
Succinct Data Structure for Path Graphs

Girish Balakrishnan∗, Sankardeep Chakraborty†, N S Narayanaswamy∗,
and Kunihiko Sadakane†

∗Indian Institute of Technology Madras, †University of Tokyo,
Chennai, India Tokyo, Japan

girishb@cse.iitm.ac.in sankardeep.chakraborty@gmail.com

swamy@cse.iitm.ac.in sada@mist.i.u-tokyo.ac.jp

Abstract

We consider the problem of designing a succinct data structure for path graphs (which are a
proper subclass of chordal graphs and a proper superclass of interval graphs) on n vertices
while supporting degree, adjacency, and neighborhood queries efficiently. We provide the
following two solutions for this problem:

1. an n log n + o(n log n)-bit succinct data structure that supports adjacency query in
O(log n) time, neighborhood query in O(d log n) time and finally, degree query in
min{O(log2 n), O(d log n)} where d is the degree of the queried vertex.

2. an O(n log2 n)-bit space-efficient data structure that supports adjacency and degree
queries in O(1) time, and the neighborhood query in O(d) time where d is the degree
of the queried vertex.

Central to our data structures is the usage of the classical heavy path decomposition by
Sleator and Tarjan [1], followed by a careful bookkeeping using an orthogonal range search
data structure using wavelet trees [2] among others, which maybe of independent interest
for designing succinct data structures for other graph classes.

1 Introduction

An intersection graph G = (V,E) is an undirected graph whose vertices are mapped
by f to a family of sets F such that vertex a1 is adjacent to a2 in G if and only if
f(a1) ∩ f(a2) 6= φ. Based on the family of sets F we get different graph classes. For
instance, if F is the set of intervals on the real number line, then we get interval
graphs. Yet another example is chordal graphs, defined as the intersection graph
of sub-trees of a tree. Path graphs is the class of graphs obtained when F is the
set of paths, P1, . . . , Pn in a tree T such that two paths intersect if and only if the
corresponding vertices are adjacent. It is well-known that the class of path graphs is
a proper subclass of chordal graphs and a proper superclass of interval graphs [3].

In this work, we address the problem of designing a succinct data structure for
the class of path graphs so that basic navigational queries such as degree, adjacency,
and neighborhood can be answered efficiently. Formally, given a set T consisting
of combinatorial objects with a certain property, our goal is to store any arbitrary
member x ∈ T using the information-theoretic minimum of log(|T |) + o(log(|T |))
bits (throughout this paper, log denotes the logarithm to the base 2) while still
being able to support the queries efficiently on x. Recently, Acan et al. [4] showed

ar
X

iv
:2

11
1.

04
33

2v
3

 [
cs

.D
S]

 2
 M

ar
 2

02
3

that the information-theoretic lower bound for representing unlabeled interval graphs
with n vertices is at least n log n bits, and as path graphs are a proper superclass of
interval graphs, this lower bound also holds true for path graphs. Interestingly, we
manage to construct an n log n + o(n log n)-bit data structure for representing path
graphs matching this information-theoretic lower bound, thus, obtaining succinct data
structure for path graphs for the first time in literature. This is the main contribution
of this work. We leave the question of whether path graphs are only a constant factor
larger in size than the class of interval graphs as an open problem.
Previous Related Work. There already exists a huge body of work on representing
various classes of graphs succinctly. A partial list of such special graph classes would
be trees [5, 6], planar graphs [7], partial k-tree [8], and arbitrary graphs [9]. Recent
results have appeared in literature for intersection graphs like interval graphs due to
Acan et al [4] and chordal graphs due to Munro and Wu[10]. For interval graphs, [4]
gives an n log n+O(n) bit succinct data structure that supports degree and adjacency
queries in O(1) time while neighborhood query in constant time per neighbour. In
the case of chordal graphs, [10] gives an n2/4 + o(n2) bit succinct data structure
that supports adjacency query in f(n) time where f(n) ∈ ω(1), degree of a vertex
in O(1) time and neighborhood in (f(n))2 time per neighbour. The main motivation
behind our work stems from these two above-mentioned works. Since path graphs is
a strict subclass of chordal graphs and a strict superclass of interval graphs it would
be interesting to see whether one can design such an efficient data structure for path
graphs as well.
Our Results. Before we get to our results, note the following terminology for graph
G = (V,E):

• for u, v ∈ V , adjacency query checks if {u, v} ∈ E,

• for u ∈ V , the neighborhood query returns all the vertices that are adjacent to
u in G, and

• for u ∈ V , the degree query returns the number of vertices adjacent to u in G.

Our primary result in this work is an n log n+o(n log n)-bit succinct representation
for unlabelled connected path graphs. It is obtained from the clique tree representa-
tion (T, P1, . . . , Pn) [11] [12] on the input path graph. Here T is the clique tree [12]
and Pi, 1 ≤ i ≤ n, are the paths in it. We then store T succinctly along with the
end-points of the paths Pi in it. Formally we have the following result.

Theorem 1. Path graphs have an n log n+o(n log n)-bit succinct representation. The
succinct representation constructed from the clique tree representation supports for a
vertex u the following queries:

1. adjacency query in O(log n) time,
2. the neighborhood query in O(du log n) time, and
3. the degree query in min{O(log2 n), O(du log n)} time

where du is the degree of vertex u.

The central tool that we use in obtaining the above succinct data structure result
and the space-efficient data structure is heavy path decomposition (HPD) [1] per-
formed on the clique tree T . The HPD when performed on the clique tree T gives
the heavy path tree T ; explained in Section 2.2. Each node of the heavy path tree T
corresponds to a heavy path of the clique tree T . The property that heavy path tree
T has at most dlog ne levels helps us achieve the query times of Theorem 1. Addition-
ally, we observe that the intersection of the paths P1, . . . , Pn with each heavy path
defines a natural interval graph giving us the space-efficient data structure for path
graphs. Further we observe that the union of these interval graphs corresponding to
nodes in the same level of the heavy path tree is also an interval graph. To obtain the
space-efficient data structure, we store the interval graphs at each level of the heavy
path tree using the results from [4] and organize them into at most log n levels. Even
though we use additional log n factor storage in the space-efficient data structure over
the succinct representation, we can respond to all the queries more efficiently. This
is our second result.

Theorem 2. There exists a space-efficient representation for path graphs using O(n log2 n)
bits. The representation supports the following queries for a vertex u:

1. the adjacency and degree queries in O(1) time,
2. the neighborhood query in O(du) time where du is the degree of the vertex u.

The increased efficiency of the space-efficient data structure comes at the expense of
increased space which arises due to the duplication of edges of path graph among the
log n interval graphs. Another difference is that the succinct data structure performs
orthogonal range search to implement the queries while the space-efficient data struc-
ture delegates the queries to those of the underlying interval graph as implemented
in [4].

All the preliminary terminology and concepts required for rest of the sections are
in Section 2 and 3. In Section 4, a succinct representation for path graphs is presented
and Section 5 describes the space-efficient data structure.

2 Preliminaries

For a graph G, through out the paper we denote the set of vertices and edges by
V (G) and E(G), respectively. Familiarity with basic graph theory as in [13] and
graph algorithms as given in [14] is expected.

2.1 Path Graphs and Its Properties

A graph G is a path graph if there exists a tree T and family of paths P = {P1, . . . , Pn}
in T such that G is the intersection graph of paths in P . G is said to have the
representation (T,P); see Figure 1. A vertex a ∈ V (G) is simplicial if the set of
vertices adjacent to a, denoted N(a), induces a complete sub-graph of G [3]. The
ordering ρ = [a1, . . . , an] of V (G) is called a perfect elimination scheme if for all
i,Xi = {aj ∈ N(ai) | j > i, } is complete. Every path graph has a simplicial

vertex and a perfect elimination scheme. It is well known that any simplicial vertex
can start a perfect elimination scheme; see Theorem 4.1 and Lemma 4.2 of [3] for
more details. Let C be the set of maximal cliques of G and for every a ∈ V (G) let
Ca = {C|C ∈ C and a ∈ V (C)}. Consider a tree T with V (T) = C such that for every
a ∈ V (G), Ca induces a sub-tree Ta of T . G is a choral graph if it is the intersection
graph of set of such induced sub-trees. For chordal graphs such a tree T is called
the clique tree of G [3]. Clique tree can be computed in polynomial time [11]. The
following is a characterisation of path graphs as a sub-class of chordal graphs [11][12].

Figure 1: (a) Path graph G with maximal cliques C = {C1, . . . , C8}, (b) Clique tree repre-
sentation of G where each node i corresponds to Ci ∈ C. For vertices u, v ∈ V (G) we have
paths Pu, Pv such that V (Pu) ∩ V (Pv) 6= φ if and only if {u, v} ∈ E(G). The clique tree
shown here is pre-processed as explained in Section 3.

Theorem 3. The graph G is a path graph if and only if there exists a clique tree T ,
such that for every v ∈ V (G), the set of maximal cliques containing v form a path in
T .

In this paper, we are concerned with the construction of a succinct representation for
path graphs and the construction mechanism takes as input, (T,P). Also, apart from
clique tree T we will introduce the heavy path tree T in the next section. Elements
of V (T) and V (T) will be henceforth referred to as nodes of T and T , respectively
whereas for any graph G, elements of V (G) will be referred to as its vertices. The
following is known from [11].

Remark 4. The number of maximal cliques in a path graph G with n vertices is at
most n.

2.2 Heavy Path Decomposition

Heavy path decomposition (HPD) was introduced in [1] and used in [15] and [16] for
rooted trees. In the heavy path decomposition for a rooted tree T , each internal node
u selects an edge (u, v) such that the child v has the maximum number of descendants
among the children of u. In the case of a tie among two children of u pick any one
arbitrarily. The edge (u, v) is called a heavy edge. Thus, each internal node of T

selects exactly one edge as heavy edge. Further, it is known that each vertex has at
most two heavy edges incident on it, one with its parent and second with one of its
children. An edge that is not chosen as a heavy edge by any internal node is called
a light edge. Consider the forest of paths obtained by removing light edges from T .
We refer to each path in this forest as a heavy path. The heavy path decomposition
of T partitions the nodes of T into the set of heavy paths denoted by H. Also, it
partitions the edges of T into heavy and light edges; see Figure 2.

Figure 2: Heavy path decomposition of a rooted tree with n = 12 nodes. At node 1, {1, 2}
is picked as the heavy edge as 2 is the child of 1 with maximum number of descendants.
Edge {1, 12} is a light edge. Path {1, 2, 3, 4, 5} of the clique tree is compressed as a single
node in the heavy path tree T . As a light edge connects a node to a sub-tree that is at least
halved in size, the heavy path tree will have at most log n levels. Thick red lines indicate
heavy edges and thin blue lines indicate light edges respectively.

