this end, note that we can write

E

[∫ 1

0

(X(t)− E[X(t)|U ∈ A])2 dt

∣∣∣∣U ∈ A] (24)

= E

[∫ 1

0

(1(U ≤ t)− E[1(U ≤ t)|U ∈ A])2 dt

∣∣∣∣U ∈ A] (25)

=

∫ 1

0

Pr(U ≤ t|U ∈ A)(1− Pr(U ≤ t|U ∈ A)) dt. (26)

First suppose that A is a union of intervals,

A = ∪ki=1[ai, bi], (27)

where 0 ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ ak < bk ≤ 1. Define

β0 = 0 and βi =
i∑

`=1

b` − a`
µ(A)

(28)

and note that βk = 1. Then from (26) we have

E

[∫ 1

0

(X(t)− E[X(t)|U ∈ A])2 dt

∣∣∣∣U ∈ A] (29)

≥
k∑
`=1

∫ b`

a`

Pr(U ≤ t|U ∈ A)(1− Pr(U ≤ t|U ∈ A)) dt (30)

=
k∑
`=1

∫ b`

a`

(
β`−1 +

t− a`
µ(A)

)(
1− β`−1 −

t− a`
µ(A)

)
dt. (31)

Performing the change of variable

s = β`−1 +
t− a`
µ(A)

, (32)

the quantity in (31) equals

k∑
`=1

∫ β`

β`−1

s(1− s) ds · µ(A) =

∫ 1

0

s(1− s) ds · µ(A) (33)

=
µ(A)

6
. (34)

To handle the general case, let {An}∞n=1 be a sequence of sets, each of which is a finite
union of intervals, such that [11, Theorem 1.20]

lim
n→∞

µ(A ∩ Acn) + µ(An ∩ Ac) = 0. (35)



Then for each t,

lim
n→∞

Pr(U ≤ t|U ∈ An) = lim
n→∞

µ([0, t] ∩ An)

µ(An)
(36)

=
µ([0, t] ∩ A)

µ(A)
(37)

= Pr(U ≤ t|U ∈ A). (38)

It follows by dominated convergence that∫ 1

0

P (U ≤ t|U ∈ A)(1− Pr(U ≤ t|U ∈ A)) dt (39)

= lim
n→∞

∫ 1

0

P (U ≤ t|U ∈ An)(1− Pr(U ≤ t|U ∈ An)) dt (40)

≥ lim
n→∞

µ(An)

6
=
µ(A)

6
, (41)

which establishes (23) and further implies that (23) holds with equality if A is an
interval. Applying this to the distortion,

D(f) = E

[∫ 1

0

(X(t)− E[X(t)|f(X)])2 dt

]
=
∞∑
i=1

Pr(U ∈ Ai)E
[∫ 1

0

(X(t)− E[X(t)|U ∈ Ai])2 dt

∣∣∣∣U ∈ Ai]
≥

∞∑
i=1

Pr(U ∈ Ai) ·
µ(Ai)

6

=
∞∑
i=1

µ(Ai)
2

6
,

with equality if all of the (nonempty) Ai are intervals. Since H(f) depends on the
{Ai} only through {µ(Ai)}, it follows that we can restrict attention to encoders
that quantize U to intervals. Writing pi = µ(Ai), we can then express the entropy-
distortion tradeoff as

H(∆) = inf
{pi}∞i=1

−
∞∑
i=1

pi log pi

subject to pi ≥ 0 for all i
∞∑
i=1

pi = 1

∞∑
i=1

p2
i

6
≤ ∆.



This is also the entropy-distortion tradeoff for the problem of quantizing a unif[0, 1]
random variable subject to an L1 distortion constraint of 3∆/2, assuming that all of
the quantization cells are intervals. The latter problem is solved by a more general
result of György and Linder [15], from which the conclusion follows.

