
ar
X

iv
:2

11
1.

00
37

6v
2

 [
cs

.D
S]

 1
3

Ja
n

20
22

Computing Matching Statistics on Repetitive Texts

Younan Gao

Dalhousie University
Halifax, Canada
yn803382@dal.ca

Abstract

Computing the matching statistics of a string P [1..m] with respect to a text T [1..n] is a
fundamental problem which has application to genome sequence comparison. In this paper,
we study the problem of computing the matching statistics upon highly repetitive texts.
We design three different data structures that are similar to LZ-compressed indexes. The
space costs of all of them can be measured by γ, the size of the smallest string attractor
[STOC’2018] and δ, a better measure of repetitiveness [LATIN’2020].

Introduction

The matching statistics, MS, of a pattern P [1..m] with respect to a text T [1..n] is an
array ofm integers such that the i-th entry MS[i] stores the length of the longest prefix
of P [i..m] that occurs in T . For example, given that T =“aaabbbcc” and P =“ccabb”,
matching statistics MS of P w.r.t. T stores an array of 5 integers, [2, 1, 3, 2, 1]. Orig-
inally, the concept, matching statistics, was introduced by Chang and Lawler [1] to
solve the approximate string matching problem, i.e., given text T [1..n] and pattern
P [1..m], the problem asks for all the locations in the text where P [1..m] appears,
with at most k differences (including substitutions, insertions, and deletions) being
allowed, where k is not necessarily a constant. The approximate string matching
plays an important role in computational genomics. In terms of sequence alignment,
reads might not match the genome exactly because of the sequencing error, natural
variance (i.e., differences in DNA among individuals of the same species), etc.; for
that reason, the algorithms for the exact string matching might not be sufficient, and
the approximate string matching is needed. Matching statistics is also useful in a
variety of other applications such as finding the longest common substring between
P and T [2].

A textbook solution [2] shows that a suffix tree data structure augmented with
suffix links on the tree nodes can be used to compute matching statistics in O(m lg σ)
time, where σ represents the size of the alphabet that T is drawn from; the data
structure uses O(n) words of space. Ohlebusch et al. [3] solved this problem using
a fully compressed text indexes built upon T , which consist of a wavelet tree data
structure that supports the LF-Mapping and the backward search, a LCP-array, and
a data structure that supports fast-navigating on a LCP-interval tree. Their indexes
occupy n lg σ+4n+o(n lg σ) bits of space and achieve the same computing time as of
the textbook solution. In the genomic databases, texts are always massive and highly
repetitive; however, the compressed indexes based on statistical entropy might not
capture repetitiveness [4]. Bannai et al. [5] considered to compute MS for a highly

http://arxiv.org/abs/2111.00376v2
yn803382@dal.ca

repetitive text. They augmented a run-length BWT with O(r) words of space, where
r is the number of runs in the BWT for T , and their indexes support computing MS
in O(m lg lg n) time, assuming that each element in T can be accessed in O(lg lg n)
time. Let z denotes the number of phrases in Lempel-Ziv parsing (LZ). It has been
proved that r = O(z lg2 n) holds for every text T [6]. However, to our knowledge,
LZ-based indexes on computing MS have not been known prior to this work.

Recently, new compressibility measures such as γ, the size of the smallest string
attractor, and δ, a better measure of repetitiveness have been proposed. Both new
measures better capture the compressibility of repetitive strings. It has been proved
that δ ≤ γ ≤ z = O(δ lg n

δ
) [7, 8]. In this paper, we design the first string attractor

based indexes (which is also workable upon LZ-parsing) to support computing match-
ing statistics; the space cost of the indexes is measured by γ and δ. The computation
time using string attractor based indexes might not be as efficient as the one using
BWT-based indexes, but the indexes in the prior category always have an advantage
of space cost.

Our Results. The results can be summarized as Theorem 1. In the first solution,
we apply a data structure similar to LZ-compressed indexes. Instead of using LZ
parsing, we define the phrases upon the smallest string attractor. We store a Patricia
tree for the reversed phrases and another one for the suffixes following the phrase
boundaries. To access text T [1..n] within compressed space, we apply the string
indexing data structure by Kociumaka et al. [8], whose space cost is measured by δ.
We give a simple and practical algorithm that reduces the problem of computing MS
into O(m2) times of 2D orthogonal range predecessor queries upon γ points on a grid.
In the second solution, we apply the data structure framework by Abedin et al. [9].
Originally, they used the framework to find the longest common substring (LCS)
between P and T . Naively, computing MS of P [1..m] can be reduced to m times of
LCS queries. Given that each LCS query can be computed in O(m lg γ lg lg γ) time,
the naive method would take O(m ·m · lg γ lg lg γ) time. We adjust their framework
to computing MS and improve the query time to be O(m · (m+ lg γ lg lg γ)).

Theorem 1 The matching statistics of a P [1..m] with respect to a text T [1..n] can be
computed (i) in O(m2 lgǫ γ+m lgn) time using an O(δ lg n

δ
) word space data structure,

or (ii) in O(m2 +m lg γ lg lg γ +m lg n) time using O(γ lg γ + δ lg n
δ
) word space data

structure, in which ǫ is any small positive constant, γ is the size of the smallest string
attractor, and δ is max{S(k)/k, 1 ≤ k ≤ n}, where S(k) denotes the number of
distinct k-length sub-strings of T .