Remark 5. The heavy paths in H are of two types: those that contain at least one
heavy edge and those which do not contain a heavy edge. A heavy path which does
not contain a heavy edge is a leaf node whose incident edge in T is a light edge. For
instance, in Figure 2 heavy path {1, 2, 3, 4, 5} is of former type whereas heavy path
{6} is of later type.

Using the heavy path decomposition of T we define a tree which we call the heavy
path tree denoted by T . Let Φ : H → V (T) be a bijection such that for u ∈ V (H1) and
v ∈ V (H2), e = {u, v} is a light edge if and only if there exists an edge {Φ(H1),Φ(H2)}
in T . Subsequently, whenever H1 and H2 satisfy this property we will call H1 and H2

light edge separable heavy paths. In other words, H1, H2 ∈ H are light edge separable
heavy paths in T if and only if Φ(H1) and Φ(H2) are adjacent in T . Further, we refer
to the edge {Φ(H1),Φ(H2)} ∈ E(T) using the light edge between and H1 and H2,
which in this case is e. The heavy path that contains the root of T is the root of T .

The level of the root node is 0, and each other node has a level which is its distance
from the root. A sub-path of a heavy path will be referred to as heavy sub-path. The
following remark is important for the rest of the paper. The following lemmata are
well-known [15], and we extensively use them here.

Lemma 6. The number of levels in T is at most dlog ne. Further, a path in T has
at most 2dlog ne edges.

Lemma 7. For u, v ∈ V (T), V (Φ−1(v))∩V (Φ−1(u)) = φ and V (T) =
⋃

v∈V (T)

V (Φ−1(v)).

In other words, the nodes of T are partitioned among the nodes of T .

Lemma 8. Let P be a path in T . P can be partitioned into heavy sub-paths Π =
{π1, . . . , πk}, 1 ≤ k ≤ 2dlog ne+ 1.

Proof. Consider a path P = v1e2v2e2 . . . vl−1elvl, 1 ≤ l ≤ n in T where v1, . . . , vl ∈
V (P) and e2, . . . , el ∈ E(P). Let f1, . . . , ft denote the t ≥ 0 light edges in P in-
dexed in the order in which they occur in P from v1 to vl. Then, we consider
P = π1f1π2f2 . . . ftπt+1 such that for each 1 ≤ i ≤ t + 1, πi is a maximal heavy
sub-path in P . fi is the light edge between the last vertex of πi and the first ver-
tex of πi+1. For each 1 ≤ i ≤ t + 1, let Hi denote the heavy path in H such
that πi is a heavy sub-path of Hi. By our convention on the edge label in T , the
edge {Φ(Hi),Φ(Hi+1)} is considered to be fi. Thus, for P in T we have a path
P ′ = Φ(H1)f1Φ(H2)f2 . . . ftΦ(Ht+1) in T . Let |V (P ′)| = t+ 1 and from Lemma 6 we
know that t ≤ 2dlog ne. Thus, the number of heavy sub-paths, k ≤ 2dlog ne+ 1.

The following propositions are straightforward and merely stated explicitly in the
context of heavy path trees.

Proposition 9. Let P be a path in T and l ≤ log n be an integer. P consists of at
most two nodes with level l.

Through out this paper we will use the notation [n] = {1, 2, . . . , n}.

2.3 Useful Succinct Data Structures

Table 1 summarises the set of data structures we use in this work which we will
explain in this section starting with ordinal trees.
Succinct Data Structure for Ordinal Trees. Let the children of any u ∈ V (T)
be {u1, . . . , uz} for some z > 0. Tree T is called an ordinal tree if for i < j, ui is to
the left of uj [17]. By considering ordinal trees as balanced parenthesis Navarro and
Sadakane [17] has given a 2n+ o(n) bit succinct data structure.

Lemma 10. For any ordinal tree T with n nodes, there exists a 2n + o(n) bit Bal-
anced Parentheses (BP) based data structure that supports the following four functions
among others in constant time :

1. lca(i, j), returns the lowest common ancestor of two nodes i, j in T ,
2. parent(i), returns the parent of node i in T , and

3. first child(i), returns the first child of node i in T .
4. rmost leaf(i), returns the rightmost leaf of sub-tree rooted at node i in T .
5. child rank(i), returns the number of siblings to the left of node i in T .

Rank-Select Data Structure. Bit-vectors are extensively used in the succinct
representation given in Section 4. The following data structure due to Golynski et al.
[20] and the functions supported by it are useful.

Lemma 11. Let B be an n−bit vector and b ∈ {0, 1}. There exists an n + o(n) bit
data structure that supports the following functions in constant time:

1. rank(B, b, i): Returns the number of b’s up to and including position i in the bit vector
B from the left.

2. select(B, b, i): Returns the position of the i-th b in the bit vector B from left. For
i /∈ [n] it returns 0.

Non-decreasing Integer Sequence Data Structure. Given a set of positive
integers in the non-decreasing order we can store them efficiently using the differential
encoding scheme for increasing numbers; see Section 2.8 of [19]. Let S be the data
structure that supports differential encoding for increasing numbers then the function
accessNS(S, i) returns the i−th number in the sequence.

Lemma 12. Let S be a sequence of n non-decreasing positive integers a1, . . . , an, 1 ≤
ai ≤ n. There exists a 2n + o(n) bit data structure that supports accessNS(S, i) in
constant time.

Proof. We will prove the lemma by giving a construction of such a data structure.
a1 will be represented by a sequence of a1 1’s followed by a 0. Subsequently ai’s are
represented by storing ai − ai−1 many 1’s followed by a 0. It will take 2n bits since
there are n 0’s and n 1’s. Let this bit string be stored using the data structure of
Lemma 11 and be denoted as B. B takes 2n + o(n) bits. accessNS(S, i) can be
implemented using rank(B, 1, select(B, 0, i)) on the bit string obtained.

Wavelet Trees. Central to the design of the succinct data structure of Section 4 is
the two-dimensional orthogonal range search data structure used to store points in
the two-dimensional plane. Specifically, we use the n log n + o(n log n) bit succinct
wavelet trees due to Makinen and Navarro [2] that requires the n points to have
distinct integer-valued x− and y−coordinates in the range [n]× [n]. The wavelet tree
has the following properties.

1. The wavelet tree is a balanced binary search tree. Each node of the tree is
associated with an interval range of the x-coordinate.

2. The range at the root of the wavelet tree has the interval [1, n] and the interval
at each leaf is of the form [a, a], 1 ≤ a ≤ n.

3. The range [a, a′], 1 ≤ a < a′ ≤ n, at an internal node is partitioned among the
ranges [a, a′′] and [a′′+ 1, a′] at its children, that is, [a, a′] = [a, a′′]

⋃
[a′′+ 1, a′].

We use the following result regarding wavelet trees from [2].

Lemma 13. Given a set of n points {(a1, b1), . . . , (an, bn)} where ai, bi ∈ [n], 1 ≤ i ≤ n
such that ai 6= aj and bi 6= bj for i 6= j, there exists an n log n(1 + o(1)) bit orthogonal
range search data structure S that supports the following functions:

1. search(S, [i, i′], [j, j′]): Returns the points in the input range [i, i′] × [j, j′], 1 ≤ i ≤
i′ ≤ n, 1 ≤ j ≤ j′ ≤ n, in the increasing order of the x−coordinate taking O(log n)
time per point.

2. count(S, [i, i′], [j, j′]): Returns the number of points in the input range [i, i′]×[j, j′], 1 ≤
i ≤ i′ ≤ n, 1 ≤ j ≤ j′ ≤ n, in O(log n) time.

3. access(S, i) : Returns the y−coordinate of the point stored in S with x−coordinate i
in O(log n) time.

3 Clique Tree Pre-processing = HPD + Pre-order Traversal

The pre-processing of the clique tree allows the paths in P to be stored efficiently
so that adjacency and neighbourhood queries can be supported. This involves the
following two steps:

1. heavy path decomposition of T , and

2. transformation of T into an ordinal tree which is labeled based on the pre-order
traversal

A clique tree is organized as an ordinal tree as explained below.
HPD + Pre-order traversal of T . Fix a root node for T and perform heavy path
decomposition on it. For v ∈ V (T) order its children (w1, . . . , wc) such that {v, w1} is
a heavy edge. Let the children adjacent to v by light edges (w2, . . . , wc), be ordered
arbitrarily. This ordering of children of a node of the clique tree makes it an ordinal
tree. Label the nodes of this ordinal tree based on the pre-order traversal; see Section
12.1 of [14] for more details of pre-order traversal of trees. Labels assigned to nodes
in this manner are called the pre-order label of the nodes. Through out the rest of
our paper this ordinal rooted clique tree labeled with pre-order will be referred to as
the clique tree.
Representing paths as tuples. Path P ∈ P is represented as P = (l, r), l, r ∈
V (T), where l and r are the end points of P such that l ≤ r. We say that l and r are
the starting and ending nodes of the path, respectively. Let Ta and Tb be the sub-
trees of T rooted at a and b, respectively. For e = lca(l, r), the following propositions
regarding the clique tree T follow from pre-order traversal.

Proposition 14. Let b ∈ V (Ta) for a ∈ V (T). The following hold.

1. The sub-tree rooted at b is contained in Ta.
2. Let V (P) * V (Ta). |V (P) ∩ V (Ta)| ≥ 1 if and only if a ∈ V (P).
3. l ∈ V (Ta) and e < a if and only if r /∈ V (Ta) and a ∈ V (P).
4. If l ∈ V (Ta) and e = a then r ∈ V (Ta).
5. If there are z descendants of a in Ta then the nodes of V (Ta) is the set {a, a+1, . . . , a+

z}.

Proposition 15. Let π be a heavy path of length k ≥ 1 in T with a and b as its end
points such that a ≤ b. Then b = a+ k.

We will subsequently use the notation [a, b] to refer to the ordered set of nodes (a, a+
1, . . . , b − 1, b). a and b are referred to as the starting and ending points of [a, b].
Figure 1 shows the pre-processed clique tree for the example path graph G, also
shown in the figure. The heavy path starting at 1 and ending at 4 have contiguous
numbering and is denoted as [1, 4]. We emphasize that a sub-path of a heavy path
is also represented using the same notation. A heavy path or a heavy sub-path [a, a]
contains only the vertex a.

