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Abstract

We propose a new representation of the offsets of the Lempel–Ziv (LZ) factorization based
on the co-lexicographic order of the processed prefixes. The selected offsets tend to approach
the k-th order empirical entropy. Our evaluations show that this choice of offsets is superior
to the rightmost LZ parsing and the bit-optimal LZ parsing on datasets with small high-
order entropy.

1 Introduction

The Lempel–Ziv (LZ) factorization [1] is one of the most popular methods for lossless
data compression. It builds on the idea of factorization, that is, splitting the text
T into factors, each being the longest string that appears before in T , and replacing
each factor by a reference to its preceding occurrence (called its source).

Most popular compression schemes such as zip or gzip use a variant called LZ77
[2], which finds sources only within a sliding window w. Though this restriction
simplifies compression and encoding, it misses repetitions with gaps larger than |w|,
and thus compressing k copies of a sufficiently long text T results in a compressed file
being about k times larger than the compressed file of T . Such long-spaced repetitions
are common in highly-repetitive datasets like genomic collections of sequences from
the same taxonomy group, or from documents managed in a revision control system.
Highly-repetitive datasets are among the fastest-growing ones in recent decades, and
LZ compression is one of the most effective tools to compress them [3]. This is one
of the main reasons why the original LZ factorization (i.e., without a window) moved
into the spotlight of recent research.

Although LZ catches even distant repetitions, the actual encoding of the factor-
ization is an issue. Each factor is usually represented by its length and the distance
to its source (called its offset). While the lengths usually exhibit a geometric dis-
tribution favorable for universal encoders, the offsets tend to approach a uniform
distribution and their codes are long. Since the sources are not uniquely defined,
different tie breaks have been exploited in order to improve compression, notably the
rightmost parsing (i.e., choosing the closest source) and the bit-optimal parsing [4]
(i.e., optimizing the size of the encoded file instead of the number of factors).
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T =

(1,1)

(3,1)

(2,2)

(3,3)

(5,4) (1,2)

(1,2)

LZ-text(T ):
(1,1)(3,1)(2,2)(3,3)(5,4)(1,2)(1,2)

Figure 1: LZ factorization of T = ababbababbaaababb and its LZ-text(T ) coding into pairs.

All previous LZ encodings have in common that they encode the text distance to
the source. In this paper we propose a variant that encodes the distances between
the co-lexicographically sorted prefixes of the processed text, and argue that this
choice for the offsets approaches the k-th order empirical entropy of the LZ factors.
Our experiments show that this encoding is competitive even with the bit-optimal
parsing [4], performing particularly well on texts whose high-order entropy is low.

2 LZ Factorization

Let T [1..n] ∈ Σn be a text of length n whose characters are drawn from an integer
alphabet Σ = [0..σ − 1] with σ = nO(1). The LZ factorization is a partitioning of
the text T into factors F1 · · ·Fz such that every factor Fx is equal to the longest
substring that starts before Fx in the text (its source). Here, we imagine the text
being prefixed by the characters of Σ in non-positive positions, i.e. T [−c] = c for each
c ∈ Σ. Further, we compute the factorization on T [1..n] while taking the prefixes of
all suffixes starting in T [−σ..p − 1] under consideration for previous occurrences of
a factor starting at T [p]. In this setting, we always find a factor of length at least
one. Hence, each factor Fx can be encoded as a pair (offT

x , `x), where `x = |Fx| is the
length of Fx, and offT

x is the textual offset of Fx, that is, the distance of the starting
positions of Fx and its source. Thus, the LZ factorization can be represented as a
sequence of these integer pairs of offsets and lengths, which we denote by LZ-text(T ).
This representation is not unique with respect to the choice of the offsets in case
of a factor having multiple occurrences that start before it. The so-called rightmost
parsing selects always the smallest possible offset as a tie break.