If text T [1..n] is drawn from constant-size alphabet, we can further improve the
computation time to be O(m2 + m lg n) time using an O(γ lg γ + δ lg n

δ
) word data

structure. The third solution can be achieved by combining the first and second
solution: i) when m = Ω(lg γ lg lg γ), we can directly apply the second solution to
achieve the target bound for the query time; ii) otherwise, we update the first solution
using the technique solving the ball inheritance problem [10] to improve the query
time without decreasing the space cost. Due to the space limitation, the proof of the
third solution is deferred to the full version of this paper.

Preliminaries

This section introduces the notations and the previous results used throughout this
paper. Let ǫ denote any small positive constant, and all problems are studied under
the standard word RAM model.

Compressibility Measures. We give the precise definitions of the compressibility
measures γ and δ that are mentioned before.

Definition 1 [7] A string attractor of a string T [1..n] is a set of γ′ positions Γ′ =
{j1, · · · , jγ′} such that every substring T [i..j] has an occurrence T [i′..j′] = T [i..j] with
jk ∈ [i′, j′] for some jk ∈ Γ′.

Let Γ∗ denote {1,Γ, n}, where Γ denotes the smallest size string attractor storing
positions sorted increasingly. For each 2 ≤ i ≤ |Γ∗|, we call substring T [Γ∗[i−1]..Γ∗[i]]
a parsing phrase. Let γ denote the size of Γ. It follows that given any substring T [i..j],
there must be an occurrence T [i′..j′] = T [i..j] such that T [i′..j′] crosses the phrase
boundary. Kociumaka et al. [8] defined a new measure δ, which is even smaller than
γ. Furthermore, measure δ, different from γ, can be computed in linear time.

Definition 2 [8] Let dk(S) be the number of distinct length-k sub-strings in S. Then
δ = max{dk(S)/k : k ∈ [1..n]}.

Induced-Check and Find Partner. Let T1 and T2 be two trees on the same set
of n leaves. A node from T1 and a node from T2 are induced together if they have a
common leaf descendant [11]. The partner operation [9] is defined upon the inducing
relationship.

Definition 3 [9] Given a pair of trees T1 and T2, the partner of a node x ∈ T1 w.r.t
a node y ∈ T2, denoted by partner(x/y), is the lowest ancestor, y′, of y such that x
and y′ are induced. Likewise, partner(y/x) is the lowest ancestor, x′, of x such that
x′ and y are induced.

It has been proved that the induced relationship can be solved using 2D orthogonal
range emptiness queries, while finding the partner can be reduced to 2D orthogonal
range predecessor/successor queries.

Lemma 1 [9] (Induced-Check). Given two nodes x, y, where x ∈ T1 and y ∈ T2, we
can check if they are induced or not i) in O(lg lg n) time using an O(n lg lg n) word
space structure, or ii) in O(lgǫ n) time using an O(n) word space structure.

Lemma 2 [9] (Find Partner). Given two nodes x, y where x ∈ T1 and y ∈ T2,
we can find partner(x/y) as well as partner(y/x) i) in O(lg lg n) time using an
O(n lg lg n) word space structure, or ii) in O(lgǫ n) time using an O(n) word space
structure.

String Indexing. Recently, Kociumaka et al. [8] showed that within O(δ lg n
δ
)

words of space, one can represent and index a string of n characters.

Lemma 3 [8] Given a string T [1..n] with measure δ, one can build an O(δ lg n
δ
) word

space data structure in O(n lgn) expected preprocessing time to support retrieving any
substring T [i..i+ ℓ] in O(ℓ+ lg n) worst-case time.

Computing MS within O(δ lg n
δ
) Words of Space

This section presents our most space-efficient solution for computing MS. The data
structure is similar to LZ-compressed indexes used for computing Longest Common
Substrings [11], but instead of using phrases in LZ parse, we use the parsing phrases
defined upon the smallest size string attractor of T [1..n]: we store one Patricia tree
Trev for the reversed parsing phrases; we store another Tsuf for the suffixes of T
starting at different phrase boundaries. Those γ phrases, T [i+ 1..j], and their corre-
sponding suffixes, T [j + 1..n], are sorted in the lexicographic order, respectively. We
construct a γ×γ grid: we add a point, (x, y), on the grid iff the lexicographically x-th
phrase T [i + 1..j] is followed by the lexicographically y-th suffix T [j + 1..n] in text
T ; we assign the x-coordinate of the point to reversed phrase1 T [i + 1..j]rev and the
y-coordinate of the point to the suffix T [j+1..n]. It follows that all points on the grid
are in rank space, i.e., they have coordinates on the integer grid [γ]2 = {1, 2, · · · , γ}2.
We store a linear space data structure implemented by part ii) of Lemma 1 to support
2D orthogonal range emptiness queries as induced-check and a linear space data struc-
ture by part ii) of Lemma 2 to support 2D orthogonal range predecessor/successor
queries as partner-finding upon the γ points on the grid, respectively. Finally, we
need a data structure supporting substring queries in T , implemented by Lemma 3.
Storing the string attractor, both Patricia trees, and the data structures for orthogo-
nal range searching uses O(γ) words of space, while the string indexing data structure
by Lemma 3 requires O(δ lg n

δ
) words. Overall, the space cost is O(δ lg n

δ
) words, since

γ = O(δ lg n
δ
) [8].

As the pattern has m entries, P can be partitioned into m−1 different prefix and
suffix pairs—that is, P [1..i] and P [i+ 1..m], for each 1 ≤ i ≤ m− 1. For each prefix
and suffix pair, we can use Lemma 4 to find the loci of (P [1..i])rev in Trev and the loci
of P [i+ 1..m] in Tsuf , respectively.

Lemma 4 Given a pattern P [1..m], for all 1 ≤ i ≤ m − 1, we can find the longest
common prefix (LCP) of (P [1..i])rev and the path label of the node where the search
in Trev terminates, and the LCP of P [i+ 1..m] and the path label of the node where
the search in Tsuf terminates in O(m2 +m lgn) time.