Lemma 16. For any heavy path H = [a′, b′] of T a path π = [a, b] such that a′ ≤ a ≤
b ≤ b′ is a heavy sub-path of H. For the heavy sub-path π of H let c and d be the
rightmost leaves in the sub-tree rooted at b and a, respectively. The following are true
about π.

1. If a ≤ u ≤ b then u ∈ V (π).
2. a ≤ b ≤ c ≤ d.
3. Let Q = (s, t) be a path in T . If s > d then π and Q are vertex disjoint paths in T .

Proof. The proofs are as follows:

1. This is true due to Proposition 15.
2. a ≤ b by definition of π. b ≤ c ≤ d since the labels are based on pre-order traversal.
3. From Proposition 14 we know that, if there are z descendants of a in Ta, then the

nodes of V (Ta) is the set {a, a + 1, . . . , a + z}. Since d is the label of the rightmost
descendant of a, it follows that d = a + z. Since a + z = d < s, we know that Q
starts at a node that is visited after the nodes of Ta. Since t > s the pre-order labels
of nodes in Q is not in V (Ta). Thus, Q and Ta are vertex disjoint, and thus Q and π
are vertex disjoint.

Lemma 17. Let a ∈ V (T) and al be a child of a such that l ∈ V (Tal) .

1. If lca(l, r) < a then r ∈ [rmost leaf(a) + 1, n].

2. If lca(l, r) = a then r ∈ [rmost leaf(al) + 1, rmost leaf(a)].

Proof. The proof is as follows:

1. Since lca(l, r) < a and r ≥ l, r is a node that is visited after the nodes in Ta are
visited, that is, r ∈ [rmost leaf(a) + 1, n].

2. If lca(l, r) = a then there exists a child of a, say ar such that r ∈ Tar . al < ar since
l < r. Thus, r ∈ [rmost leaf(al) + 1, rmost leaf(a)].

3.1 Organizing the heavy paths and light edges of T

Let H be the set of heavy paths of T ; recall from Section 2.2. Let H,H ′ ∈ H such
that H = [a, b] and H ′ = [a′, b′]. We define a total order (H,≺H) as follows. H ≺H H ′
if a < a′. In other words, H ≺H H ′ if H is visited before H ′ in the pre-order traversal
of T .
Total order on the heavy sub-paths of paths in T . ≺H, extends to the set of
heavy sub-paths of a path. Let Π = {π1, . . . , πk}, 1 ≤ k ≤ 2dlog ne+ 1, be the set of
heavy sub-paths of path P ; see Lemma 8 for details regarding heavy sub-paths of a
path. For any two π, π′ ∈ Π, let H,H ′ ∈ H be such that π and π′ are heavy sub-paths
of H and H ′, respectively. π ≺ π′ if H ≺H H ′. In other words, we order the heavy
sub-paths according to the order of the heavy paths that contain it.
Convention: In the rest of this section, P denotes the path (l, r) in T , and Π is
the decomposition of P into heavy sub-paths. In other words, for the path P , Π =
(π1, . . . , πk), 1 ≤ k ≤ 2dlog ne + 1, πi ≺ πj if 1 ≤ i < j ≤ k. Also, for every πi ∈ Π,
πi = (ai, bi). In Section 5, we assume that the heavy paths of T are numbered such
that Hi ≺H Hj if and only if 1 ≤ i < j ≤ n.

3.2 Characterising path intersections in T

In this section, first we will show that a heavy sub-path π ∈ Π partitions the nodes
of T into four ranges of pre-order labels. Paths intersecting π are characterised based
on these ranges. Adjacency and neighbourhood queries for π are implemented using
orthogonal range search queries that use these ranges.
Successor of a heavy sub-path. For πi, πj ∈ Π, if there exists nodes u1 ∈ V (πi)
and u2 ∈ V (πj) such that {u1, u2} is a light edge in T then we say that πi and πj
are light edge separable heavy sub-paths; an extension of the notion of light edge
separable heavy paths from Section 2.2. Let 1 ≤ i < j ≤ k, πi, πj ∈ Π. πj is called
the successor of πi if πi ≺ πj and they are light edge separable. We define a mapping
succ : Π×{1, 2} → Π∪ {NULL} from a heavy sub-path of P to its successors defined
as follows.

1. Successors for π1: We have the following sub-cases depending on the number of
heavy sub-paths of P .

(a) k = 1 : π1 has no successors, that is, succ(π1, 1) = succ(π1, 2) = NULL.

(b) k > 1 : There are two cases:

i. π1 has both its successors that is succ(π1, 1) = π2 6= NULL and
succ(π1, 2) = πz 6= NULL for z ∈ [3, k]. This happens when P can
be divided into two sub-paths P 1 = (e, l) and P 2 = (e, r) such that
e 6= l 6= r.

ii. π1 has only one successor. Let π2 = (a2, b2) and a1 6= b1. There are
two sub-cases.

A. succ(π1, 1) = NULL and succ(π1, 2) = π2. This happens when
parent(a2) = a1.

B. succ(π1, 1) = π2 and succ(π1, 2) = NULL. This happens when
parent(a2) = b1.

When a1 = b1, we define succ(π1, 1) = π2 and succ(π1, 2) = NULL.

2. Successors for πi, i 6= 1: succ(πi, 1) = πi+1 if πi+1 ∈ Π and πi, πi+1 are light
edge separable else succ(πi, 1) = NULL. For all i 6= 1, succ(πi, 2) = NULL.

Note that if succ(π1, 2) = πz 6= NULL for z ∈ [3, k] then succ(πz−1, 1) = succ(πz−1, 2) =
NULL. Also, succ(πk, 1) = succ(πk, 2) = NULL.
Interval ranges associated with πi ∈ Π, 1 ≤ i ≤ k. For u ∈ V (T), rmost leaf(u)+
1 is the node that is visited immediately after traversing the nodes in sub-tree rooted
at u in the pre-order traversal of T . We associate four ranges of nodes of T with πi.
The four ranges associated with πi denoted by Rj(i), 1 ≤ j ≤ 4, are as follows.

i. R1(i): Range of nodes visited before ai in the pre-order traversal of T . If i = 1
and a1 > 1 then R1(1) = [1, a1 − 1] else R1(1) = φ.

ii. R2(i): Heavy sub-path πi, [ai, bi].

iii. R3(i): There are two cases depending on existence of succ(πi, 1).

(a) If succ(πi, 1) 6= NULL then R3(i) = R1
3(i) ∪R2

3(i) where

i. R1
3(i): Range of nodes visited after bi and before the nodes of Tai+1

,
R1

3(i) = [bi + 1, ai+1 − 1].

ii. R2
3(i): Range of nodes visited after visiting the nodes of Tai+1

and be-
fore the right-most leaf of Tbi . If rmost leaf(ai+1) 6= rmost leaf(bi)
then R2

3(i) = [rmost leaf(ai+1) + 1, rmost leaf(bi)] else R2
3(i) = φ.

(b) If succ(πi, 1) = NULL and bi 6= rmost leaf(bi) thenR3(i) = [bi+1, rmost leaf(bi)]
else R3(i) = φ. Note that bi 6= rmost leaf(bi) means that bi is not a leaf.

iv. R4(i): There are two cases depending on succ(πi, 2).

(a) If succ(πi, 2) 6= NULL then by definition i = 1 and R4(1) = R1
4(1) ∪ R2

4(1)
where

i. R1
4(1): Range of nodes visited after nodes in Tb1 and before nodes of

Taz . If rmost leaf(b1)+1 6= az then R1
4(1) = [rmost leaf(b1)+1, az−

1] else R1
4(1) = φ. Note that rmost leaf(b1) + 1 6= az means b1 is not

a leaf.

ii. R2
4(1): Range of nodes visited after nodes in Taz and before the right-

most node of Ta1 . If rmost leaf(az) 6= rmost leaf(a1) then R2
4(1) =

[rmost leaf(az) + 1, rmost leaf(a1)] else R2
4(1) = φ.

(b) If succ(πi, 2) = NULL and rmost leaf(ai) 6= bi thenR4(i) = [rmost leaf(bi)+
1, rmost leaf(ai)] else R4(i) = φ.

Remark. For each 1 ≤ i ≤ k, 1 ≤ j ≤ 4, Rj(i) ⊆ [1, n] are intervals, and R1(i) ∪
R2(i) ∪R3(i) ∪R4(i) = V (Tai) ∪ [1, ai − 1]. Further, the range of nodes greater than
rmost leaf(ai) is not relevant, as it follows from Lemma 16 that the starting point
of a path intersecting with P should be in one of these ranges. See Figure 3 for a
pictorial representation of the ranges and Table 2 and 3 summarise the ranges.

Figure 3: The regions generated by (a) π1, and (b) πi, 2 ≤ i ≤ n. For j ∈ {1, 2, t, i, i + 1},
rmost leaf(aj) = dj and rmost leaf(bj) = cj .

Characterising intersection of a path Q with a heavy sub-path. Let Q = (s, t)
be a path in P . Let the sequence of nodes in Q be (s = u1, u2, . . . , uz = t), 1 ≤ z ≤ n.
Let y be the first node in the sequence such that y ∈ V (P). From Lemma 7, it follows
that Π partitions the vertices of P , and thus y belongs to a unique π ∈ Π.
Convention: For ease of presentation, in the rest of this section, Q = (s, t) is a path
in P , and y denotes the first vertex in (s = u1, u2, . . . , uz = t), 1 ≤ z ≤ n which is in
P .
For path P and path Q ∈ P we define the many-to-one function α : P × P →
Π ∪ {NULL} as follows.

α(P,Q) =

{
NULL, if V (P) ∩ V (Q) = φ

π ∈ Π, if y ∈ V (π)

As a consequence of the definition of α(P,Q) we have the following lemma.

Lemma 18. For 1 ≤ i ≤ k, α(P,Q) = πi if and only if exactly one of the following
is true.

1. i = 1 and s ∈ R1(1) and t ∈ V (Ta1).
2. s ∈ R2(i)
3. s ∈ R3(i) and lca(s, t) ≤ bi
4. s ∈ R4(i) and lca(s, t) < bi

Proof. Let α(P,Q) = πi then the position of the starting node of Q has three possi-
bilities relative to πi = (ai, bi). They are as follows:

1. s < ai: This can happen only when i = 1. By Proposition 14, a1 ∈ V (Q) and y = a1.
In this case, s ∈ R1(1) and t ∈ V (Ta1). For i 6= 1, any path Q with l ∈ R1(i)

and t ∈ Tai will have to pass through bi−1. This implies α(P,Q) 6= πi and thus a
contradiction.