Example. Let T = ababbababbaaababb. Then the LZ factorization and its repre-
sentation as pairs are given in Fig. 1. Remember that we imagine the text as being
prefixed by all characters of Σ, being ba in this case; we only factorize T [1..|T |], that
is, the non-underlined characters of baababbababbaaababb. �

With the rightmost parsing it holds that, for a stationary ergodic source, the
minimum number of bits required to write the number offT

x , which is dlog2(offT
x + 1)e,

approaches the zero-order entropy of Fx in T (see [5] or [6, Sec. 13.5.1]). Intuitively,
this happens because, being Pr(Fx = S) the probability that the next LZ factor Fx
equals the substring S, on expectation we need to visit offT

x = 1/Pr(Fx = S) positions
back (the log of which is Fx’s entropy) before encountering an occurrence of S. The



b a a b b a b b
-1 0 1 2 3 4 5 6

T =

(1,1)

(3,1)

(4,2)

(3,2)

LZ-text(T ):
(1,1)(3,1)(4,2)(3,2)

b a a b b a b b
-1 0 1 2 3 4 5 6

T =

(-1,1)

(1,1)

(4,2)

(2,2)

HOLZ(T ):
(-1,1)(1,1)(4,2)(2,2)

Figure 2: LZ factorization of T = abbabb with its LZ-text (left) and HOLZ encoding (right).
Since the encodings only differ in the values of their offsets, they are equal in length.

fact that the factors are long (Θ(logσ n) characters on average) can be used to show
that the size of LZ-text(T ) approaches the k-th order entropy of T , for small enough
k = o(logσ n). In that light, we aim to reach the high-order entropy of the factors Fx,
by means of changing the encoding of the sources.

3 The HOLZ Encoding

We now give a different representation of the sources of the LZ factors, and argue that
this representation achieves high-order entropy. Broadly speaking, we compute the
offsets in co-lexicographic order1 of the text’s prefixes, rather than in text order. We
then compute a new offset offp instead of the textual offset offT

p used in LZ-text(T ).

Definition 1. Let Ti := T [−σ + 1..i], for i ∈ [−σ..n], be the prefixes of T , including
the empty prefix T−σ = ε. Assume we have computed the factorization of T [1..p− 1]
for a text position p ∈ [1..n] and that a new factor Fx of length `x starts at T [p].

Let Tj1 ≺ Tj2 ≺ · · · ≺ Tjp+σ be the prefixes T−σ, . . . , Tp−1 in co-lexicographic order.
Let rp−1 be the position of Tp−1 in that order, that is, jrp−1 = p−1, and let tp−1 be the
position closest to rp−1 (i.e., minimizing |rp−1−tp−1|) satisfying T [jtp−1+1..jtp−1+`x] =
Fx. Then we define offx := rp−1 − tp−1; note offx can be negative. We call HOLZ(T )
the resulting encoding of pairs (offx, `x), where HO stands for high-order entropy.

Example. We present a complete step-by-step factorization of the small sample
string T = abbabb. The HOLZ(T ) factorization is given in Fig. 2, and Table 1
depicts the four factorization steps; remember that we do not factorize the added
prefix T [−σ + 1..0]. A detailed walk-through follows:

1. For the first factor F1 = a starting at p = 1, the text prefix starting with Fx
and being the closest to the r0-th co-lexicographically smallest prefix, has rank
t0 = 3, thus F1’s length and offset are `1 = 1 and off1 = r0 − t0 = 2− 3 = −1,
respectively. We then represent F1 = T [1] = a by the pair (−1, 1).

2. Next, we update the table of the sorted prefixes, obtaining the order shown on
the top-right table. The next factor, starting at position p = 2, is F2 = b, so
`2 = 1 and off2 = r1 − t1 = 2− 1 = 1. The second pair is thus (1, 1).

1That is, the lexicographic order of the reversed strings.