A plot ofH(∆) is included in Fig. 2. Note that, unlike the rate-distortion function,
the entropy-distortion function is not guaranteed to be convex and indeed it is not
in this case. It reaches its lower convex envelope, which we denote by LCE(H(·)),
at points of the form (logM, 1/(6M)) [15, Corr. 6]. These points are achieved by
encoders that quantize U to one of several equal-sized intervals. In particular, for any
λ > 0, minimizers of the Lagrangian

min
f

H(f) + λ ·D(f) (42)

are encoders of this type. Likewise, since LCE(H(·)) describes the entropy-distortion
tradeoff of randomized encoders, the best randomized encoders are those that ran-
domly toggle among deterministic encoders that uniformly quantize U .

Although Theorem 2 was motivated by a desire to characterize the best variable-
rate encoders, it implies the following characterization of the best fixed-rate encoders.

Corollary 2. Define an M -encode for the sawbridge as an encoder with the property
that the support of f(X) has cardinality M or less. The minimum distortion among
all M-codes is 1

6M
, which is achieved by an encoder that quantizes U uniformly to M

different values.

Proof. The encoder f that uniformly quantizes U toM cells achievesD(f) = 1/(6M).
Any other encoder that quantizes U into at most M cells must have entropy at most
logM and therefore, by Theorem 2, distortion at least 1/(6M).

Theorem 2 also implies a simple high-rate characterization.

Corollary 3. For the sawbridge,

lim
∆→0

∣∣∣∣H(∆)− log
1

6∆

∣∣∣∣ = 0. (43)

Proof. Define the function M(∆) as b 1
6∆
c. Then 1

6(M(∆)+1)
< ∆ ≤ 1

6M(∆)
, so by the

monotonicity of H(·) and Theorem 2,

logM(∆) ≤ H(∆) < log(M(∆) + 1). (44)

Since 6∆M(∆)→ 1, this implies the result.

Note that this corollary implies thatH(∆)/ log 1
6∆
→ 1 but is significantly stronger.

Next we shall see that a compressor that follows the classical approach based on the
KLT is far from meeting this optimal performance at high rates.



4 KLT-Based Compression

The classical approach to compressing a source such as the sawbridge is to uniformly
quantize and separately entropy-code a subset of the KLT coefficients. Specifically,
given a target distortion ∆, define the constants

D =
∆2π2

4
(45)

K =

⌈
1

π
√
D

⌉
(46)

δ =

√
12γ

K
(47)

where γ > 0 is the unique solution to the fixed-point equation tan-1(π
√
γ) = 1

π
√
γ
.

Note that the dependence on ∆ is suppressed in all three constants. Consider the
stochastic encoder f∆ that quantizes the first K coefficients of the KLT to resolution
δ using random dither. That is,

f∆(X) =

(⌊
Y`
δ

+ U`

⌉
, ` ∈ {1, . . . , K}

)
, (48)

where U1, . . . , UK are i.i.d. unif[−1/2, 1/2] and b·e denotes rounding to the nearest
integer. The U1, . . . , UK represent side randomness that is independent of the source
and available when decoding. We first show that f∆ achieves distortion ∆.
Lemma 1. The encoder f∆ satisfies D(f∆) ≤ ∆ for all 0 < ∆ < 1/6.
Proof. Consider the decoder that reproduces Y` from the encoded representation and
U` via

Ŷ` :=

{
λ`

λ`+δ2/12

(⌊
Y`
δ

+ U`
⌉
− U`

)
· δ if ` ≤ K

0 if ` > K.
(49)

That is, the decoder uses U` only to subtract the effect of the dither and otherwise uses
a linear estimator. Dithered quantization is known to be equivalent to an additive-
noise channel [16]:(

Y`,

(⌊
Y`
δ

+ U`

⌉
− U`

)
· δ
)

d
= (Y`, Y` + δ · U`) ` ≤ K. (50)

Thus the distortion satisfies

D(f∆) ≤
∞∑
`=1

(Ŷ` − Y`)2 (51)

=
K∑
`=1

(Ŷ` − Y`)2 +
∞∑

`=K+1

λ` (52)

=
1

K2

K∑
`=1

γ

1 + γπ2`2/K2
+

∞∑
`=K+1

1

π2`2
(53)

≤ 1

K

∫ 1

0

γ

1 + γπ2x2
dx+

∫ ∞
K

1

π2x2
dx. (54)



Evaluating the two integrals (using the fact that tan-1(x) is the antiderivative of
1/(1 + x2)) and using (46) and (45) gives the conclusion.