2. ai ≤ s ≤ bi: By Lemma 16, s = y ∈ [ai, bi] that is s ∈ R2(i).
3. s > bi: In this case, s 6= y and y ∈ [ai, bi]. Depending on the regions of πi as described

above we have two possibilities as shown below:

(a) s ∈ R3(i) and lca(s, t) ≤ bi. By Proposition 14, bi ∈ V (Q) and y = bi.

(b) s ∈ R4(i) and lca(s, t) < bi. In this case, y ∈ [ai, bi − 1].

Exactly one of the conditions is satisfied as the ranges Rj(i) are non-overlapping and
paths start in any one of the ranges. On the other hand, if there exists an i such that
any one of the four conditions as given below is true, then we show that α(P,Q) = πi.

1. s ∈ R1(1) and t ∈ V (Ta1): In this case, y = a1 and since y ∈ V (π1), α(P,Q) = π1.
2. s ∈ R2(i): In this case, y = s and since y ∈ V (πi), α(P,Q) = πi.
3. s ∈ R3(i) and lca(s, t) ≤ bi: Since l ∈ R3(i) and lca(l, r) ≤ bi, y = bi. Since
y ∈ V (πi), α(P,Q) = πi.

4. s ∈ R4(i) and lca(s, t) < bi: Since s ∈ R4(i) and lca(s, t) < bi, y ∈ [ai, bi − 1]. Since
y ∈ V (πi), α(P,Q) = πi.

Function checkα. This is a useful function that returns true if α(P,Q) = πi, πi ∈ Π,
based on conditions of Lemma 18.

Lemma 19. For path P ∈ P, given as input the index i of a heavy sub-path πi ∈ Π,
successors of π1 ∈ Π and another path Q ∈ P, there exists a function
checkα(i, Q,Π, succ(1, 1), succ(1, 2)) that checks α(P,Q) = πi in constant time.

Proof. The check can be done in the following manner.

1. Compute the interval ranges Rj, 1 ≤ j ≤ 4, of πi using its end points and its successor
stored in Π. If i = 1 then we can get the successors succ(1, 1) and succ(1, 2) from the
input. If i 6= 1 then it can be obtained from Π as follows. For i 6= 1, it is πi+1 unless
πi+1 = succ(1, 2) or i = k where k is the number of heavy sub-paths in Π. Since
there are only four ranges and from Lemma 10, rmost leaf takes constant time, the
ranges can be computed in constant time.

2. Check if α(P,Q) = πi based on Lemma 18. It takes constant time as the four checks
are based on comparisons and from Lemma 10, lca(s, t) can be computed in constant
time. If α(P,Q) = πi then checkα returns true.

Thus, checkα checks α(P,Q) = πi in constant time.

For π ∈ Π, let β(π) = {Q | Q ∈ P and α(P,Q) = π}. We have the following lemma.

Lemma 20. For all distinct π, π′ ∈ Π, β(π) ∩ β(π′) = φ.

Proof. For each π ∈ Π, β(π) is the pre-image of π under the function α. Since α is a
function, it follows that if π 6= π′, β(π) ∩ β(π′) = φ.

Let the neighbourhood of a path be the set of all paths that have non-empty intersec-
tion with it. We have the following theorem regarding neighbourhood.

Lemma 21. Let N(P) denote the neighbourhood of P . N(P) =
⊎
π∈Π β(π).

Proof. For a path Q ∈ N(P), α(P,Q) 6= NULL, and thus Q is an element of β(π) for
some π ∈ Pi. By Lemma 20, for each pair of distinct π, π′, β(π) ∩ β(π′) = φ. Thus
N(P) =

⊎
π∈Π β(π).

4 The Succinct Data Structure

In this section, we present the construction of the succinct representation followed by
the implementation of the queries. The input to our construction procedure is (T,P)
obtained from the path graph G using Gavril’s method [11] where T is the clique
tree and P = {P1, . . . , Pn} is the set of paths in it such that the paths correspond
to vertices of G and have a non-empty intersection of their vertex sets if and only if
the corresponding vertices are adjacent. The construction procedure starts by pre-
processing the clique tree as explained in the previous section followed by storing
it and the paths in a space efficient manner. We demonstrate a polynomial time
construction mechanism without worrying about the most optimal way.

Figure 4: Succinct representation for the path graph G of Figure 1. Top left diagram shows
the paths as points in a grid. Bottom left shows the path aliases stored in the wavelet tree.
The right side shows the li and ri values of paths, the balanced parentheses representation
of the pre-processed clique tree along with the F and J data structures.

4.1 Construction of the Succinct Data Structure

Our succinct data structure for path graphs has two main parts - the clique tree T
and the paths P = {P1, . . . , Pn} in it. The construction uses other compact data

structures [19] which are of the types: ordinal tree, bit vector, wavelet tree, and array
of sorted integers. In the next two sections we will explain the construction and
storage of the clique tree and the paths in it.

4.1.1 Storing the Clique Tree

In this section we explain how the clique tree T and its BP representation is stored
succinctly.
Clique tree T . By Remark 4, the clique tree has at most n nodes and is an ordinal
tree. It is stored using 2n+ o(n) bits using the data structure of Lemma 10.
Bit-vector BP . The balanced parentheses representation of T is stored using the
data structure of Lemma 11 in bit-vector BP using 2n + o(n) bits. In BP the open
and close parenthesis are represented by bit 1 and 0, respectively. For every node v
in T there exists two indices i and j in BP where i < j such that BP [i] = 1 and
BP [j] = 0. For some 1 ≤ i ≤ 2n, if BP [i] = 1 and BP [i− 1] = 0 then they represent
the open and close parenthesis of nodes v, u ∈ V (T) that have a common parent w.
Since T is ordinal, in the order of children of w, u comes immediately before v and it
is called v’s previous sibling. The following three methods are supported by BP :

1. getPreorder(i): For 1 ≤ i ≤ 2n such that BP [i] = 1, returns the pre-order
label of the node which has its open parenthesis at i in BP . It is implemented
by rank(BP, 1, i) for i 6= 0 and for i = 0 it returns 1.

2. getIndex(v): Returns the index of the open parenthesis of v ∈ V (T) in BP . It
is implemented by select(BP, 1, v).

3. getHPStartNode(v): Returns the start node of heavy path π that contains
v ∈ V (T) in constant time. If v is not the first child, that is, it is adjacent
to its parent by a light edge, then v itself is returned else the method returns
getPreorder(select(BP, 0, rank(BP, 0, getIndex(v))) + 1).

Lemma 22. For v ∈ V (T), getHPStartNode(v) returns in constant time the starting
node of heavy path π that contains v.

Proof. We need to show that the method getHPStartNode as implemented above
indeed obtains the start node of π in constant time. As we use constant time meth-
ods of Lemma 11, getHPStartNode also completes in constant time. To show that
getHPStartNode returns the starting node of π we consider the two cases depending
on v:

1. When v is the root node of T i.e. v = 1: getIndex(v) returns 1 when v = 1 and
select(BP, 0, rank(BP, 0, 1)) returns 0. Further, getPreorder on input 1 returns
1. Thus, getHPStartNode returns v when input v is the root node, as it is the start
node of π.

2. When v is not the root node of T i.e. v 6= 1: Let BP [i] be the open parenthesis of
v and x denote the starting node of π. Also, let BP [j] be the closing parenthesis
of the previous sibling of x in BP . Since BP [j + 1] is the open parenthesis of x,

the length of path from v to x is l = i − j − 1. The base case is when l = 0 that
is when v is the starting node of π. In this case, getHPStartNode returns v itself.
When l > 0, getIndex(v) returns the position i of the open parenthesis of v in BP .
select(BP, 0, rank(BP, 0, i)) returns j, the index of the closing parenthesis of the
previous sibling of x. getPreorder(j + 1) thus returns the start node of π correctly.

4.1.2 Storing the Paths P1, . . . , Pn

To store path Pi, 1 ≤ i ≤ n we need to store its starting node li and its ending
node ri in a space efficient way. Let M = (M1, . . . ,Mn) and N = (N1, . . . , Nn) be
the sequence of starting and ending nodes of paths sorted in non-decreasing order,
respectively. For 1 ≤ i ≤ n, M [i] is the starting node of path Pi. On the other hand,
for 1 ≤ i ≤ n, N [i] is the i−th ending node in the non-decreasing sorted order of
ending nodes.
Bit-vectors F and J. M and N are stored in data structures F and J , respectively,
using the data structure of Lemma 12 taking 2n+ o(n) bits each.

Proposition 23. For 1 ≤ i ≤ n, accessNS(F, i) returns M [i] stored in F in constant
time.

Proposition 24. For 1 ≤ i ≤ n, accessNS(J, i) returns N [i] stored in J in constant
time.

F supports the following useful function too:

• getPathCount(d): Returns the number of paths that start at node d ∈ V (T).
When select(F, 1, d) is well defined and F [select(F, 1, d)+1] = 0, the count is
obtained using the expression rank(F, 0, select(F, 1, d+1))−rank(F, 0, select(F, 1, d)).
In all other cases the function returns 0.

Lemma 25. For x ∈ V (T), method getPathCount(x) returns |{Pi : Pi ∈ P , li = x}|
where li is the starting node of path Pi in constant time.

Proof. Let input x ∈ [n] be a valid li value of some path in P , that is, select(F, 1, d)
is well defined and F [select(F, 1, d) + 1] = 0. If the li value x is repeating in F then
there will be a contiguous sequence of two or more 0’s between the x-th 1 and the
x+1−th 1. Let n1 be the number of 0’s before the x+1−st 1. It can be obtained using
the expression rank(F, 0, select(F, 1, d+ 1)). Let n2 be the number of 0’s before the
x−th 1. n2 can be obtained using the expression rank(F, 0, select(F, 1, d)). The
number of times x is repeating is n1− n2. As per Lemma 11 all these operations can
be done in constant time.

Next, we need to associate the path Pi with its starting and ending nodes stored in F
and J . Starting node of Pi is available directly from F using accessNS(F, i) whereas
to get the ending node we need to associate it with its ending node’s position in J .
This association is established using a wavelet tree as described below.

Wavelet tree S. For each path Pi, 1 ≤ i ≤ n we assign the tuple (fi, ji) where
fi and ji are indices of the li and ri values in M and N respectively. Since paths
are numbered based on the non-decreasing order of their starting nodes, i = fi. In
other words, (fi, ji) acts as an alias for path Pi = (li, ri) and they have the following
property.

Lemma 26. Let P ′ = {(f1, j1), . . . , (fn, jn)} be the set of aliases of paths in P. The
following are true:

1. 1 ≤ k 6= l ≤ n, fk 6= fl and jk 6= jl
2. P ′ can be stored using the wavelet tree S using n log n + o(n log n) bits of space such

that S supports the following method:

(a) accessWT(S, i): For i ∈ [n], returns ji in O(log n) time where N [ji] is the ending
node of path Pi.