Proof : For each 1 ≤ i ≤ m − 1, a query need to access T to check that the path
labels of the nodes where the searches terminate are really prefixed by some prefixes
of (P [1..i])rev and P [i + 1..m], which can be solved by the substring queries using
Lemma 3. As there are m− 1 different pairs of (P [1..i])rev and P [i+ 1..m], and the

1Given a string s =“abcd”, the formula srev represents the string “dcba”.

‡ComputingMS1(P [1..m], Tsuf , Trev)

1: MS[1..m]← {0 · · · 0}
2: for i = 1, 2, . . . ,m− 1 do

3: Find loci1 of (P [1..i])rev in Trev

4: Find loci2 of (P [i + 1..m]) in Tsuf

5: v ← loci1
6: while v is not NULL do

7: u← partner(v/loci2)
8: vp← parent(v)
9: j ← len(str(v))

10: while j > len(str(vp)) do

11: ℓ← j + len(str(u))
12: if ℓ > MS[i− j + 1] then
13: MS[i− j + 1]← ℓ
14: j ← j − 1
15: v ← vp

‡ComputingMS2(S[1..m])

1: MS[1..m]← {0 · · · 0}
2: max← 0
3: for i = 1, 2, . . . ,m− 1 do

4: if max ≤ S[i] then
5: max← S[i]
6: MS[i]← max
7: if max > 0 then

8: max← max− 1

total number of characters that each pair of them contain is m, the searching time is
O(m2 +m lg n). �

Next, we present the query algorithm. For 1 ≤ i ≤ m−1, we search for (P [1..i])rev

in Trev and for P [i+1..m] in Tsuf ; access T to find the longest common prefix (LCP)
of (P [1..i])rev and the path label of the node where the search in Trev terminates,
and the LCP of P [i+ 1..m] and the path label of the node where the search in Tsuf

terminates; take loci1 and loci2 to be the loci of those LCPs. For each node, v,
on the path from loci1 to the root node of Trev, we retrieve the lowest ancestor, u,
of loci2 in Tsuf such that u is induced together with v, i.e., u = partner(v/loci2).
Given any tree node w, we use str(w) to denote the path label of w 2. Observe that
3 (str(v))rev.str(u) (or P [i−len(str(v))+1..i+len(str(u))]) might be the longest
prefix of P [i−len(str(v))+1..m] that occurs in T ; thus, we setMS[i−len(str(v))+1]
to be len(str(v).str(u)) temporarily. For each k ∈ [1..m−1] and k ≤ j ≤ m−1, the
longest prefix of P [k..m] might appear somewhere in T crossing the phrase boundary
whose immediately left phrase ends with P [j] and immediately right phrase starts with
P [j+1]; since there are at most m−k+1 different types of phrase boundaries, entry
MS[k] will finally store the length of the longest prefix of P [k..m] that appears in T
after at most m−k+1 times of updates. The algorithm is shown in ComputingMS1.

We analyze the query time of the algorithm: As shown in Lemma 4, all locus of
LCPs can be found in O(m2 +m lg n) time; for each 1 ≤ i ≤ m − 1, the while loop
at line 6 is operated O(i) times, and all O(i) iterations will call totally O(i) times

2If v (resp. u) is the loci, then the longest matched prefix of (P [1..i])rev (resp. P [i+1..m]) might
be a proper substring of the path label of v (resp. u). In that case, we let str(v) (resp. str(u))
denote the longest matched prefix of (P [1..i])rev (resp. P [i + 1..m]). And |str(root)| is always 0.

3For example, “abc”.“efg”=“abcefg”.
‡W.l.o.g., we assume that m > 1. MS[m] is set to 1, if the loci of P [m] on Tsuf is a non-root

node; Otherwise, MS[m] is set to 0.

of partner-finding queries and fill at most i entries of MS; if only O(γ) words of
space is allowed, each partner-finding query requires O(lgǫ γ) time as shown in part
ii) of Lemma 2. The overall query time is O(m2 +m lg n +

∑m−1
i=1 O(i · lgǫ γ + i)) =

O(m2 lgǫ γ +m lg n). The first solution completes.

Towards Improving the Computing Time

In this section, we are trying to get rid of factor lgǫ γ from term m2 lgǫ γ shown in
the computing time before. As a result, the space cost of the new data structure
gets worse slightly. Before showing our new solutions, we introduce a new definition
locally potential maximal exact matching (LPMEM):

Definition 4 Given a phrase boundary k′ ∈ Γ, we refer to a substring P [i..j] as a
locally potential maximal exact matching (LPMEM) that crosses the phrase boundary
at position k′ if substring P [i..j] with an occurrence T [i′..j′] such that i′ ≤ k′ < j′

holds and the occurrence can neither be extended to the left nor to the right.

Let v (resp. u) denote an ancestor node of loci1 (resp. loci2) in Trev (resp.
Tsuf); let Path(v, loci1, Trev) denote the path between v and loci1 on Trev; let
Path(u, loci2, Tsuf) denote the path between u and loci2 on Tsuf . It follows that
if i) v and u are induced together; ii) the child of v on Path(v, loci1, Trev) does
not induce with node u in Tsuf ; iii) and the child of u on Path(u, loci2, Tsuf) does
not induce with node v in Trev, then v and u together induce a LPMEM, which is
(str(v))rev.str(u).

Basic Properties of LPMEMs. We discuss the properties of LPMEMs. Those
properties will be useful for designing the data structures and the query algorithm
for the second solution. For simplicity, we call all sub-strings of P [1..m] that appear
as LPMEM’s in text T [1..n] the LPMEMs of P .

