Computing Lexicographic Parsings

Dominik Koppl
December 18, 2019

Abstract

We give a memory-friendly algorithm computing the compression scheme plcpcomp or lex-parse
in linear or near-linear time.

1 Introduction

In this article, we focus on computing the compression schemes plepcomp [2] and lez-parse [I0] within
low memory. Both schemes are macro schemes [I3] like the well-known Lempel-Ziv-77 factorization [15].
While Lempel-Ziv-77 restricts factors to refer to previous text positions, the schemes in our focus restrict
factors to refer to the starting positions of lexicographically preceding suffixes.

2 Preliminaries

Text Let ¥ denote an integer alphabet of size o = |B| = n®® for a natural number n. The
alphabet ¥ induces the lexicographic order < on the set of strings ¥*. Let |T'| denote the length of a
string T' € ¥*. We write T[j] for the j-th character of T', where 1 < j < n. Given T € ¥* consists of the
concatenation T'= UVW for U,V,W € ¥* we call U, V, and W a prefiz, a substring, and a suffix
of T', respectively. Given that the substring V starts at the i-th and ends at the j-th position of T', we
also write V.=T[i..j] and W = T[j + 1..]. In the following, we take an element T' € ¥* with |T'| = n,
and call it text. We stipulate that T ends with a sentinel T'[n] = $ ¢ X that is lexicographically smaller
than every character of 3.

Text Data Structures Let SA denote the suffix array [8] of T. The entry SA[i] is the starting
position of the i-th lexicographically smallest suffix such that T[SA[:]..] < T[SA[i+ 1]. ] for all integers ¢
with 1 <4 <n—1. Let ISA of T be the inverse of SA, i.e., ISA[SA[i]] =i for every ¢ with 1 <i < n. The
Burrows- Wheeler transform (BWT) [1] of T is the string BWT with BWT[:i] = T'[n] if SA[i] =1
and BWT[i] = T[SA[i] — 1] otherwise, for every ¢ with 1 <4 <n. The LCP array is an array with the
property that LCP[:] is the length of the longest common prefix (LCP) of T'[SA[i]..] and T[SA[i — 1]..]
for ¢ = 2,...,n. For convenience, we stipulate that LCP[1] := 0. The array ® is defined as ®[i] :=
SA[ISA[i] — 1], and ®[i] := n in case that ISA[i] = 1. The PLCP array PLCP stores the entries of LCP
in text order, i.e., PLCP[SA[i]] = LCP[i]. Figure [1| illustrates the introduced data structures.

Computation Model We use the word RAM model with word size Q(lgn) for some natural
number n. The arrays SA and LCP can be constructed in O(n) time with the algorithms of Ko and
Aluru [7] and Kasai et al. [6], respectively. With SA, we can construct ISA in O(n) time by using the
fact that SA is a permutation.

Lemma 2.1 ([IT}, [14]). PLCP can be represented by 2n+o(n) bits and can be constructed in O(n) time.

3 Parsing

A parse is a representation of a factorization Fy---F, =T of a text T by a list whose x-th entry stores
either (a) the triple (srcy, dsty, £;) such that F,, = T[dst, .. dst, + £, — 1] = T[src, .. src, + £, — 1] with

dst, = Zz;} ¢y, or (b) F, with £, := |F,|. We call the latter representation (b) of a factor literal.



In [10, Sect. VI], Navarro and Prezzal studied so-called lexicographic parses. A parse of T is called

lexicographic if T[src, ..] < T|dsty ..] for every non-literal factor. Here, we focus on a stricter class
of those parses, where src, = ®[dst,] holds for all non-literal factors. Note that src, = ®[dst,] implies
that T'[src, .. | = T[SA[ISA[dst,] — 1] .. ] < T[dst, ..] for ISA[dst,] > 1E| Two lexicographic parses are

lex-parse [10, Def. 11] and plepcomp [2], on which we focus on the following.

The lex-parse is a parse T = Fi,..., F, such that F, = T[dst, .. dst, + £, — 1] with dst; = 1 and
dsty 1 = dsty + £, if £, := PLCP[dst] > 0, or F; is a literal factor with £, := |F,| = 1 otherwise.