(b) searchWT(S, [i1, i2], [j1, j2]): For i1, i2, j1, j2 ∈ [n], returns {i | Pi ∈ P ′, fi ∈
[i1, i2] and ji ∈ [j1, j2]} in O(log n) time per path.

(c) countWT(S, [i1, i2], [j1, j2]): For i1, i2, j1, j2 ∈ [n], returns | {i | Pi ∈ P ′, fi ∈
[i1, i2] and ji ∈ [j1, j2]} | in O(log n) time.

Proof. The proof is as follows:

1. Pi, 1 ≤ i ≤ n has its starting and ending nodes stored at unique indices fi and ji in
M and N , respectively. This ensures that for 1 ≤ k 6= l ≤ n, fk 6= fl and jk 6= jl.

2. For path Pi, 1 ≤ i ≤ n, the wavelet tree of Lemma 13 stores (fi, ji), where M [i] and
N [ji] are the starting and ending nodes of Pi. accessWT, searchWT, and countWT

functions can be directly delegated to the access, search, and count functions of
the wavelet tree of Lemma 13. The time complexities also follow from Lemma 13.

Function pathep. Given a path index i, 1 ≤ i ≤ n, we can now obtain its li and ri
values using the method pathep. The method takes i as input and returns (li, ri) in
O(log n) time as follows.

1. li = accessNS(F, i).

2. ri = accessNS(J, accessWT(S, i)).

Lemma 27. For 1 ≤ i ≤ n, pathep(i) returns (li, ri) of Pi in O(log n) time.

Proof. First we show that pathep(i) returns the li value of path i correctly. The
li value of i is the number of 1’s before the i−th 0 in F which is obtained by
accessNS(F, i). Now, we show that the correct ri value is returned by pathep(i).
To get the ri value which is stored in J we have to get the index j of path i
in J . This can be obtained by querying S. We obtain the ri value from J by
accessNS(J, accessWT(S, i)). Since accessNS takes constant time as per Lemma 12
and accessWT takes O(log n) time as per Lemma 26, the total time taken is O(log n)
time.

Function maprangeF/maprangeJ . Given range [l, l′] of starting nodes of paths as
input, maprangeF outputs the range [j, j′] where j is the first index in M such that
M [j] ≥ l and j′ is the last index in M such that M [j′] ≤ l′.

1. j is obtained using the expression rank(F, 0, select(F, 1, l)) + 1 that returns
the index in M of the first occurrence of l or a value greater than l but less than
or equal to l′.

2. To obtain j′ we use the following steps:

(a) If M [rank(F, 1, select(F, 1, l′) + 1)] = l′ then return
rank(F, 0, select(F, 1, l′) + 1) + getPathCount(l′)− 1. In other words, if
l′ is present in M then j′ is the index of the last l′ in M . To account for
the repeating l′ we add to the the first occurrence of l′ in M one less than
the number of times the l′ value repeats.

(b) If M [rank(F, 1, select(F, 1, l′) + 1)] 6= l′ then return
rank(F, 0, select(F, 1, l′)). If l′ is not present then M [j′] is a value that
is less than l′ but greater than or equal to l.

M [z], z ∈ [n] can be obtained using accessNS(F, z).

Lemma 28. Given a range [l, l′] of starting nodes where l, l′ ∈ [n], maprangeF (l, l′)
returns the range [j, j′] in constant time where j and j′ are the smallest and largest
indices in M such that M [j] ≥ l and M [j′] ≤ l′.

Proof. First we will show that j is computed correctly by the expression
rank(F, 0, select(F, 1, l)) + 1. In the unary encoding in F , select(F, 1, l) identifies
the position i of the l−th 1. If l is present in F then F [i + 1] is a 0 else its a 1. If
F [i+ 1] = 0 then rank(F, 0, i) + 1 returns the index j of l in M . On the other hand,
if F [i + 1] = 1 then let k be the smallest number such that F [i + k] = 0. In this
case, rank(F, 0, i) + 1 returns the smallest index j in M of l′′ > l. Next, we show
that j′ is returned correctly. If l′ is present in M then rank(F, 0, select(F, 1, l′) + 1)
returns the index j′′ of the first l′ in M . The largest index in M of l′ is obtained
by adding getPathCount(l′) − 1 to j′′. On the other hand, if l′ is not in M then
rank(F, 0, select(F, 1, l′)) returns the largest index j in M of l′′ < l′. By Lemma 11,
rank and select can be completed in constant time. Also, by Lemma 12, accessNS
takes constant time. Thus, maprangeF completes in constant time.

We have a similar function, maprangeJ for mapping the range [r, r′] of ending nodes
of paths to range [j, j′] such that j is the smallest index in N such that N [j] ≥ r and
j′ is the largest index in N such that N [j′] ≤ r′.

Lemma 29. Given a range [r, r′] of ending nodes where r, r′ ∈ [n], maprangeJ(r, r′)
returns the range [j, j′] in constant time where j and j′ are the smallest and largest
indices in N such that N [j] ≥ r and N [j′] ≤ r′.

Bit-vector D. Bit vector D of size n stores for each path a 1 if the path intersects
with more than log n other paths else a 0. It supports the following function.

• isLargeDegree(i): Returns true if D[i] = 1 else false in constant time.

Lemma 30. There exists an n log n + o(n log n)-bit succinct data structure for path
graphs.

Proof. The space taken by the components of the succinct data structure for path
graphs are as follows:

1. The clique tree T and its BP representation takes O(n) bits of space. This follows
from Lemma 10 and 11.

2. To store the end points of paths in P we have bit vectors F , J . From Lemma 12 this
also takes O(n) bits.

3. The wavelet tree stores the indices of paths in M and N and from Lemma 26 takes
n log n+ o(n log n) bits.

4. To improve the degree query we have the n bit vector D.

The space complexity of the succinct representation is dominated by the space re-
quired for wavelet tree S. Thus, our representation takes n log n+o(n log n) bits. This
representation is succinct as it uses the permitted storage for succinct representation
of interval graphs [4] that is a proper sub-class of path graphs [3].

4.2 Adjacency and Neighbourhood Queries

In this section, we will present efficient implementations of adjacency and neighbour-
hood queries using the succinct representation as constructed in Section 4.1. In this
section, as a consequence of Lemma 30, the succinct representation for path graph G
is denote as (T,P). Adjacency query, as will be shown in Lemma 33, takes two path
indices i, j ∈ [n] and the succinct representation (T,P) as input and returns true if
the paths Pi and Pj have a non-empty intersection. The neighbourhood query, as will
be shown in Lemma 34, takes a single path index i ∈ [n] and the succinct represen-
tation (T,P) as input and returns the list of paths that have non-empty intersection
with of the path Pi. The implementation of the queries depend on the following:

1. Computing paths P = (l, r) and Q = (s, t) corresponding to i and j, respectively
using pathep and p = lca(l, r) in O(log n) time.

2. Computing Π, k, succ(1, 1) and succ(1, 2). From Lemma 31 that follows, Algo-
rithm 1 can do this in O(log n) time.

3. Computing β(π) for π ∈ Π. From Lemma 32 that follows, β(π) can be computed
in O(d log n) time where d is the number of paths returned by β(π).

Lemma 31. Given a path P = (l, r), computeΠ(l, r) computes Π, k, succ(1, 1), and
succ(1, 2) for it in O(log n) time.

Proof. First we show that computeΠ of Algorithm 1 computes the heavy sub-paths
of P as in Lemma 8. Function computeΠ depends on the function computeΠ Helper

to compute the heavy sub-paths. Paths are of two types depending on whether the
lca is same as its starting node. Based on this distinction different steps are executed
in the function computeΠ; see Line 5 of Algorithm 1.

Algorithm 1: Given path P = (l, r) as input, function computeΠ computes
Π, k, succ(1, 1), and succ(1, 2). We assume that parent(v) = 0 when v is
the root of the tree.
1 Function computeΠ(l, r):
2 p← lca(l, r)
3 k ← 0
4 Π = Π′ = succ(1, 1) = succ(1, 2) = NULL

5 if l 6= p then
6 computeΠ Helper(p, l,Π, k)
7 computeΠ Helper(p, r,Π′, k)
8 Add second entries of Π and Π′ as succ(1, 1) and succ(1, 2)

respectively
9 Concatenate Π′ to Π preserving the order ≺

10 else
11 computeΠ Helper(l, r,Π, k)
12 if first entry in Π has equal starting and ending nodes then
13 If starting node of the first entry in Π is the parent of starting

node of the second entry then succ(1, 1) is the second entry in Π
and succ(1, 2) = NULL

14 else
15 If ending node of the first entry in Π is the parent of the starting

node of the second entry then succ(1, 1) is the second entry in Π
and succ(1, 2) = NULL

16 Function computeΠ Helper(l, r,Π, k):
17 if l > r then
18 return

19

20 p = l
21 u← getHPStartNode(r)
22 Increment k
23 if u >= p then
24 Add (u, r) to beginning of Π
25 computeΠ Helper(p, parent(u),Π, k)

26 else
27 Add (p, r) to beginning of Π

1. Type 1 paths: If lca of P is not equal to l then the heavy sub-paths that com-
prise the sub-path from p to l are computed first. This is followed by comput-
ing the heavy sub-paths that comprise the sub-path from p to r. This is done
using the function computeΠ Helper as shown in Line 6 and 7 of Algorithm 1.
computeΠ Helper(p, l,Π, k) computes the heavy sub-paths recursively till π1; see

Line 6 of Algorithm 1. Starting at l, the starting node of the heavy sub-path to
which it belongs is obtained by using getHPStartNode; see Line 21 of Algorithm 1.
The set of heavy sub-paths are computed in this manner till p is reached; see Line 23
to 25 of Algorithm 1. Similar steps are performed for computeΠ Helper(p, r,Π, k);
see Line 7 of Algorithm 1. This gives us the end points of the heavy sub-paths of P .

2. Type 2 paths: If lca of P is equal to l then the heavy sub-paths comprising the only
sub-path from l = p to r is computed using the function computeΠ Helper as shown
in Line 11 of Algorithm 1. Heavy sub-paths for type 1 paths are also computed just
as heavy sub-paths for type 1; see Line 11 to 15 in Algorithm 1.

It takes O(log n) time to compute heavy sub-paths as there are O(log n) light
edges (or heavy sub-paths) as per Lemma 8 and as per Lemma 22, getHPStartNode
takes constant time. From Lemma 10, lca and parent also take constant time.
Since function computeΠ calls computeΠ Helper only a constant number of times,
the complexity of the computeΠ function is also O(log n).