Lemma 5 Given a pattern P [1..m] and all occ LPMEMs of P , the matching statis-
tics of P can be computed in O(occ+m) time.

Proof : Assume that all occ LPMEMs have been found, and each LPMEM can be
represented by its starting position, i, in P and its length, ℓ(i). Let S[1..m] be
an array, in which entry S[i], for each 1 ≤ i ≤ m, stores ℓ(i) if P [i, i + ℓ(i) − 1]
is a LPMEM. If there are multiple LPMEMs sharing the same starting position, i,
in P , S[i] stores the largest length. It follows that for each 1 ≤ i ≤ m, MS[i] is
equal to max(MS[i − 1] − 1, S[i]), where MS[0] is 0. See ComputingMS2 for the
algorithm. Computing array S[1..m] takes O(occ + m) time and ComputingMS2
requires m primitive steps; hence, the computation time is O(occ+m). Note that 4

occ ≤ m(m− 1)/2. �

4A pattern P with m characters can have at most
(

m
2

)

sub-strings that appear as LPMEM’s in
text T [1..n].

We compute the heavy path decomposition [12] of Trev and Tsuf mentioned before.
For a node u on a heavy path H , let hp root(u) (resp. hp leaf(u)) denote the highest
(resp. lowest) node of H . We call the highest node of each heavy path light. As Trev

and Tsuf each has γ leaves, a path from the root to any leaf on Trev or Tsuf traverses at
most O(lg γ) light nodes. We give a new definition special skyline node list borrowing
the ideas of skyline node list from [11] and special nodes from [9].

Definition 5 For each light node, w ∈ Tsuf , we identify a set, SpecialLeaves(w), of
leaf nodes in Trev and a set, SpecialSkylineList(w), of internal nodes in Trev as fol-
lows: leaf node l ∈ Trev is special iff l and w are induced with each other; we define spe-
cial skyline node v ∈ SpecialSkylineList(w) if (i) v is a proper ancestor of lca(x, y)
for some special leaves x and y, (ii) and the child of v on Path(v, lca(x, y), Trev) does
not induce with partner(v/hp leaf(w)). Following [9], we identify set Special(w) of
nodes in Trev, consisting of the special leaves of w and their lowest common ancestors.

As shown before, for each 1 ≤ i ≤ m− 1, we search for (P [1..i])rev in Trev and for
P [i+1..m] in Tsuf ; take loci1(i) and loci2(i) to be the locus of those LCPs. Let u and
v denote some ancestors nodes of loci1(i) and loci2(i) on Trev and Tsuf , respectively;
let root1 (resp. root2) denote the root node of Trev (resp. Tsuf). Henceforth, if u
and v induce a LPMEM5, (str(u))rev.str(v), then u and v are referred to as the
the beginning and the ending nodes of that LPMEM. Observe that for the LPMEMs
crossing the phrase boundary between P [i] and P [i+ 1], their beginning nodes stay
on Path(partner(loci2(i)/loci1(i)), loci1(i), Trev), and their ending nodes stay on
on Path(partner(loci1(i)/loci2(i)), loci2(i), Tsuf)

Let w1, · · · , wk denote a sequence of light nodes on Path(root2, loci2(i), Tsuf),
sorted increasingly by the node depths, such that partner(loci1(i)/loci2(i)) is
contained in the heavy path rooted by w1, and wk is the lowest light node above
loci2(i). Similarly, let t1, · · · tk denote the nodes on Path(root2, loci2(i), Tsuf) such
that tk = loci2(i) and th = parent(wh+1) for h < k. Let αf be partner(tf/loci1(i))
and βf be partner(wf/loci1(i)), for each 1 ≤ f ≤ k.

Lemma 6 For each 1 ≤ f ≤ k, βf and partner(βf/loci2(i)) induce a LPMEM,
and αf and partner(αf/loci2(i)) induce a LPMEM.

Proof : Let u denote partner(αf/loci2(i)) in Tsuf . Since αf in Trev and tf in Tsuf

are induced together, u must be in the sub-tree of tf . Suppose that child c of αf

on Path(αf , loci1(i), Trev) is induced with u. As tf is an ancestor of u, tf in Tsuf

and c in Trev must be induced together, which contradicts with the claim that αf

is partner(tf/loci1(i)). Therefore, c can not be induced with u in Tsuf . Following
the definition of partner, the child of u on Path(u, loci2(i), Tsuf) cannot be induced
with αf ; hence, u and αf induce a LPMEM. The claim that partner(βf/loci2(i))
and βf induce a LPMEM follows a similar argument. �

5To compute the matching statistics, reporting a LPMEM (str(u))rev.str(v) verbatim is unnec-
essary. What we need are its starting position in P [1..m], which is i − len(str(u)) + 1, and the
length of the LPMEM, which is len(str(u)) + len(str(v)).

Lemma 7 Given a node u on Trev and a node v on Tsuf such that u and v induce a
LPMEM, if v ∈ Path(wf , tf , Tsuf) for some 1 ≤ f ≤ k, then u ∈ Path(αf , βf , Trev).

Proof : The proof is similar to the one shown as [9, Lemma 12]. Suppose u is a
proper ancestor of αf . Since αf and tf are induced together, node v, as an ancestor
of tf , is also induced with αf . Due to this, u and v cannot induce a LPMEM, which
generates a contradiction; therefore, u must be in the sub-tree of αf . Suppose that u
is in the proper sub-tree of βf . Since u and v are induced together, and since v is in
the sub-tree rooted by wf , u and wf are induced together, which contradicts with the
claim that βf is partner(wf/loci1(i)). Therefore, u must be an ancestor of βf . �

Lemma 8 [9, Lemma 14] For each 1 ≤ f ≤ k and any x ∈ Path(αf , βf , Trev)/{αf},
partner(x/loci2(i)) = partner(x/tf) = partner(x/hp leaf(wf)) always holds.