The plepcomp-parse with a threshold £ > 0 is recursively defined by replacing the longest reoccurring
substring T'[dst, . . dst, + €, — 1] = T[srcy . . sre, + £, — 1] with £ > € by a factor F., where src, := ®[dst,]
and ¢, := PLCP[dst,]. Ties are broken by choosing the smallest possible dst, among all candidates
with the same longest length ¢,. Dinklage et al. [2, Sect. 3] proposed an algorithm computing this
parse in external memory. It can however be computed in memory like lex-parse when having PLCP
available. For that, it detects so-called peaks. A text position dst is a peak if PLCP[dst] > £ and dst = 1,
PLCP[dst — 1] < PLCP[dst], or there is a referencing factor ending at dst — 1. A peak dst is called
interesting if there is no text position j with dst € (j..j + PLCP[j]) and PLCP[j] > PLCP[dst]. An
interesting peak dst is called maximal if there is no interesting peak j with j € (dst .. dst + PLCP[dst]).

With these definitions, we can compute plcpcomp as follows: We linearly scan the text from left to
right, adding interesting peaks to the list L. On finding a maximal peak dst, we can factorize T'[1..dst—1]
by using the peaks stored in L and their associated PLCP values. This takes O(|L]) = O(dst) time. We
continue with the plepcomp factorization of T[dst + PLCP[dst]..]. In overall, this accumulates to O(n)
time. Computing lex-parse is in fact easier, since we do not have to maintain L.

Space Analysis We compute PLCP in the representation of Sadakane [12] using 2n bits. We do
not need the extra o(n) bits for rank/select-support, since we scan PLCP sequentially. For computing
plepcomp, we additionally maintain each interesting peak (along with its PLCP value) in the list L. We
can bound the size of L with the following lemma:

Lemma 3.1. |L| = O(min(v/nlgn,r)), where r is the number of BWT runs.

Proof. The list L stores all interesting peaks between two different maximal peaks (or between the first
position and the first maximal peak). Given an interesting peak dst with PLCP[dst], there is no peak j
with PLCP[j] > PLCP[dst] and j < dst < j + PLCP[j]. In order to be added to L, the peak dst must
not be a maximal peak, i.e., there must be a text position j with dst < j < dst + PLCP[dst] and
PLCP[j] > PLCP[dst]. The worst case is that j = dst + 1, PLCP[j] = PLCP[dst] + 1, and j is again an
interesting peak that is not maximal. By induction, we may insert m interesting non-maximal peaks
{Jiti<j<m into L with j; +1 < jipq for 1 <i <m —1 and PLCP[j;] > i for 1 <i < m.

However, > i <> " | PLCP[j;] = O(nlgn) due to [5, Thm. 12], such that m = O(y/nlgn). From
the same reference [0, Sect. 4], we obtain that m = O(r). O

Lemma 3.2. There are texts of length n for which |L| = ©(y/n).

Proof. For the proof, we use the following definition: Given an interval I, we define b(I) and e(I) to be
the starting and the ending position of I = [b(I) .. e(I)], respectively.

Let ¥ := {o01,...,0m} be an alphabet with 01 > 03 > ... > o0,. Set F} := 01, and F; =
oiF;—10; for 2 < i < m. Then our algorithm fills L with ©(y/n) interesting peaks on processing the
text T := Fy--- F,,. In the following, we show that each text position b(F};) is an interesting peak,
where b(F;) and e(F;) are the beginning and ending positions of the factor F; within the factorization
T=Fy - Fp=Tb(F)..e(F)) - Tb(Fy) .. e(Fy).

First, ®[b(F;)] = b(F;+1) + 1 for each ¢ with 1 <4 < m — 1, since

L] T[b(FZ)] :FiFi—l"' :Fiai—lFiUi—l"' and
L] T[b(FH_J) +] } = Figi—l 04—y for all ] with 0 S ] S 1—1
Hence, T[b(Fitj)+j..| < Tb(Fiy1)+1..] = Fioy1Fia- -+ = Fjoi10i2F;10;—2 - < T[b(F};). ] for all

jwithi42 < j < m. For all positions 1 < j < n, we havelcp(T[j..], T[b(F;)..]) < lep(T[b(F;). .|, T[b(Tit+1)+
1..]) = |Fi| +1 = 2i. Hence, PLCP[b(F;)] = 2i for each ¢ with 1 < ¢ < m — 1. Similarly, we obtain
PLCP[b(F;) + j] = 2i — j for each j with 0 < j < |F;| and PLCP[e(F;)] = 2 for each ¢ with 1 <i <m—1.