Table 1: Step-by-step computation of HOLZ(T ) with T = abbabb = F1F2F3F4. Underlined
characters represent the virtual text prefix containing all alphabet’s characters.

sorted text to
prefixes their right

T [−1..− 2] = ε baabbabb 1
T [−1..0] = ba abbabb 2 = r0
T [−1..− 1] = b aabbabb 3 = t0

Computing F1 = T [1].

sorted text to
prefixes their right

T [−1..− 2] = ε baabbabb 1 = t1
T [−1..1] = baa bbabb 2 = r1
T [−1..0] = ba abbabb 3
T [−1..− 1] = b aabbabb 4

Computing F2 = T [2].

sorted text to
prefixes their right

T [−1..− 2] = ε baabbabb 1 = t2
T [−1..1] = baa bbabb 2
T [−1..0] = ba abbabb 3
T [−1..− 1] = b aabbabb 4
T [−1..2] = baab babb 5 = r2

Computing F3 = T [3..4].

sorted text to
prefixes their right

T [−1..− 2] = ε baabbabb 1
T [−1..1] = baa bbabb 2 = t4
T [−1..0] = ba abbabb 3
T [−1..4] = baabba bb 4 = r4
T [−1..− 1] = b aabbabb 5
T [−1..2] = baab babb 6
T [−1..3] = baabb abb 7

Computing F4 = T [5..6].

3. We update the table of the sorted prefixes, obtaining the order shown on the
bottom-left table. This time, p = 3, F3 = ba, `3 = 2, and off3 = r2 − t2 =
5− 1 = 4. The third pair is thus (4, 2).

4. We update the table of the sorted prefixes, obtaining the order shown on the
bottom-right table; the final pair is (2, 2).

Thus, we obtained HOLZ(T ) = (-1,1) (1,1) (4,2) (2,2). �

Towards High-Order Entropy

Only for the purpose of formalizing this idea, let us define a variant of HOLZ,
HOLZk(T ), which precedes T with a (virtual) de Bruijn sequence of order k + 1, so
that every string of length k+1 appears in T [−σk+1−k+2..0] (i.e., classical HOLZ(T )
is HOLZ0(T )). We modify the LZ factorization so that Fx, starting at T [p] and pre-
ceded by the string Sx of length k, will be the longest prefix of T [p..] such that Sx ·Fx
appears in T starting before position p− k. The resulting factorization T = F1F2 . . .
has more factors than the LZ factorization, but in exchange, the offsets of the factors
Fx are encoded within their k-th order (empirical) entropy. Let #S be the frequency
of substring S in T . Assuming that the occurrences of SxFx distribute uniformly
among the occurrences of Sx in every prefix of T , the distance |offx| between two
consecutive sorted prefixes of T suffixed by Sx and followed by Fx is in expectation
E(|offx|) ≤ #Sx/#SxFx. Then, E(log2 |offx|) ≤ log2 E(|offx|) ≤ log2(#Sx/#SxFx)
and the total expected size of the encoded offsets is

E

(∑
x

log2 |offx|

)
=

∑
x

E(log2 |offx|) ≤
∑
x

log2

#Sx
#SxFx

.

In the empirical-entropy sense (i.e., interpreting probabilities as relative frequen-
cies in T ), the definition of high-order entropy we can reach is restricted to the factors



we produce. Interpreting conditional probability as following in the text, this is

Hk =
∑
x

log2

1

Pr(Fx|Sx)
=
∑
x

log2

Pr(Sx)

Pr(SxFx)
=
∑
x

log2

#Sx
#SxFx

.

That is, the expected length of our encoding is bounded by the k-th order empirical
entropy of the factors. This is also the k-th order empirical entropy of the text if we
assume that the factors start at random text positions.

Recall that, the longer k, the shorter the phrases, so there is an optimum for a
likely small value of k. While this optimum may not be reached by HOLZ (which
always chooses the longest phrase), it is reached by the bit-optimal variant of HOLZ
that we describe in the next section, simultaneously for every k.

Our experimental results validate our synthetic analysis, in the sense that HOLZ(T )
performs better than LZ-text(T ) on texts with lower k-th order entropy, for small k.

Algorithmic Aspects

For an efficient computation of a factor Fx starting at T [p], we need to maintain the
prefixes T−σ, . . . , Tp−1 sorted in co-lexicographic order such that we can quickly find
the ranks rp−1 of Tp−1 and the rank tp−1 of the starting position of an occurrence of
Fx. In what follows, we describe an efficient solution based on dynamic strings.