For any node x ∈ {SpecialSkylineList(wf)\(αf ∪ βf)}, it follows that x and
partner(x/hp leaf(wf)) induce a LPMEM because of Lemma 8 and Definition 5.

Lemma 9 For each v ∈ SpecialSkylineList(wf), it follows that v ∈ Special(wf).

Proof : Let x and y be a pair of special leaves under v such that child c of v
on Path(v, lca(x, y), Trev) does not induce with partner(v/hp leaf(wf)). Since
partner(v/hp leaf(wf)) and v are induced together by some special leaf ℓ under the
sibling node of c, it follows that lca(x, ℓ) or lca(y, ℓ) is v, and v ∈ Special(wf). �

Lemma 10 Given a node u on Path(αf , βf , Trev) and an ancestor node v of loci2(i)
on Tsuf , if u and v induce a LPMEM, and u /∈ {SpecialSkylineList(wf)∪αf ∪βf},
then u = lca(ℓ, ℓ′) for some pair of ℓ, ℓ′ ∈ SpecialLeaves(wf).

Proof : Since βf and wf are induced together, and since u is a proper ancestor of
βf , there is a special leaf ℓ as the common descendant of βf and u. As u and v
induce a LPMEM, and as u is not αf , v = partner(u/loci2(i)) = partner(u/tf)
by Lemma 8. Since u and wf are induced together by ℓ, v must be a descendant
of wf . There is at least one leaf ℓ′ under u that makes u and v induced with each
other, and ℓ′ is a special leaf because it is induced with wf . If ℓ

′ and ℓ are the same,
then βf and v are induced together, which contradicts with the claim that u and
v induce a LPMEM. There are at least two special leaves ℓ and ℓ′ under u. Since
u /∈ SpecialSkylineList(wf), u = lca(ℓ, ℓ′). The proof completes. �

The Second Solution. We apply the induced sub-tree defined in [9, Definition 18]
to support finding LPMEMs. An induced sub-tree Trev(w) w.r.t a light node w ∈ Tsuf

is a tree having exactly |Special(w)| nodes such that i) each node l ∈ Special(w)
has a corresponding node l̂ in Trev(w); and ii) for each pair of ℓ, ℓ′ ∈ Special(w),
node lca(ℓ, ℓ′) in Trev has a corresponding node, as lca of ℓ̂ and ℓ̂′, in Trev(w). To
support finding LPMEMs, we revise the induced sub-trees as follows: For each internal
node v̂ of Trev(w), we maintain a pointer e0 pointing to its lowest proper ancestor v̂′

(if exists) that belongs to SpecialSkylineList(w) and a pointer e1 pointing to its

corresponding node v in Trev; for each special skyline node v̂ of Trev(w), we maintain
a pointer e2 pointing to partner(v/hp leaf(w)) in Tsuf .

Since
∑

w |Special(w)| = O(γ lg γ) for all light nodes w ∈ Tsuf , all revised induced
sub-trees totally use O(γ lg γ) words of space. Abedin et al. [9, Lemma 19] showed
that given a node ℓ ∈ Special(w), one can find its corresponding node ℓ̂ in Trev(w) in
O(lg lg γ) time by maintaining an O(γ lg γ) word data structure. In addition, the data
structures introduced in the first solution are also required, occupying extra O(δ lg n

δ
)

words of space. The overall space cost is O(δ lg n
δ
) +O(γ lg γ) words.

We show how to find LPMEMs between P and T . By Lemma 4, we can find
locus loci1(i) and loci2(i) on Trev and Tsuf in O(m2 +m lg n) time for all 1 ≤ i ≤
m − 1. We compute partner(loci2(i)/loci1(i)) and partner(loci1(i)/loci2(i)).
Each partner operation takes O(lg lg γ) time by part i) of Lemma 2. If loci1(i) and
loci2(i) are induced with each other, then there is only one LPMEM crossing the
phrase boundary between P [i] and P [i+1], which is (str(loci1(i)))

rev.str(loci2(i)),
and we continue to search for LPMEMs crossing the phrase boundary between P [i+1]
and P [i + 2]. Otherwise, we iterate through Path(root2, loci2(i), Tsuf) to find the
light nodes w1, · · · , wk and nodes t1, · · · , tk as described before; compute αf and
βf for all 1 ≤ f ≤ k. Since β1 = partner(w1/loci1(i)) = loci1(i), and since
αk = partner(tk/loci1(i)) = partner(loci2(i)/loci1(i)), each of those LPMEMs
has its beginning node on Path(β1, αk, Trev). We traverse the path from β1 to αk. In
general, the beginning nodes on the sub-path from βf to αf consist of 3 parts: αf , βf ,
and some special nodes between αf (excluding αf) and βf (excluding βf). Finding
LPMEMs induced by αf and partner(αf/loci2(i)) or βf and partner(βf/loci2(i))
is straightforward, taking O(lg lg γ) time. There are 2k such LPMEMs, and finding
all of them takes O(lg γ lg lg γ) time, since k = O(lg γ).