HISA[n] = 1 since T[n]$.



7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
T a b a b b a b a b a b b a b b a a b a b a $
SA 22 21 16 19 17 6 1 8 13 3 10 20 15 18 b5 7T 12 2 9 14 4 11
ISA 7 18 10 21 15 6 16 8 19 11 22 17 9 20 13 3 5 14 4 12 2 1
[ 6 12 13 14 18 17 5 1 2 3 4 7 8 9 20 21 19 15 16 10 22 11
LCP 0 0 1 1 3 5 4 7 2 4 5 0 2 2 4 5 3 5 1 3 4
PLCP 4 5 4 3 4 5 5 7 6 5 4 3 2 1 2 1 3 2 1 0O 0 O
BWT a b b b a b $ b b b b a b a b a b a a a

[0 6 12 18 17 5 1 7 20 19 15 10 22 11
B 1 1 0 O 1 1 1 1 0 0 O 1 0O O 1 0 1 1 0 1 1 1

Figure 1: Suffix array, its inverse, ®, LCP array, PLCP array, and the BWT of our running example
string T'. The last two rows depict the sparse representation ®g of ® with bit vector B described in
Sect. 4l If BWTIISA[:]] = BWTIISA[{] — 1], i.e., T[i — 1] = T[®[¢] — 1], then ®[i] = ®[i — 1] + 1.

We conclude that the text positions b(F;) are interesting peaks, for 1 < i < m — 1. Moreover, b(F},_1)
is a maximum peak, since T[b(F,)] = o1 occurs only at T[b(F,,)] and at the last text position e(F})
such that PLCP[b(F;,)] = 1.

Finally, the algorithm collects m—2 interesting peaks before finding the maximal peak at text position
b(Fy,—1). Since |F;| = 2i — 1, we have .1 | |F;| = >." | (2i — 1) = n, which holds for m = ©(y/n). O

4 Sparse ¢

We still require to compute the referred positions for outputting the parse. The referred position of a
factor starting at position dst is ®[dst], i.e., our task is to compute ®. In the following, we present two
space efficient solutions for computing ® in memory.

Goto and Bannai [3] presented a linear-time algorithm computing ® from the text with O(clgn)
additional working space on top of ® stored in nlgn bits. In our scenario, it is sufficient to have only
certain entries of ® available: We call an entry ®[i] reducible if ®[i — 1] + 1 = P[i], otherwise we call it
irreducible. By storing only the irreducible entries of ® in an array ®g and a bit vector B of length n
marking whether the j-th text position is irreducible for each integer i with 1 < j < n, we can access
® with ®[i] = dg[B.rank;(i)] + ¢ — B.select; [B.rank; (i)], given that the bit vector B is endowed with a
rank/select-support. Kérkkdinen and Kempa [4, Lemma 3.3] show that SA[i] is an irreducible entry of
® if BWT[i] # BWT[i — 1]. Therefore, ®g has at most r entries, where r denotes the number of runs
of the same character in BWT. See Fig. [l| for an example. With this technique, after computing the
® algorithm with nlgn + O(olgn) bits of working space with |Goto and Bannai’s algorithm [3], our
algorithm computing plecpcomp runs in linear time using

rlgn +n+o(n)+ 2n + (O(min(y/nlgn,r)) +1)lgn
——" —_— =
sparse B PLCP L

bits of space, instead of
nlgn+ 2n 4+ (O(min(v/nlgn,r))+1)1lgn
—_——
o PLCP T

bits when conducting all computation with ® represented as a plain array. For lex-parse, we obtain the
same space bounds without the space of L.