Our algorithms in this paper work on the word RAM model with a word size of
Ω(lg n) bits. We use the following data structures: SA denotes the suffix array [7] of T ,
such that SA[i] stores the starting position of the i-th lexicograhically smallest suffix
in T . ISA is its inverse, ISA[SA[i]] = i for all i. The Burrows-Wheeler transform BWT
of T is defined by BWT[i] = T [SA[i]−1] for SA[i] > 1 and BWT[i] = T [n] for SA[i] = 1.

We maintain a dynamic wavelet tree on the reverse of T [−σ..p−1]. This framework
was already used [8] to compute LZ-text(T ) with the dynamic wavelet tree. If we
represent this wavelet tree with the dynamic string of [9], their algorithm runs in
O(n log n/ log log n) time using nHk + o(n log σ) bits.

Theorem 3.1 ([9]). A dynamic string S[1..n] over an alphabet with size σ can be
represented in nHk + o(n log σ) bits while supporting the queries access, rank, and
select, as well as insertions or deletions of characters, in O(log / log log n) time.

The text is not counted in this space; it can be given online in a streaming fashion
The main idea can be described as follows: Let Ri := TR

i $. Given that we want to
compute a factor Fx starting at text position T [p], we interpret T [p..] as the reverse
of a pattern P that we want to search in BWTRp−1 with the backward search steps
of the FM-index [10]. The backward search takes the last character of P being T [p]
as the initial search range in BWTRp−1 , updates BWTRp−1 with the next character
T [p] to BWTRp and recurses on computing the range for P [1..2] = T [p..p+ 1]R. The
recursion ends at the step before the range becomes empty. In that case, all BWT
positions in the range correspond to occurrences of the factor Fx starting before Fx
in T . We choose the one being the closest (in co-lexicographic order) to the co-
lexicographic rank of the current text prefix, and compute with |Fx| forward traversals
in the BWT the original position in BWTRp−1 , which gives us t′p−1. The position



r′p−1 is where $ is stored in BWTRp−1 . We wrote t′p−1 and r′p−1 instead of tp−1 and
rp−1 since these positions are based on BWTRp+|Fx|−1

instead of BWTRp−1 . We can
calculate the actual offset rp−1 − tp−1 by r′p−1 − t′p−1 if we know the number of newly
inserted positions between r′p−1 and t′p−1 during the steps when we turned BWTRp−1

into BWTRp+|Fx|−1
. For that, we additionally maintain a dynamic bit vector that

marks the entries we inserted into BWTRp−1 to obtain BWTRp+|Fx|−1
(alternatively,

we can store the positions in a list). We conclude that we can compute HOLZ in
n(1 + Hk) + o(n log σ) bits of space and O(n log n/ log log n) time by using the data
structure of Theorem 3.1.

4 The Bit-Optimal HOLZ

Ferragina et al. [4] studied a generalization of the Lempel–Ziv parsing in the sense
that they considered for each text position all possible factor candidates (not just the
longest ones), optimizing for the representation minimizing a fixed encoding of the
integers (e.g. Elias-δ). In other words, in their setting we are free to choose both the
offset and factor lengths, thus effectively choosing among all possible unidirectional
macro-schemes [11]. Within their framework, LZ can be understood as a greedy
factorization that locally always chooses the longest factor among all candidates.
This factorization is optimal with respect to the number of computed factors, but
not when measuring the bit-size of the factors compressed by the chosen encoding
for the integers, in general. Given a universal code enc for the integers, a bit-optimal
parsing has the least number of bits among all unidirectional parsings using enc to
encode their pairs of lengths and offsets. In the setting of textual offsets, [4] proposed
an algorithm computing the bit-optimal LZ factorization in O(n lg n) time with O(n)
words of space, provided that the code enc transforms an integer in the range [1..n]
to a bit string of length O(lg n). In the following, we take this restriction of enc as
granted, as it reflects common encoders like Elias-γ.

b a a b b a b b $
-1 0 1 2 3 4 5 6

T =

(1,1)(4,1)(3,1)(2,1)(1,1)(1,1)