Since f∆(·) is a stochastic encoder that achieves distortion ∆, it follows that

LCE(H(·))(∆) ≤ H(f∆|{U`}) ≤
K∑
`=1

H

(⌊
Y`
δ

+ U`

⌉∣∣∣∣U`) =: H(∆). (55)

Note that H(∆) is the rate that is achievable if the quantized components are com-
pressed separately, as is typically done in practice. When compressing a stationary
Gaussian process over a long horizon the analogue of the H(∆) bound is provably
near-optimal at high rates (combining [5, Sec. 5.6.2] and [4, Sec 4.5.3]). Comparing
the following result with Corollary 3 shows that for the sawbridge, this bound is poor
in the high-rate regime.

Theorem 3. Let s(·) denote the arcsine density over [−
√

2,
√

2], i.e.,

s(x) =
1

π
√

(
√

2− x)(
√

2 + x)
, (56)

and let ux(·) denote the uniform density over [−x/2, x/2]. Then

H(∆) =
K∑
`=1

[
h(s(·) ? u√12γπ`/K(·))− log

π`
√

12γ

K

]
, (57)

and as a result,

lim
∆→0

∆ ·H(∆) =
2

π2
·
(∫ 1

0

h(s(·) ? uπx√12γ(·)) dx− log(π
√

12γ/e)

)
, (58)

where h(·) denotes differential entropy and ? denotes convolution.

Proof. Due to the dithering, the discrete entropy H(bY`/δ + U`e |U`) can be written
as a mutual information [17, Theorem 1]

H(bY`/δ + U`e|U`) = I(Y`;Y` + δU`) (59)

= h(Y` + δU`)− log(
√

12γ/K). (60)

Let Y have the arcsine distribution in (56). Then Y` is identically distributed with
Y/(π`), so we have

h(Y` + δU`) = h(Y + π`δU`)− log(`π) (61)
= h(s(·) ? u√12γπ`/K(·))− log(`π). (62)



This yields an exact expression for ∆ ·H(∆):

∆ ·H(∆) = ∆
K∑
`=1

[
h(s(·) ? u√12γπ`/K(·))− log

π`
√

12γ

K

]
(63)

= (K∆)
K∑
`=1

[
h(s(·) ? u√12γπ`/K(·))− log

`

K
− log

√
12γπ2

]
1

K
(64)

→ 2

π2
·
(∫ 1

0

h(s(·) ? uπx√12γ(·)) dx−
∫ 1

0

log x dx− log(
√

12γπ2)

)
, (65)

where the convergence of the middle term follows from the monotone convergence
theorem and the convergence of the first term follows from the dominated convergence
theorem, which ensures that h(s(·) ? uy(·)) is continuous in y for y > 0 and hence
Riemann integrable (since it is bounded if y is bounded). The first equation establishes
Eq. (57). The antiderivative of log x is x log x − (log e)x, so the second integral
evaluates to − log e, yielding Eq. (58).