It remains to find the LPMEMs with their beginning nodes between αf (excluding
αf) and βf (excluding βf). Given an internal tree node x, we use lMost(x) (resp.
rMost(x)) to denote the index of the leftmost (resp. rightmost) leaf descendant of
x. Since βf is partner(wf/loci1(i)), there exists at least a special leaf of Trev as
a descendant of βf that belongs to SpecialLeaves(wf), and we use ℓ to denote the
leftmost one. Let ℓ′ denote the rightmost special leaf among the first lMost(x) − 1
leaves of Trev and ℓ′′ denote the leftmost special leaf on the right-hand side of the
rMost(wf)-th leaf of Trev. It follows that the lowest special node above βf , denoted by
v, is the lower one between lca(ℓ′, ℓ) and lca(ℓ, ℓ′′). Once v is found, we check whether
it is the beginning node of some LPMEM: If the child of v on Path(v, loci1(i), Trev)
does not induce with partner(v/loci1(i)), then we report a LPMEM induced by v
and partner(v/loci1(i)). Since v is a special node, we find its corresponding node v̂
on Trev(w) in O(lg lg γ) time by [9, Lemma 19]. Following the pointer e0 stored at v̂,
we can find the lowest special skyline node, v̂′, above v̂. Note that v̂′ is the beginning
node of some other LPMEM. We can find that LPMEM following the pointers e1
and e2 stored at v̂′ in O(1) time. We repeat this procedure to iterate over each
special skyline node above v̂ until a node whose pointer e1 pointing to αf is found.
Each of ℓ, ℓ′, ℓ′′ can be found in O(lg lg γ) time by 2D orthogonal range successor

queries6, e.g., the leaf index of ℓ is the x-coordinate of the leftmost point in the
query range [lMost(βf), rMost(βf)]×[lMost(wf), rMost(wf)]. After finding the lowest
special node v̂, reporting the LPMEMs associated with SpecialSkylineList(wf)
takes O(occ(wf)) time, where occ(wf) denotes the number of reported LPMEMs. As
there are k different such different SpecialSkylineList(wf), finding occi LPMEMs
between loci1(i) and loci2(i) requires O(k lg lg γ+occi) = O(lg γ lg lg γ+occi) time,
since k = O(lg γ). Considering there are m− 1 different pairs of locus, loci1(i) and
loci2(i), finding all LPMEMs between P and T takes O(m lg γ lg lg γ + occ) time.
The overall query time is O(m2 +m lg γ lg lg γ +m lg n), since occ = O(m2). After
finding all the LPMEMs, we can use Algorithm 2 to compute the matching statistics.

Computing MS for a Text Drawn from Constant-Size Alphabet.

In the genomic databases, the constant-size texts arise frequently, e.g., the DNA
sequence is drawn from {A,C,G, T}. When the alphabet size is constant, we can
further improve the computation time to be O(m2 +m lg n), while maintaining the
overall space cost. In this section, we first give the third solution to the general case
such that T [1..n] is drawn from alphabet [σ]. In particular, the new solution achieves
the improved computation time when σ is a constant. The new solution will apply
rank and select operations from the succinct data structures.

Lemma 11 [13] Let A[1..n′] be an array of n′ characters drawn from alphabet [σ′].
There exists a data structure constructed upon A using O(n′ lg σ′) bits of space, sup-
porting rankc(A, i) queries in O(lg lg σ′) time and selectc(A, i) queries in constant
time, where rankc(A, i) counts the number of character c that appears in A[1..i], and
selectc(A, i) gives the position of the i-th occurrence of character c in the sequence.

As shown in the second solution, whenever m = Ω(lg γ lg lg γ), the query time
is bounded by O(m2 + m lg n); therefore, we only need to consider the case that
m = O(lg γ lg lg γ). We will modify the data structure used in the first solution
applying the technique that solves the ball inheritance problem [10].

Before showing the updated data structure, we review the query algorithm in the
first solution. Given a pair of locus loci1(i) and loci2(i) in Trev and Tsuf achieved
by searching for the longest prefixes of (P [1..i])rev and P [i + 1..m] in Trev and Tsuf ,
respectively, we iterate over each node v on Path(loci1(i), root1, Trev), and com-
pute partner(v/loci2(i)) to find the potential longest common prefix between P [i−
len(str(v))+1..] and T . As shown as [9, Lemma 10], operation partner(v/loci2(i))
can be reduced to a range emptiness query in the range [lMost(v), rMost(v)] ×
[lMost(loci2(i)), rMost(loci2(i))], finding the y-coordinate of the lowest point (a.k.a.
a range successor query) within [lMost(v), lMost(v)] × (rMost(loci2(i),+∞), and
finding the y-coordinate of the highest point (a.k.a. a range predecessor query)
within [lMost(v), rMost(v)] × (−∞, lMost(loci2(i))). We observe that: i) as v is
changed from loci1(i) to root1, the query range along y-axis is fixed; ii) given
any two nodes s and t on Path(root1, loci1(i), Trev), if s is an ancestor of t, then

6The 2D orthogonal range successor query is also used for answering the partner operation.

[lMost(t), rMost(t)] ⊂ [lMost(s), rMost(s)]. These observations can be used to im-
prove the overall query time for multiple partner-finding operations. We take the pre-
decessor query along y-axis within range [lMost(v), rMost(v)]×(−∞, lMost(loci2(i)))
for each node v on Path(loci1(i), root1, Trev) as an example to describe the solution,
while the 2D range emptiness queries and 2D range successor queries can be answered
similarly.