(3,3)(4,2)
(2,2)

Figure 3: Graph of the factor candidates for LZ-text(T ). Every path from node 1 to node n+
1 gives us a sequence of pairs that can be used alternatively to LZ-text(T ), which is obtained
by always taking the locally longest edge. Although it is guaranteed that the path for
LZ-text(T ) has the least number of edges, the compressed representation of the edge labels
does not lead to the best compression in general. Using Elias-γ as our encoder enc with
|enc(x)| = 1 for x = 1, |enc(x)| = 2 for x ∈ {2, 3}, and |enc(x)| = 3 for x ∈ [4..7], the
compressed size of LZ-text(T ) taking the red and the green arc is 1+1+3+1+3+2+2+2 = 15
bits. If we exchange the red and green arc with one blue arc and two black arcs, we obtain
1 + 1 + 3 + 1 + 1 + 1 + 2 + 2 + 1 + 1 = 14 bits.



Factor Graph

All possible unidirectional parsings using textual offsets can be represented by the
following weighted directed acyclic graph: This graph has n+1 nodes, where the i-th
node vi corresponds to text position i ∈ [1..n], and the (n + 1)-st node corresponds
to the end of the text, which we can symbolize by adding an artificial character $
to T that is omitted in the factorization, see Fig. 3. An arc connecting node vi
with a node vi+`−1 corresponds to a candidate factor starting at position i with
length `. A candidate factor is a pair (j, `) of position and length with j < i and
T [j..j+`−1] = T [i..i+`−1]. The weight of the arc (vi, vi+`−1) corresponding to (j, `)
is the cost of encoding its respective factor, |enc(j)|+ |enc(`)| if |enc(x)| denotes the
length of the binary output of enc(x). By construction, there are no arcs from a node i
to a node j with j < i, but there is always at least one arc from node i to a node j
with i < j. That is because we have at least one factor candidate starting at position i
since we can always refer to a character in T [−σ..0]. Hence, node 1 is connected with
node n+ 1. Let the length of an arc be the length of its corresponding factor, that is,
if an arc connects node i with node j, then its length is j− i. We can then obtain the
classic LZ factorization by following the maximum-length arcs starting from node 1,
and we obtain the bit-optimal parsing by computing the (weighted) shortest path.

While we have n nodes, we can have O(n2) arcs since the set of candidate factors
for a text position i is {(j, `) : j < i and T [j..j + ` − 1] = T [i..i + ` − 1]}, and
this set can have a cardinality of O(n). Theorem [4, Thm. 5.3] solves this issue
by showing that it suffices to only consider so-called maximal arcs. An arc (vi, vj)
corresponding to a factor candidate (off, `) is called maximal [12, Def. 3.4] if either
there is no arc (vi, vj+1), or such an arc corresponds to a factor candidate (off ′, `′)
with enc(off) + enc(`) < enc(off ′) + enc(`′). Moreover, there exists a shortest path
from v1 to vn that only consists of maximal arcs. Since |enc(·)| ∈ O(lg n), we can
divide all maximal arcs spawning from a node vi into O(lg n) cost classes such that
each cost class is either empty or has exactly one maximal arc. Hence, the pruned
graph has just O(n lg n) arcs. Finding the shortest path can be done with Dijkstra’s
algorithm running in O(n lg n) time with Fibonacci heaps. The computed shortest
path is a sequence of factors that we encode in our final output. Storing the complete
graph would take O(n lg n) words. To get the space down to O(n) words, the idea
[4, Cor. 5.5] is to compute the arcs online by partitioning, for each cost class k ∈
[1..O(lg n)], the text into blocks, and process each of the blocks in batch.

The Bit-Optimal HOLZ

By exchanging the definition of off in the factor candidates, we compute a variation of
HOLZ that is bit-optimal. The major problem is finding the maximal arcs efficiently.
Like before, we maintain the dynamic BWT of the reversed processed text. But
now we also maintain a dynamic wavelet tree mapping suffix ranks of the processed
reversed text to suffix ranks of T . Then we can compute for each cost class of arcs
spawning from vi the maximal arc by searching the suffix ranks closest to the suffix
rank of T [i..] within the interval of suffix ranks of the reversed processed text.