5 Neural-Network-Based Compression

We compare the performance of experimentally-trained ANNs against the optimal
entropy-distortion tradeoff in Theorem 2 and various linear-transform-based schemes.
We follow the approach summarized by Ballé et al. [1]. To represent the sawbridge
digitally, we sample t at 1024 equidistant points between 0 and 1; thus, each realization
is represented as a 1024-dimensional vector. Due to this discretization, only a finite
number of realizations are possible, and we took care to keep this number high enough
such that none of the transform codes were able to exploit it. We optimize over three
sets of model parameters: the weights and biases of an analysis (f) and synthesis (g)
transform, both of which are represented by ANNs, as well as the parameters of a
non-parametric entropy model p. Note that we do not assume that the analysis and
synthesis transforms form exact inverses of each other; not only would this be difficult
to enforce with ANNs, it is also not necessarily optimal. We employ ANNs of three
layers, with 100 units each (except for the last), and leaky ReLU as an activation
function (except for the last), for each of the transforms. We perform uniform scalar
quantization of the transform coefficients, and use an entropy model that assumes
independence between each of the latent dimensions; i.e., each transform coefficient
is assumed to be encoded separately. The objective is to minimize the Lagrangian in
Eq. (42), as in Ballé et al. [1].

To make the comparison with linear transform coding schemes fair, we optimize
linear transforms using the same methodology (linear transforms are special cases of
ANNs, with just one layer). For a comparison with specified orthonormal transforms,
we express the analysis transform as the composition of a fixed orthonormal matrix
with a trainable diagonal scaling matrix (and analogously for the synthesis transform,
in reversed order). The scaling enables uniform quantization with different effective
step sizes in each latent dimension.
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Figure 2: Empirical entropy–distortion plots for transform codes constrained to discrete
cosine transform (DCT), Daubechies 4-tap wavelet (Daub4), Karhunen–Loève transform
(KLT), arbitrary linear transforms, and nonlinear transforms implemented by ANNs. We
also plot the entropy–distortion function of the source. The bottom panel shows the same
data, zoomed in to the low-rate regime.

Empirical results are plotted in Fig. 2. Each point in the plots represents the
outcome of one individual optimization of the Lagrangian in Eq. (42) with a particular
predetermined value of λ, and with a predetermined constraint on the transforms (as
described above). We spaced λ logarithmically in order to cover a wide range of
possible trade-offs. Both H and D are computed as empirical averages over 107

source realizations, where H represents the cross-entropy between the fitted entropy
model p and the empirical distribution of the coefficients, and D is mean squared
error across t. The top panel in the figure illustrates that the growth rate of the
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Figure 3: Empirical entropy–distortion plot for transform codes constrained to Karhunen–
Loève transform (KLT) with/without dithered quantization (DQ). We also plot the entropy–
distortion function of the source, and the bound developed in (58).

entropy of the linear transform codes is highly suboptimal, especially when the linear
transform is further constrained to coincide with a fixed orthogonal transform such
as the DCT, KLT, or a wavelet transform. In the bottom panel, we observe that
the nonlinear transform code is essentially optimal. Since the transform codes are
optimized for the Lagrangian, they settle into the “kinks” of the entropy–distortion
function, as discussed in Section 3 (note that not all of the kinks are occupied; this is
due to the pre-determined spacing of λ). As predicted by the theory, we find that a
transform code with a linear analysis transform and a nonlinear synthesis transform,
optimized with the same method, performs the same as the nonlinear code plotted in
the figure (not shown).

Inspection of the latent-space activations as well as the entropy model reveal
that linear transforms require successively larger numbers of latent dimensions as
the rate increases. Nonlinear codes, on the other hand, use only a small number of
latent dimensions (additional dimensions allowed for by the experimental setup are
collapsed to zero-entropy distributions by the optimization procedure), implying that
they successfully discover the low-dimensional structure of the source. In fact, we find
that when constraining the latent space to a single dimension, the nonlinear codes do
just as well. A simple explanation for why they may choose to use more dimensions
in some cases is that an entropy model consisting of a single uniform distribution
over a discrete set of states can be factorized into a product of multiple uniform
distributions, as long as the number of states is not prime.

To illustrate the optimal KLT-constrained code from Section 4, and to verify that
our optimization methodology is valid for linear codes, we plot H(∆) from Eq. (57)
and the optimal tradeoff, H(∆), along with empirical results for a KLT-constrained
code with and without dithered quantization, in Fig. 3. Note that H(∆) and the



curve for dithered quantization are quite close, especially at high rates.
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