From Lemma 21, we know that the neighbourhood query depends on computing β(π)
for all π ∈ Π. Next, we show that β(π) can be computed in O(dπ log n) time where
dπ is |β(π) = {Q|Q ∈ P and α(P,Q) = π}|. By an abuse of terminology, dπ is called
the degree of π.

Lemma 32. Given index i of πi ∈ Π, there exists a function
computeβ(i,Π, succ(1, 1), succ(1, 2)) that returns β(πi) = {Q|Q ∈ P and α(P,Q) =
πi} in O(dπi log n) time where dπi is the degree of πi.

Proof. First we will show that there exists a function computeβ(i,Π, succ(1, 1), succ(1, 2))
that computes β(πi) correctly. The high level steps of function computeβ are as fol-
lows.

1. Compute the interval ranges Rj, 1 ≤ j ≤ 4, of πi using its end points and its successor
stored in Π. If i = 1 then the successors are directly available in the input else it can
be obtained from Π as follows. For i 6= 1, it is πi+1 unless πi+1 = succ(1, 2) or i = k
where k is the number of heavy sub-paths in Π.

2. The next step is to identify all Q ∈ P that satisfy α(P,Q) = πi. The ranges of
starting and ending nodes of such paths can be obtained from the conditions of
Lemma 18. Using these ranges the paths can be retrieved by issuing orthogonal
range search queries on wavelet tree S of Lemma 26. The ranges corresponding to
first two conditions of Lemma 18 can be directly obtained. For the last two conditions
we use Lemma 17.

3. searchWT from Lemma 26 is used to perform the orthogonal range search on wavelet
tree S.

As there are only four interval ranges for πi and from Lemma 10, rmost leaf takes
constant time, the interval ranges of πi can be computed in constant time. From
these interval ranges the ranges for orthogonal range search can be obtained using
Lemma 18. This can be done in constant time as from Lemma 10, lca takes constant
time. searchWT takes O(d log n) time per range query where d is the number of paths
in P with starting and ending nodes in the input range. There is no over counting of

paths between range search queries as no path satisfies more than one condition due
to Lemma 18. Since there are only four orthogonal range queries to be issued for any
heavy sub-path, computeβ completes in O(dπi log n) time.

Adjacency query in O(log n) time. Given indices of paths i, j ∈ [n] and (T,P) as
input, adjacency query returns true if paths corresponding to i and j, namely P and
Q, have a non-empty intersection in T . Adjacency of paths with indices i and j can
be checked as shown in Algorithm 2. We have the following lemma.

Algorithm 2: Given two path indices i, j ∈ [n], the function adjacency

checks if the paths corresponding to them have a non-empty intersection.

1 Function adjacency(i, j):
2 Obtain paths P = pathep(i) and Q = pathep(j). Let P = (l, r) and

Q = (s, t).
3 Initialize k ← 0 and Π to empty
4 (Π, k, succ(1, 1), succ(1, 2))← computeΠ(l, r)
5 For each 1 ≤ i ≤ k return true if checkα(i, Q,Π, succ(1, 1), succ(1, 2)) of

Lemma 19 returns true

Lemma 33. Given two path indices i, j ∈ [n] and (T,P) as input, the function
adjacency(i, j) checks if paths corresponding to i and j have a non-empty intersection
in O(log n) time.

Proof. By definition, if α(P,Q) = π for π ∈ Π then Q and P are adjacent. The
existence of such a heavy sub-path can be tested as shown in Line 5 of Algorithm 2.
Paths P = (l, r) and Q = (s, t) corresponding to i and j, respectively, can be obtained
in O(log n) time using pathep due to Lemma 27. By Lemma 31, Π, k, and the
successors of π1 can be computed in O(log n) time. For each heavy sub-path π ∈
Π, the conditions of Lemma 18 can be checked in constant time using checkα of
Lemma 19. Also, from Lemma 10, rmost leaf can be computed in constant time.
Since by Lemma 8,Π contains at most O(log n) heavy sub-paths, the total time taken
is O(log n).

Neighbourhood query. Given a path index i ∈ [n] and (T,P), the neighbourhood
query returns the neighbours of path P corresponding to index i; see Lemma 21 for
definition of neighbours of a path. Let N(P) be initialized to empty. N(P) can be
obtained as shown in Algorithm 3. We call |N(P)| the degree of P . We have the
following lemma.

Lemma 34. Given path index i ∈ [n] of path P ∈ P and (T,P) as input, the function
neighbourhood(i) returns the set of neighbours of P in O(dP log n) time where dP is
the degree of P .

Proof. From Lemma 21, the neighbours of P are the paths in
k⊎
i=1

β(πi). The end

points of P can be obtained in O(log n) time using pathep due to Lemma 27. From

Algorithm 3: Given path index i, the function neighbourhood enumerates
the paths that have non-empty intersection with P .

1 Function neighbourhood(i):
2 Obtain end points (l, r) of P using pathep(i)
3 Initialize k ← 0 and Π to empty
4 Compute (Π, k, succ(1, 1), succ(1, 2)) for P using the computeΠ(l, r)

function
5 For each π ∈ Π add computeβ(π) of Lemma 32 to N(P).

Lemma 31, we know that computeΠ takes O(log n) time and from Lemma 32, we
know that computeβ takes O(dπ log n) time for each π ∈ Π where dπ is the number of
paths that α maps to π. The time taken by neighbourhood is sum of the time taken
by pathep, computeΠ and at most k iterations of computeβ. Since by Lemma 21, we
know that none of the neighbours are over-counted the total time taken is O(dP log n)

where dP =
k∑
i=1

dπi where dP is the degree of path P .

Degree query. Degree of path P can be obtained by two different methods de-
pending on the degree of the path. We use a bit vector D as described in Sec-
tion 4.1. We have two methods for computing degree of P with index i depending on
isLargeDegree(i).

1. isLargeDegree(i) is true: We modify Algorithm 3 for neighbourhood to return
the count of the orthogonal range search instead of the paths by using countWT

of Lemma 26 instead of searchWT.

2. isLargeDegree(i) is false: We run the Algorithm 3 for neighbourhood without
modification and count the number of paths returned.

Lemma 35. Given path index i ∈ [n] of path P ∈ P and (T,P) as input, the function
degree(i) returns the degree of P in min{O(log2 n), O(dP log n)} time where dP is the
degree of P .

Proof. As described above, two different methods are used depending on whether
isLargeDegree(i) is true or not. Thus, we have the following two cases:

1. isLargeDegree(i) is true: countWT of Lemma 26 takes O(log n) time. Since there
are O(log n) heavy sub-paths as per Lemma 8, the total time is O(log2 n).

2. isLargeDegree(i) is false: By Lemma 34, Algorithm 3 takes O(dP log n) time. Thus,
degree also takes O(dP log n) time.

Since we run only one of the two depending on which is better, the time taken by
degree query is min{O(log2 n), O(dP log n)}.

Proof of Theorem 1. Lemma 30 shows that there exists a succinct representation for
path graphs that takes n log n + o(n log n) bits. Given this representation as input,
Lemma 33 shows that adjacency between vertices can be checked in O(log n) time.
Similarly, given this representation as input Lemma 34 and 35 show that for vertex u ∈
V (G) with degree du, neighbourhood and degree queries are supported in O(du log n)
and min{O(log2 n), O(du log n)} time, respectively. Hence, Theorem 1.

5 The Space-Efficient Data Structure

We present an O(n log2 n)-bit space-efficient representation for path graphs that sup-
ports faster adjacency and degree queries in comparison to the succinct representation
presented in Section 4. The approach we take is to represent a path graph using the
succinct data structure for interval graphs due to Acan et al. [4]. To represent the
path graph using the interval graph representation in [4] we end up having multiple
copies of each vertex, and the adjacency between vertices could be witnessed in dif-
ferent interval graphs in our transformation. Our data structure stores these interval
graphs using the representation of [4], along with an additional table to keep track of
the copies of the vertices and edges. This transformation has an interesting contrast
to the succinct data structure in Section 4; there the path graph is represented using
the clique tree and the adjacency queries are transformed to range queries.

The path graph G is presented as (T,P), where T is a clique tree of G and P =
{P1, . . . , Pn} is the set of paths in T . Consider the heavy path tree T of T . Let H
denote the set of heavy paths of T .
Convention: Let M denote |V (T)|. It follows from Remark 4 that M and |H| are at
most n. Pv denotes the path in P corresponding to vertex v ∈ V (G). For a node
w ∈ T , we use Hw to denote the heavy path in T associated with the node w. The
level number of a node in T is one more than the number of edges on the path to
it from the root; thus the level number of the root is 1. K denotes the number of
levels in T and level l consists of the heavy paths which are at that level in T . From
Lemma 6, T has at most dlog ne levels and each path P in T has at most 2dlog ne
edges.

Lemma 36. For any P,Q ∈ P, there exists a node v in T such that Φ−1(v) has a
non-empty intersection with the path P ∩Q.

Proof. From Lemma 7, we know that nodes of T are partitioned among the nodes of
T . This implies nodes of P ∩Q belong to some v ∈ V (T). Thus, for some v ∈ V (T),
Φ−1(v) intersects with the path P ∩Q.

Lemma 37. For u and v in V (G), Pu and Pv have a non-empty intersection in T if
and only if one of the following is true:

1. there is a light edge {w,w′} in T such that Pu and Pv both intersect Hw and Hw′

2. there is exactly a node w in T such that Pu ∩ Hw and Pv ∩ Hw have a non-empty
intersection.

Proof. If V (Pu) ∩ V (Pv) 6= φ then there are two possibilities:

1. there exist t1, t2 ∈ V (Pu) ∩ V (Pv) and t1 ∈ V (Hw) and t2 ∈ V (Hw′) such that there
exists a light edge {w,w′} in T .

2. there exists only one Hw ∈ H that contains all nodes in V (Pu) ∩ V (Pv) for some
w ∈ V (T). In this case, Pu ∩Hw and Pv ∩Hw have a non-empty intersection.

Conversely, if Pu and Pv both intersect heavy paths Hw and Hw′ where w,w′ ∈ V (T)
then Pu and Pv share the light edge {w,w′}. Thus, they intersect in T . If Pu ∩Hw

and Pv ∩Hw intersect then by definition Pu and Pv intersect in T .