In what follows, we explain our algorithm computing the factor candidates corre-



sponding to all maximal arcs. Let again T [−σ + 1..n] be the text with all distinct
characters prepended, and let TR denote its reverse. In a preprocessing step, we build
SA and ISA on T [−σ + 1..n]. Like before, we scan the text T [1..n] from left to right.
Let p be the text position where are currently processing, such that T [1..p − 1] has
already been processed. Let Rp−1 := TR

p−1$ denote the string whose BWT we main-
tain in BWTRp−1 . Further, let DyWa be a dynamic wavelet tree mapping ISARp−1 [i]
to ISAT [i] for each i ∈ [1..|Rp−1|]. Before starting the factorization, we index/process
T [−σ−1..0]R with BWT and DyWa. Since ISARp−1 is not necessarily a prefix of ISARp ,
for adding a new entry to DyWa when processing a position p ∈ [−σ + 1..n], we first
need to know ISARp [1], i.e., the rank of the suffix in Rp corresponding to T [p] in
BWTRp−1 . Luckily, this is given by the position of $ in BWTRp−1 . Let p$ denote this
position in BWTRp−1 , and suppose that we have processed T [1..p− 1]. Now, for each
of the ranges I1 = [1..p$ − 1] and I2 = [p$ + 1..σ + p− 1], let predRSAp

j and succRSAp
j

be values in the range Ij that are mapped via DyWa to the smallest value larger than
ISA[p] and the largest value smaller than ISA[p], respectively. Let us call these mapped
values predSAp

j and succSAp
j . Let maxSAp

j be the one that has a longer LCE value with
ISA[p], i.e., we compare lce(T [SA[predSAp

j ]..], T [p..]) with lce(T [SA[succSAp
j ..], T [p..]).

Finally, let maxSAp be the one among maxSAp
1 and maxSAp

2 having the largest LCE `
with p, and let maxRSAp be its corresponding position in BWTRp−1 . This already
defines the factor candidate with offset p$−maxRSAp and the longest length ` among
all factor candidates starting at T [p]. Next, we compute the factor candidates with
smaller lengths but less costly offsets. For that, we partition [maxRSAp

1..p$ − 1] into
cost classes, i.e., intervals of ranks whose differences to p$ need the same amount
of bits when compressed via a universal coder. This gives O(lg n) intervals, and for
each interval we perform the same query as above to retrieve a maxSAp value with
lce(T [SA[maxSAp]..], T [p..]) ≤ lce(T [SA[maxSAp

1]..], T [p..]). We start with the interval
with the shortest costs, and keep track of the maximal LCE value computed up so far.
For each candidate interval, if its computed maximal LCE value is not larger than
the already computed LCE value, then we discard it since it would produce a factor
with the same length but a higher cost for the offset. We cut I1 at maxRSAp

1 since this
gives us the maximum LCE value in the entire range, so going further does not help
us in discovering an even longer candidate factor. We process I2 with maxRSAp

2 sym-
metrically. In total, we obtain for each text position O(lg n) factor candidates, which
we collect in a list per text position; the summed size of these lists is O((σ+n) lg n).
Each pair (`, off) in the list of position p consists of its length ` and the offset off
being the difference between p$ and its respective position j in BWTRp−1 . The cost
for encoding this pair is |enc(`)| + |enc(|off|)| incremented by one for a bit storing
whether j > p$ or not. The computed pairs determine the edges of the weighted
directed acyclic graph explained above.

Complexities The wavelet tree DyWa stores O(n) integers in the range [1..n] dy-
namically. For each of the O(lg n) levels, a rank or select query can be performed in
O(lg n) time, and thus updates or queries like range queries take O(lg2 n) time. For
each text position, we perform one update and O(lg n) range queries, accumulating to



O(n lg3 n) time overall for the operations on DyWa. This is also the bottleneck of our
bit-optimal algorithm using the HOLZ encoding. The wavelet tree representing the
dynamic BWT of the reversed processed text works exactly as the previous algorithm
in Section 3, and the produced graph needs O(n lg n) time for processing. Summing
up, our algorithm to compute the bit-optimal HOLZ encoding runs in O(n lg3 n) time
and uses O(n lg n) words of space. The space could be improved to O(n) words using
the same techniques discussed in [4].