Alternatively, we can compute &g and B directly with O(nlg o) additional space in O(nlgd n) time.
For that, we build the compressed suffix tree by the linear-time construction algorithm of Munro et al. [9].
It gives access to BWT and SA in constant and O(lgS n) time, respectively. We set B[SA[i]] = 1 for all
i with BWT[i] # BWT[i — 1], endow B with rank/select-support, and finally create ®g by setting
®[SA[i]] < SA[i — 1] for all ¢ with BWT[i] # BWT[i — 1]. With this technique, the algorithm runs in
slightly increased time O(nlg®n), but uses merely O(nlgo) bits of space.



5 Future Work

BGone is a modification of the SAIS algorithm. It computes ® with O(clgn) additional bits in linear
time from the text. We think that it is possible to modify divsufsort to compute ® instead of SA.
Although divsufsort runs in O(nlgn) using O(o?lgn) bits, it is practically faster than SAIS for small
alphabets.

The upper bound and lower bound shown respectively in Lemmas [3.1] and are not tight. On
the one hand, our analysis in Lemma [3.1] is based on the sum of all irreducible PLCP values. However,
not all irreducible PLCP values are considered as interesting peaks. A more detailed analysis on the
sum of the LCP values of all interesting peaks may improve the upper bound. On the other hand, in
Lemma [3:2] we did not exploit the fact that a factor may refer to positions that are covered by another
factor referring back to parts of the previous factor. Here, building a long dependency chain could help
to shrink the required length of the text to contain more interesting peaks.

While lex-parse as a greedy parsing has the smallest number of factors among all other lexicographic
parse [I0, Theorem 24], it is unknown whether there are upper or lower bounds that put plepcomp in
relation with the smallest number of factors a lexicographic parse can achieve.

On the practical side, different choices for factorization could improve the compression ratio. For
instance, one could do a second run that uses the inverse of ®. For that we use the array storing the
longest common prefix of the i-th and the (®~1[i])-th suffix, which is PLCP shifted by one position.

We wonder whether an plepcomp-like scheme can be computed directly by modifying a suffix array
construction algorithm computing simultaneously LCP: an idea could be to create referencing factors at
positions whose LCP values are irreducible.

References

[1] M. Burrows and D. J. Wheeler. A block sorting lossless data compression algorithm. Technical
Report 124, Digital Equipment Corporation, Palo Alto, California, 1994.

[2] P. Dinklage, J. Ellert, J. Fischer, D. Koppl, and M. Penschuck. Bidirectional text compression in
external memory. In Proc. ESA, pages 41:1-41:16, 2019.

[3] K. Goto and H. Bannai. Space efficient linear time Lempel-Ziv factorization for small alphabets. In
Proc. DCC, pages 163-172, 2014.

[4] J. Karkkdinen and D. Kempa. LCP array construction in external memory. ACM Journal of
Ezperimental Algorithmics, 21(1):1.7:1-1.7:22, 2016.

[5] J. Kéarkkéinen, D. Kempa, and M. Piatkowski. Tighter bounds for the sum of irreducible LCP
values. Theor. Comput. Sci., 656:265-278, 2016.

[6] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common-prefix com-
putation in suffix arrays and its applications. In Proc. CPM, volume 2089 of LNCS, pages 181-192,
2001.

[7] P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. J. Discrete Algorithms,
3(2-4):143-156, 2005.

[8] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string searches. SIAM J.
Comput., 22(5):935-948, 1993.

[9] J. I. Munro, G. Navarro, and Y. Nekrich. Space-efficient construction of compressed indexes in
deterministic linear time. In Proc. SODA, pages 408-424, 2017.

[10] G. Navarro and N. Prezza. On the approximation ratio of greedy parsings. CoRR, abs/1803.09517,
2018.

[11] K. Sadakane. Succinct representations of lcp information and improvements in the compressed suffix
arrays. In Proc. SODA, pages 225-232, 2002.



[12] K. Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst., 41(4):589-607,
2007.

[13] J. A. Storer and T. G. Szymanski. Data compression via textural substitution. J. ACM, 29(4):
928-951, 1982.

[14] N. Vialiméaki, V. Mékinen, W. Gerlach, and K. Dixit. Engineering a compressed suffix tree imple-
mentation. ACM Journal of Experimental Algorithmics, 14, 20009.

[15] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans. Infor-
mation Theory, 23(3):337-343, 1977.



	Introduction
	Preliminaries
	Parsing
	Sparse Phi
	Future Work