Interval graph associated with heavy path H. For a heavy path H associated
with a node in T of level number l, GH is a graph whose vertices are defined as
follows: for each 1 ≤ i ≤ n, if Pi ∩ H 6= φ then there is a vertex corresponding to
Pi ∩H in V (GH). Two vertices are adjacent in GH if the corresponding paths have
a non-empty intersection, otherwise they are not adjacent.

Lemma 38. Let H ∈ H. Then GH is an interval graph.

Proof. The vertices of GH correspond to paths in P that have non-empty intersection
with H. Thus, it follows that each vertex of GH corresponds to a sub-path of H, which
is equivalently an interval in the set {1, 2, . . . , |V (H)|}. Thus, GH is an interval
graph.

Lemma 39. Let Pu and Pv be paths in T . Pu ∩ Pv 6= φ if and only if there exist a
heavy path H ∈ T such that in the interval graph GH , the vertices corresponding to
Pu ∩H and Pv ∩H are adjacent.

Proof. The proof follows directly from Lemma 37.

It follows from the above lemma that each edge in G has a representative in the
interval graph associated with at least one of the heavy paths in T . Thus, it is
natural to group all the interval graphs into the levels associated with the heavy
paths in T .
Interval graph associated with a level l in T . Let Sl be the set of nodes in T at
level l. For each l, define Ul = {GHw | w ∈ Sl}. In other words, Ul is the collection of
interval graphs associated with each heavy path at level l. Thus, the vertex set and
edge set of Ul is the union of vertex sets and edge sets of GHw for all w ∈ Sl. Clearly,
Ul is an interval graph. We next show that the number of vertices in Ul is at most
twice the number of vertices in G, that is, at most twice the number of paths in P .

Lemma 40. Let Pv be a path in P and l be a level number in T . There exists at
most two nodes w and w′ at level l of T such that GHw and GHw′ have a vertex each
corresponding to the paths Pv ∩Hw and Pv ∩Hw′. Therefore, the number of vertices
in the interval graph Ul is at most 2n.

Proof. We know from Lemma 8 that the nodes of Pv are partitioned into heavy sub-
paths, each of which is contained in a heavy path. Since each heavy path corresponds
to a node in T , it follows that Pv naturally defines a path P in T . From Proposition 9,
it follows that P has at most two nodes in level l. Thus, for each level l, Pv has a
non-empty intersection with at most two heavy paths whose nodes are at level l in
T . Consequently, Ul has at most 2n vertices.

In Section 5.1, we present the data structure to store the set of interval graphs {Ul |
1 ≤ l ≤ K} and additional tables to respond to the adjacency and neighborhood
queries.

5.1 Construction of the Space Efficient Data Structure

The main goal of this section is to prove the space complexity part of Theorem 2.
Given the (T,P) representation for a path graph G with n vertices, the space-efficient
data structure is constructed by the following steps:

1. Compute the heavy path decomposition of clique tree T and the heavy path
tree T from T as guaranteed in Section 2.2.

2. Construct the ordinal clique tree T as explained in Section 3.

3. Store the set of interval graphs {Ul | 1 ≤ l ≤ K} using [4] and a table called PIT
that stores, for every level 1 ≤ l ≤ K, the labels of vertices in Gl corresponding
to paths in P ; by Lemma 40 there are two labels per path at a level l.

The construction of the data structure takes polynomial time and implementation
details are left out. The components of the space-efficient representation are as fol-
lows.
Array, F . This is a one dimensional array of length M . F [a] = i where i is the
index, in ≺H, of the heavy path which contains a ∈ V (T). So to store the heavy
paths to which all nodes of T belong we need O(n log n) bits. The following function
is supported by F .

• getHeavyPath(a): Returns the heavy path number of H ∈ H to which a ∈ V (T)
belongs in constant time.

Array, L. This is a one dimensional array of length |H|. L[i] = l where l is the level
in T to which heavy path Hi ∈ H belongs. Each entry in the array uses O(log log n)
bits, since from Lemma 6, there are O(log n) levels in T . Since |H| ≤ n, the total
space taken by L is O(n log log n) bits. The following function is supported.

• getLevel(j): Returns in constant time the level to which heavy path Hj ∈ H,
for j ∈ [n], belongs in T .

Array, E. This is a K×2n two dimensional array. Each row corresponds to a level of
T and column corresponds to a vertex in Ul, 1 ≤ l ≤ K; by Lemma 40, Ul has at most
2n vertices. E[l][v] = i where i is the index of the path Pi ∈ P that has non-empty
intersection with a heavy path H at level l and v is the vertex in Gl corresponding to
Pi ∩H. For vertex labels that are not present in Ul, E[l][v] stores 0. The total space
taken by E is O(n log2 n) as there are 2n log n entries and each entry takes log n bits.

• getPathIndex(l, v): Returns the path index stored at E[l][v] in constant time
given 1 ≤ l ≤ K and 1 ≤ v ≤ 2n as input.

The Path Intersection Table (PIT). PIT is an n × K two dimensional array
of records with rows corresponding to paths of P and columns to the levels of T .
For path index i and level l, each record consists of a bit and two vertex labels
v, v′ ∈ V (Gl) such that v denotes Pi ∩ Hw and v′ denotes Pi ∩ Hw′ for some heavy
paths Hw and Hw′ corresponding to nodes w,w′ ∈ V (T) at level l. The entries in
PIT are as follows:

1. PIT [i][l] = 1, if the path Pi has non-empty intersection with some heavy path
at level l else PIT [i][l] = 0. Storing this information takes n log n bits.

2. PIT [i][l] stores the labels of the two vertices in interval graphs GHw and GHw′

corresponding to Pi ∩Hw and Pi ∩Hw′ where w,w′ ∈ V (T at level l. If Pi does
not belong to the level l then we store NULL. If Pi belongs to the level l but to
only one interval graph, say GHw , then PIT [i][l] stores the label of the vertex
in GHw . Each entry of the PIT takes at most 2 log n bits, since by Lemma 40
there are at most two labels for a path per level.

PIT has n log n entries and each entry takes O(log n) bits. Thus, total space needed
is O(n log2 n). PIT is constructed as follows. Note that as per Proposition 15, each
heavy path in H is an interval.

1. Initialize an array of counters c[l]← 0 for each level 1 ≤ l ≤ K.

2. For each i ∈ [n] perform the following steps.

(a) For each a ∈ V (Pi) and the heavy path j ← getHeavyPath(a) such that
a is the first vertex of Pi that is also in Hj, do the following steps.

i. l← getLevel(j).

ii. Store new vertex label c[l]← c[l] + 1 corresponding to path Pi ∩Hj

at level l at PIT [i][l].

The following functions are supported.

1. isPresent(i, l): Returns true if PIT [i][l] = 1 in constant time for path index
i ∈ [n] and the level 1 ≤ l ≤ K.

2. getVertices(i, l): Returns the vertex labels stored at PIT [i][l] in constant time
for path index i ∈ [n] and level 1 ≤ l ≤ K. The vertices are ordered based on
the total order of the heavy paths that define them.

The Interval Graph Table (IT). IT is a one dimensional array of length K. As
a consequence of Lemma 38, Ul, 1 ≤ l ≤ K, is an interval graph. For level l, IT [l]
stores Ul using the method of Acan et al. [4]. Thus, the total space taken by IT is
O(n log2 n). IT can be constructed in polynomial time as follows. Populate IT [l], for
each level l of T , using the following steps.

1. Let Sl be the set of heavy paths at level l. Obtain Sl from L and sort it in
non-decreasing order.

2. Let UNUSED=0 and USED=1. For each w ∈ Sl and path Pi ∈ P , i ∈ [n], do the
following after initializing the bit vector B of length 2n to UNUSED.

(a) If Pi ∩Hw 6= φ then add the vertex returned by getVertices(i, l) that is
marked UNUSED in B to V (GHw). Once a vertex corresponding to a path
in PIT is added to the interval graph it is marked as USED in B.

(b) For every vertex u added to V (GHw), add u into a temporary array TEMP[w]
along with V (Pi ∩Hw).

3. For every w ∈ Sl, add edges to interval graph GHw as follows.

(a) For all pairs of vertex labels u and v in TEMP[w] where u corresponds to
Pi ∩ Hw and v corresponds to Pj ∩ Hw, add edge {u, v} to E(GHw) if
V (Pi ∩Hw) ∩ V (Pj ∩Hw) 6= φ.

4. Finally, we get Ul = {GHw | w ∈ Sl}.

Ul thus obtained can now be stored using the data structure of [4]. The following
functions are supported by IT.

1. adjacentIG(u, v, l): Returns true if u, v ∈ V (Ul) are adjacent in constant time.
This adjacency check is delegated to the interval graph representation of [4]. [4]
supports constant time adjacency query.

2. neighbourhoodIG(u, l): Returns the neighbours of vertex u ∈ V (Ul) in O(du)
time where du is the degree of vertex u. The query is delegated to the in-
terval graph representation of [4]. [4] returns neighbours in constant time per
neighbour.

Array R. This is an n × 2 two dimensional array. For Pi ∈ P , R[i][1] = ai and
R[i][2] = bi where ai and bi are the lowest and highest levels to which heavy paths
Hw, Hw′ ∈ H belong in T such that Hw ∩ Pi 6= φ and Hw′ ∩ Pi 6= φ. Since Pi is
a path, it has non-empty intersection with some heavy path at all the levels in the
range [ai, bi]. We say, Pi spans the levels from ai to bi and denote this range by an
interval Ii = [ai, bi], 1 ≤ ai ≤ bi ≤ K. Each row of R consists of two values, each
taking O(log log n) bits since K ≤ log n. R takes a total space of O(n log log n) bits.
The following functions are supported by R:

1. getEndPoints(i): Returns the end points of Ii for path Pi ∈ P in constant time
for path index i ∈ [n].

2. getMinLevel(i, j): Returns the left end point of Ii ∩ Ij in constant time for
path indices i, j ∈ [n] if Ii ∩ Ij 6= φ else returns 0. The function returns:

(a) if bi < aj or bj < ai then 0

(b) else if ai ≤ bj then ai

(c) else if aj ≤ bi then aj

Array A. This is a one dimensional array of length M . A[a], 1 ≤ a ≤ M, stores the
list of paths that have their lca at node a ∈ V (T). A path have only one lca and it
takes log n bits to store this information as M ≤ n. For n paths it takes O(n log n)
bits. The following function is supported.

• getPathsLCA(a): Returns paths in P with lca at node a ∈ V (T) in constant
time.

Heavy path tree T . The heavy path tree of clique tree T is stored using the method
of Lemma 10 in T . Since T is an ordinal tree, T is also ordinal. T takes 2n + o(n)
bits and supports all the methods of ordinal trees as supported by the data structure
of Lemma 10.
Array H. This is a one dimensional array of length |H|; see Figure 5 for an example.
Let w ∈ V (T) have nw children. Contents of H are as follows.