Decompression The decompression works in both variants (HOLZ or its bit-optimal
variant) in the same way. We maintain a dynamic BWT on the reversed processed
text; When processing a factor F starting at text position p and encoded with
pair (off, `), we know that BWT position tp−1 = p$ − off corresponds to the start-
ing text position of the factor’s source. It is then sufficient to extract ` characters
from that position, by navigating the BWT using LF queries. At each query, we also
extend the BWT with the new extracted character to take into account the possibil-
ity that the source overlaps F . Overall, using the dynamic string data structure of
Theorem 3.1, the decompression algorithm runs in O(n log n/ log log n) time and uses
nHk + o(n log σ) bits of space (excluding the input, which however can be streamed).

5 Experiments

For our experiments, we focus on the Canterbury and on the Pizza&Chili corpus. For
the latter, we took 20 MB prefixes of the data sets. See Tables 2 and 3 for some
characteristics of the used datasets. The datasets kennedy.xls, ptt5, and sum
contain ‘0’ bytes, which is a prohibited value for some used tools like suffix array
construction algorithms. In a precomputation step for these files, we escaped each
‘0’ byte with the byte pair ‘254’ ‘1’ and each former occurrence of ‘254’ with the pair
‘254’ ‘254’.

For comparison, we used LZ-text(T ) and the bit-optimal implementation of [12],
referred to as bitopt in the following. For the former, we remember that the choice
of the offsets can be ambiguous. Here, we select two different codings that break ties
in a systematic manner: The rightmost parsing introduced in the introduction, and
the output of an algorithm [13] computing LZ with next-smaller value (NSV) and
previous-smaller value (PSV) arrays built on the suffix array. The PSV and NSV
arrays, PSV and NSV, store at their i-th entry the largest index j smaller than i
(resp. smallest index j larger than i) with SA[j] < i. Given a starting position p of a
factor, candidates for the starting positions of its previous occurrences are stored at
the entries NSV[ISA[p]] and PSV[ISA[p]] of SA. We take the one that has the larger
LCE with p, say r, and output the offset p − r. Although the compressed output is
at least that of the rightmost parsing, this algorithm runs in linear time, whereas we
are unaware of an algorithm computing the rightmost parsing in linear time – the
currently best algorithm needs O(n + n log σ/

√
log n) time [14]. We call these two

specializations rightmost and nsvpsv. We selected Elias-γ or Elias-δ encoding as the
function enc, and present the measured compression ratios in Figs. 4 and 5. We write



Table 2: 20 MB prefixes of the Pizza&Chili corpus datasets. Hk denotes the k-th order
empirical entropy. z is the length of LZ-text(T ), and r is the number of runs of BWT built
upon the respective dataset.

dataset σ z r H0 H1 H2 H3 H4

cere 5 8492391 1060062 2.20 1.79 1.79 1.78 1.78
coreutils 235 3010281 910043 5.45 4.09 2.84 1.85 1.31
dblp.xml 96 3042484 834349 5.22 3.26 1.94 1.26 0.89
dna 14 12706704 1567099 1.98 1.93 1.92 1.92 1.91
e.coli 11 8834711 1146785 1.99 1.98 1.96 1.95 1.94
english 143 5478169 1277729 4.53 3.58 2.89 2.33 1.94
influenza 15 876677 210728 1.97 1.93 1.93 1.92 1.91
kernel 160 1667038 488869 5.38 4.00 2.87 1.98 1.47
para 5 8254129 1028222 2.17 1.83 1.83 1.82 1.82
pitches 129 10407645 2816494 5.62 4.85 4.28 3.50 2.18
proteins 25 8499596 1958634 4.20 4.17 4.07 3.71 2.97
sources 111 4878823 1361892 5.52 4.06 2.98 2.13 1.60
worldleaders 89 408308 129146 4.09 2.46 1.74 1.16 0.73

holz and holz-opt for our presented encoding HOLZ(T ) and its bit-optimal variant,
respectively.