We number tree levels of Trev incrementally starting from the root level, which
is level 0; refer to the first lg1+ǫ γ tree levels on the top as active tree levels for any
small constant ǫ > 0. Let v denote any internal node of Trev on some active level; let
size(v) denote the number of leaves in the sub-tree rooted by v; let ℓ(v) denote its tree
level. We associate node v with a sequence S(v)[1..size(v)] storing the coordinates of
the points whose x-coordinates in the range [lMost(v), rMost(v)] and make sure these
points are sorted by their y-coordinates. Given sequences S(v), the predecessor query
along y-axis within [lMost(v), rMost(v)]× (−∞, lMost(loci2(i))) can be reduced to
finding the predecessor of lMost(loci2(i)) in one dimension, and any entry S(v)[j],
storing the point coordinates, can be accessed in constant time; however, storing all
array S(v)’s would occupy O(γ lg1+ǫ γ) words of space. For saving space, we only
store S(root1) at the root node, but we give a space-efficient data structure that
allows to access the point coordinates of any entry, S(v)[j], in constant time, for any
node v on active tree levels.

We use the technique that solves the ball inheritance problem in a reversed way.
Let τ be lgǫ γ. For simplicity, we assume that both 1/ǫ and τ are integers. We
assign a color, encoded by some integer, to each active level of Trev: Level-0 is colored
by 1/ǫ + 1, Level-(lg1+ǫ γ) is colored by 0, while any other Level-ℓ is colored by
c(ℓ), where c(ℓ) = max{c | (lg1+ǫ γ − ℓ) is a multiple of τ c and 0 ≤ c ≤ 1/ǫ + 1}.
At each internal node v on active tree levels, we store (τ − 1) · c(ℓ(v)) arrays of
skipping pointers, denoted by SP. For each 0 ≤ t ≤ c(ℓ(v)) − 1 and 1 ≤ k ≤ τ − 1,
array SP(v, t, k) has the same number of entries as of S(v); if point S(v)[j] is stored
in any array S(·) associated with nodes at level ℓ(v) + τ t · k, then the j-th entry
of array SP(v, t, k) stores the descendant, denoted by desc(v, t, k, j), of v at level
ℓ(v) + τ t · k containing the point S(v)[j], and the descendant is encoded by its rank
among all the descendants of v at the level ℓ(v) + τ t · k in the left-to-right order;
otherwise, entry SP(v, t, k)[j] is set to be −1. We use Lemma 11 to support O(1)-time
select over array SP(v, t, k). Recall that within array S(v) and S(desc(v, t, k, j)),
points are ordered by their y-coordinates; therefore, a selectSP(v,t,k)[j](SP(v, t, k), j

′)
query returns the array index of point S(desc(v, t, k, j))[j′] in array S(v), for each
1 ≤ j′ ≤ |S(desc(v, t, k, j))|. In general, to retrieve the point coordinates of any entry,
S(v)[j], we find the lowest ancestor v′ of v such that c(ℓ(v′)) > c(ℓ(v)), and then use

the query selectr(v)(SP(v
′, c(ℓ(v)), ℓ(v)−ℓ(v′)

τc(ℓ(v))
), j) to locate the array index of point

S(v)[j] in array S(v′), where r(v) denotes the rank of v among all the descendants of
v′ at the level ℓ(v). One hop7 from v to v′ increases the node color by at least one.
Therefore, after at most 1/ǫ+1− c(ℓ(v)) hops, we reach the root level, where we can

7Since there is unique ancestor v′ of v that v can hop over to, we simply store a pointer that
pointing to v′ and the rank r(v) w.r.t. v′ at node v in the preprocessing stage.

immediately retrieve the point coordinates stored in S(root1). Since each select

query takes constant time, the overall query time is O(1).
We analyze the space cost for storing all SP(v, t, k)’s. As the size of the alphabet

that T [1..n] is drawn from is σ, the out-degree of each node in Trev is at most σ.
There are at most min(στ t·k, γ) descendants of v on the tree level ℓ(v) + τ t · k, and
the rank of each of them can be encoded within lg(στ t·k) bits of space. Clearly, there

are lg1+ǫ γ
τc

active levels colored in c for each 0 ≤ c ≤ 1/ǫ + 1. Fix t and k, and the
total number of entries in SP(v, t, k) for all nodes at the same tree level is at most γ.
The overall space cost in bits is at most,

1/ǫ+1
∑

c=0

(
lgǫ+1 γ

τ c

c−1
∑

t=0

(
τ−1
∑

k=1

(γ lg(στ t·k)))) ≤ γ lg σ

1/ǫ+1
∑

c=0

(
lgǫ+1 γ

τ c
τ c−1

τ−1
∑

k=1

k) = O(γ lg σ lg2ǫ+1 γ).

Note that the data structure supporting select queries upon SP(v, t, k) has the same
space upper bound as the one for storing SP(v, t, k). Hence, Lemma 12 follows.

Lemma 12 We can build a data structure of O(γ lg σ lg2ǫ+1 γ) bits of space upon Trev

such that later, given a node v on any active level, one can find the point coordinates
of any entry of S(v) in constant time.

Next, we show the data structure that can support computing multiple partner-
finding operations efficiently: We construct a sequence R(v)[1..size(v)] at each in-
ternal node v on active tree levels such that if the point S(v)[j] is stored in S(vs)
in the next level, where vs denotes the s-th child of v in the left-to-right order, then
R(v)[j] is set to be s; use Lemma 11 to support O(lg lg σ)-time rank over R(v). Since
the out-degree of each node in Trev is at most σ, R(v) and its associated data struc-
ture occupy O(size(v) lg σ) bits of space. All R(v)’s stored on active tree levels use
O(γ lg σ lg1+ǫ γ) bits of space. Finally, we use Lemma 12 to access the coordinates of
any entry S(v)[j], which occupies O(γ lg σ lg2ǫ+1 γ) bits of space additionally.