We observe that the bit-optimal implementation uses a different variant of the LZ
factorization that does not use the imaginary prefix T [−σ..0] for references. Instead,
it introduces literal factors that catch the leftmost occurrences of each character
appearing in T . Their idea is to store a literal factor S by its length |S| encoded in
32-bits, followed by the characters byte-encoded. In the worst case, they pay 40σ bits.
This can pose an additional overhead for tiny files such as grammar.lsp, where 40σ
bits are roughly 20% of their output size. However, it becomes negligible with files
like cp.html, where less than 4% of the output size can be accounted for the literal
factors.

Discussion The overall trend that we observe is that our encoding scheme HOLZ
performs better than LZ on datasets characterized by a small high-order entropy.
More in detail, when focusing on Elias-δ encoding (results are similar for Elias-γ),
holz-bitopt compresses better than bitopt on all 8 datasets having H4 ≤ 1, and
on 11 over 14 datasets with H4 ≤ 1.5. In general, holz-bitopt performed no worse
(strictly better in all cases except one) than bitopt on 14 over 24 datasets. The trend
is similar when comparing the versions of the algorithms that always maximize factor
length: holz and rightmost. These results support the intuition that HOLZ is able
to exploit high-order entropy, improving when it is small enough the compression
ratio of the offsets with respect to LZ.



Table 3: Datasets from the Canterbury corpus; n is the number of text characters. See
Table 2 for a description of the other columns.

dataset n σ z r H0 H1 H2 H3 H4

alice29.txt 152089 74 66903 22897 4.56 3.41 2.48 1.77 1.32
asyoulik.txt 125179 68 62366 21634 4.80 3.41 2.53 1.89 1.37
cp.html 24603 86 9199 4577 5.22 3.46 1.73 0.77 0.44
fields.c 11150 90 3411 1868 5.00 2.95 1.47 0.86 0.62
grammar.lsp 3721 76 1345 853 4.63 2.80 1.28 0.67 0.44
kennedy.xls 1486290 255 219649 145097 3.13 2.04 1.76 1.19 1.12
lcet10.txt 426754 84 165711 52594 4.66 3.49 2.61 1.83 1.37
plrabn12.txt 481861 81 243559 72622 4.53 3.36 2.71 2.13 1.72
ptt5 961861 158 65867 25331 1.60 0.47 0.39 0.31 0.26
sum 50503 254 13544 7826 4.76 2.52 1.61 1.15 0.90
xargs.1 4227 74 2010 1172 4.90 3.19 1.55 0.72 0.42

6 Open Problems

We wonder whether there is a connection between our proposed encoding HOLZ and
the Burrows-Wheeler transform (BWT) combined with move-to-front (MTF) coding,
which achieves the k-th order entropy of T with k = Θ(logσ n). Applying MTF to
BWT basically produces a list of pointers, where each pointer refers to the closest
previous occurrence of a character whose context is given by the lexicographic order of
its succeeding suffix. The difference is that this technique works on characters rather
than on factors. Also, we would like to find string families where the compressed
output of HOLZ(T ) is asymptotically smaller than LZ-text(T ), or vice-versa.

Our current implementation using dynamic wavelet trees is quite slow. Alterna-
tively, for the encoding process we could use a static BWT and a dynamic prefix sum
structure to mark visited prefixes in co-lexicographic order, which should be faster
than a dynamic BWT. A more promising alternative would be to not use dynamic
structures. We are confident that a good heuristic by hashing prefixes according to
some locality-sensitive hash function (sensitive to the co-lexicographic order) will find
matches much faster. Note that using the context of length k has the additional ben-
efit to reduce the search space (compared to standard LZ), therefore the algorithm
could be much faster and it could be easier to find potential matches.
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Figure 4: Compression ratios of different encodings and parsings studied in this paper on
the Pizza&Chili corpus.
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