We describe how to find the predecessor along y-axis within [lMost(v), rMost(v)]×
(−∞, lMost(loci2(i))) for each node v on Path(loci1(i), root1, Trev). We traverse
through Path(loci1(i), root1, Trev) reversely, i.e., from the root node to loci1(i).
At the root node, the index, jroot1 , of the proper predecessor of lMost(loci2(i)) in
S(root1) is lMost(loci2(i)) − 1, because S(root1) contains all the coordinates of γ
points in rank space and those points are increasingly sorted by y-coordinates. We
immediately return the y-coordinate of S(root1)[jroot1] in constant time. In gen-
eral, given two nodes u and v on Path(loci1(i), root1, Trev) such that v is the e-th
child of u in the left-to-right order, if we know the index, ju, of the predecessor of
lMost(loci2(i)) in S(u), then the index, jv, of the predecessor of lMost(loci2(i)) in
S(v) can be located in O(lg lg σ) time by ranke(R(u), ju); and then we use Lemma
12 to access the y-coordinate of S(v)[jv] in constant time. As there are i characters
in (P [1..i])rev, there are at most i nodes on Path(loci1(i), root1, Trev). Hence, all
predecessor queries along the path can be answered in O(i lg lg σ) time. As a result,
the partner(v/loci2(i)) queries for all v on Path(loci1(i), root1, Trev) can be an-
swered in O(i lg lg σ) time. Considering there are m−1 different pairs of loci1(i) and

loci2(i), the query time of computing MS is
∑m−1

i=1 O(i lg lg σ) = O(m2 lg lg σ) time,
given that all pairs of locus are available. Since finding m− 1 pairs of locus requires
O(m2 +m lg n) time by Lemma 4, the overall query time is O(m2 lg lg σ +m lg n).

In the beginning of this section, we assume thatm, the length of the query pattern,
is bounded by O(lg γ lg lg γ). As mentioned before, once m is Ω(lg γ lg lg γ), we can
apply the solution shown in part (ii) of Theorem 1 to compute the matching statistics
in O(m2 + m lgn) time with an O(γ lg γ + δ lg n

δ
) word data structure. Combining

both solutions yields Theorem 2.

Theorem 2 Given a text T [1..n] drawn from [σ], we can build a data structure for
T [1..n] with O(γ lg γ + δ lg n

δ
+ γ

logσ n
lg2ǫ+1 γ) words of space, for any small constant

ǫ > 0, such that later, given a pattern P [1..m], we can compute MS for P w.r.t. T
in O(m2 lg lg σ+m lg n) time, assuming that the number of bits in a word is Ω(lg n).

Corollary 1 Given a text T [1..n] drawn from constant-size alphabet, we can build a
data structure for T [1..n] with O(γ lg γ+ δ lg n

δ
) words of space, such that later, given

P [1..m], we can compute MS for P w.r.t T in O(m2 +m lg n) time.

Acknowledgments. The author would like to thank Travis Gagie and Meng He for
discussing various topics related to the compact data structures, and especially thank
Travis for sharing this research topic as a course project. The author would also like
to thank the anonymous reviewers for their valuable comments and suggestions.

References

[1] William I. Chang and Eugene L. Lawler, “Sublinear approximate string matching and
biological applications,” Algorithmica, vol. 12, no. 4, pp. 327–344, 1994.

[2] Dan Gusfield, “Algorithms on stings, trees, and sequences: Computer science and
computational biology,” Acm Sigact News, vol. 28, no. 4, pp. 41–60, 1997.

[3] Enno Ohlebusch, Simon Gog, and Adrian Kügel, “Computing matching statistics and
maximal exact matches on compressed full-text indexes,” in International Symposium
on String Processing and Information Retrieval. Springer, 2010, pp. 347–358.

[4] Gonzalo Navarro and Veli Mäkinen, “Compressed full-text indexes,” ACM Computing
Surveys (CSUR), vol. 39, no. 1, pp. 2–es, 2007.

[5] Hideo Bannai, Travis Gagie, and I Tomohiro, “Refining the r-index,” Theoretical
Computer Science, vol. 812, pp. 96–108, 2020.

[6] Dominik Kempa and Tomasz Kociumaka, “Resolution of the burrows-wheeler trans-
form conjecture,” in 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 2020, pp. 1002–1013.

[7] Dominik Kempa and Nicola Prezza, “At the roots of dictionary compression: string
attractors,” in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, 2018, pp. 827–840.

[8] Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza, “Towards a definitive mea-
sure of repetitiveness,” in Latin American Symposium on Theoretical Informatics.
Springer, 2021, pp. 207–219.

[9] Paniz Abedin, Sahar Hooshmand, Arnab Ganguly, and Sharma V Thankachan, “The
heaviest induced ancestors problem revisited,” in Annual Symposium on Combinatorial
Pattern Matching. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[10] Timothy M Chan, Kasper Green Larsen, and Mihai Pătraşcu, “Orthogonal range
searching on the ram, revisited,” in Proceedings of the twenty-seventh annual sympo-
sium on Computational geometry, 2011, pp. 1–10.

[11] Travis Gagie, Pawe l Gawrychowski, and Yakov Nekrich, “Heaviest induced ancestors
and longest common substrings,” arXiv preprint arXiv:1305.3164, 2013.

[12] Dov Harel and Robert Endre Tarjan, “Fast algorithms for finding nearest common
ancestors,” siam Journal on Computing, vol. 13, no. 2, pp. 338–355, 1984.

[13] Alexander Golynski, J Ian Munro, and S Srinivasa Rao, “Rank/select operations on
large alphabets: a tool for text indexing,” in SODA, 2006, vol. 6, pp. 368–373.