• H[w] stores a one dimensional array C of length nw with a location for each of
the children of w.

• H[w] = NULL if w does not have any children.

Since T is an ordinal tree, the children of a node are ordered. For the i−th child of
w, denoted c, with nc children, C[i] stores a one dimensional array D of length nc+1.
Contents of D are as follows.

• D[j][1] = d, 1 ≤ j ≤ nc, where d is the j−th child of c and D[j][2] contains a list
that stores the paths that contain edges {d, c} and {c, w} where w, c, d belong
to consecutive levels l1 < l2 < l3, respectively, in T .

• D[nc + 1][1] = NULL and D[nc + 1][2] stores the list of paths that contain only
{c, w} and no light edge incident on c in the sub-tree rooted at c.

• If c does not have a child then D[1][1] = NULL and D[1][2] contains the list of
paths that contain light edge {c, w}.

C and D are of size O(n log n) bits as they store entries for edges of T which, as
a consequence of Remark 4, is at most n − 1. Thus, H, C, and D take a total of
O(n log n) bits. The following function is supported.

• getDistinctPaths(w1, w2, w3): Returns, in constant time, the list of paths that
contain light edge {w1, w2} but not {w2, w3} where {w1, w2}, {w2, w3} ∈ E(T)
and w1, w2, w3 lie on consecutive levels l1 < l2 < l3, respectively, in T .

Lemma 41. Let T be the ordinal heavy path tree and {w1, w2}, {w2, w3} ∈ E(T) be
two light edges such that w1, w2, w3 lie on consecutive levels l1 < l2 < l3, respectively,
in T . There exists a function that returns the list of paths that contain {w1, w2} but
not {w2, w3} in constant time per path returned.

Figure 5: A part of an example heavy path tree T , is shown on the left side and array H is
shown on the right side. H[w] contains C with three entries corresponding to its children
{a1, a2, a3}. The array D corresponding to child a2 at C[2] is also shown. The first entry in
the list stored at D corresponds to c1 and is associated with a list containing only one entry,
P1. This means P1 contains light edge {c1, a2} and {a2, w}. The last entry in D is NULL
which implies there is no path that starts at a2 and contains light edge {a2, w}. Notice that
the D corresponding to child c2 of a2, contains P2 as the last entry.

Proof. The function getDistinctPaths(w1, w2, w3) is implemented as follows.

1. r ← child rank(w2). child rank is a function supported by ordinal tree T that re-
turns the number of siblings to the left of w2. It takes constant time as per Lemma 10.

2. Obtain array D from C[r + 1] stored in H[w1]. Let L′ denote the list obtained by
concatenating the lists stored at D except the list corresponding to w3.

3. Return L′.

child rank takes constant time as per Lemma 10. Concatenating each list into one
takes constant time per list concatenated. As each list contains at least one neighbour,
the time taken is O(1) per path returned.

Lemma 42. There exists an O(n log2 n)-bit space-efficient data structure for path
graphs.

Proof. The space taken by the components of the space-efficient data structure for
path graphs are as follows:

1. Array F that contains the heavy paths to which each node of T belongs takes
O(n log n) bits.

2. Array L stores the level to which each heavy path belongs taking O(n log log n) bits.
R stores the ranges of levels in T that a path spans taking O(n log log n) bits.

3. For every level l, the path index corresponding to each of the vertex labels in Ul is
stored in array E using O(n log2 n) bits. PIT stores the levels to which paths in
P belong. For each level l, the vertex labels in Ul corresponding to a path in P is
stored using O(n log2 n) bits. For each level l, IT stores the interval graph Ul taking
O(n log2 n) bits using the representation of [4].

Thus, the entire space-efficient data structure uses O(n log2 n) bits.

5.2 Adjacency and Neighbourhood Queries

Next, we present the algorithms for the adjacency, neighborhood and degree queries
and their time complexities. We have the following useful lemmata that we will use
in the implementation of the queries.

Lemma 43. Consider paths with indices i, j ∈ [n] such that [l1, l2] is the maximal
range of levels with PIT [i][l] = PIT [j][l] = 1 for all l ∈ [l1, l2]. If paths Pi and Pj do
not intersect in Ul1 then they do not intersect at any level l > l1.

Proof. If paths Pi, Pj ∈ P do not intersect in Ul1 then there are two possibilities:

1. They intersect two different heavy paths at level l1 in the heavy path tree. In this
case, they will not intersect in any level greater than l1 as they are contained in two
different branches of the heavy path tree.

2. They intersect the same heavy path at level l1 but different heavy paths at levels
greater than l1. Thus, at any level l > l1 they are in different branches of the heavy
path tree and so will not intersect.

Hence, the lemma.

Lemma 44. Let P = (l, r) and Q = (s, t) be two paths in P with sequence of heavy
sub-paths ΠP and ΠQ, respectively. Also, let V (P) ∩ V (Q) 6= φ such that there does
not exist a light edge e such that e ∈ E(P) ∩ E(Q). The following are true.

1. There exists exactly one π ∈ ΠP , π
′ ∈ ΠQ and heavy path H = (h1, h2) such that

V (π) ∩ V (π′) ∩ V (H) 6= φ.
2. Further, either E(P) ⊆ E(Th1) or E(Q) ⊆ E(Th1) where Th1 is the sub-tree rooted at

h1.
3. The lowest numbered node of π is either the lca(l, r) or it is h1 such that light edge
{h1, parent(h1)} ∈ E(P).

4. Either, lca(l, r) ∈ V (π) or lca(s, t) ∈ V (π).

Proof. The proof is as follows:

1. V (P) ∩ V (Q) is contained in some H ∈ H, since by Lemma 7, the nodes of T are
partitioned among the heavy paths. There is exactly one such H, as V (P) ∩ V (Q)
does not have pair of nodes u, v such that {u, v} is a light edge in T .

2. We consider two cases here.

(a) h1 is the root of T : In this case, trivially E(P) ⊆ E(Th1) and E(Q) ⊆ E(Th1)
since Th1 = T .

(b) h1 is not the root of T : If both P andQ do not contain light edge {parent(h1), h1},
then E(P) ⊆ E(Th1) and E(Q) ⊆ E(Th1). Else, since P and Q do not share a
light edge, either {parent(h1), h1} ∈ E(P) or {parent(h1), h1} ∈ E(Q). With-
out loss of generality, let it be an element of E(P). Then, E(Q) ⊆ E(Th1).
Thus, if P and Q do not share a light edge, at least one of the paths must be
contained inside Th1 .

3. Based on the earlier proved statement, we have two cases:

(a) E(P) ⊆ E(Th1): In this case, lca(l, r) ∈ V (π) and is the lowest numbered node
in π.

(b) E(P) * E(Th1): In this case, h1 ∈ V (π) and is the lowest numbered node in π.

4. There are two possibilities based on the lowest numbered node in π.

(a) If the lowest numbered vertex of π is the lca(l, r) then the statement follows
trivially.

(b) If the lowest numbered vertex of π is h1 such that light edge {h1, parent(h1)} ∈
E(P) then lca(s, t) ∈ V (π) ∩ V (π′); since E(Q) ⊆ E(Th1). Hence, the result.

Lemma 45. For every a ∈ V (T) there exists P = (l, r) in P such that a = lca(l, r).

Proof. Every a ∈ V (T) corresponds to a maximal clique of G. We categorise maximal
cliques of G in the following manner.

1. Maximal clique C ∈ C contains a simplicial vertex v ∈ V (G): Let Pv = (a, a) be
the path corresponding to v where a ∈ V (T) is the node corresponding to C. Then,
lca(a, a) = a and the statment follows.

2. Maximal clique C ∈ C does not contain a simplicial vertex: Since C is a maximal
clique, V (C) * V (C ′) for C ′ ∈ C and C 6= C ′. Let a ∈ V (T) be the node correspond-
ing to C. If all the vertices of C correspond to paths that contain parent(a) then
C ⊆ C ′ where C ′ is the maximal clique corresponding to parent(a). Thus, at least
one of the following must be true:

(a) there is a path containing a that starts at a descendant of a and ends at another
descendant of a, or

(b) there is a path that starts at a and ends at a descendant of a.

Let that path be P = (l, r). Then, lca(l, r) = a.

Adjacency query. The adjacency query of Algorithm 4 takes the index i, j of paths
P,Q ∈ P and the space-efficient representation constructed in Section 5.1 as input
and checks if Pi, Pj ∈ P have a non-empty intersection.

Algorithm 4: For path graph (T,P) and two paths Pi, Pj ∈ P , the function
checks if V (Pi) ∩ V (Pj) 6= φ.

1 Function adjacency(i, j):
2 l = getMinLevel(i, j)
3 if l 6= 0 then
4 {u1, u2} ← getVertices(i, l)
5 {v1, v2} ← getVertices(j, l)
6 if for any pair {a, b} ∈ {{u1, v1}, {u1, v2}, {u2, v1}, {u2, v2}}

adjacentIG(a, b, l) is true then
7 return true

8 return false

Lemma 46. Given path indices i, j ∈ [n] and the space-efficient representation as
input, the function adjacency(i, j) checks if paths corresponding to i and j have a
non-empty intersection in constant time.

Proof. Due to Lemma 43 it is only required to check if Pi and Pj intersect in level
getMinLevel(i, j). If getMinLevel(i, j) 6= 0 then in Line 6 of Algorithm 4 we check
if any one of the four pairs of vertex labels paths Pi and Pj in interval graph Ul
are adjacent. The vertex labels for paths Pi and Pj in Ul are obtained using the
function getVertices(i, l) and getVertices(j, l), respectively in Lines 4 and 5. The
adjacency check in the interval graph is done using the function adjacenctIG in Line
6. Since getMinLevel, getVertices and adjacenctIG are constant time functions
adjacency check can be completed in constant time.

Neighbourhood query. The neighbourhood query can be implemented as shown in
Algorithm 5. It takes the path index and the space-efficient representation constructed
in Section 5.1 as input and lists all the paths that have a non-empty intersection with
the input path.

Lemma 47. Given the space-efficient data structure for G and the index i of path
P ∈ P as input, neighbourhood(i) returns the neighbours of P in O(d) time where
d is the degree of P .

Proof. We will prove that Algorithm 5 enumerates neighbours of P at least once and
at most a constant number of times. It follows from Lemma 37 that intersecting paths
are of two types, namely, ones with no common light edge and ones with at least one
light edge. We have the following cases.

1. Neighbours that share no light edge with P : Let Π be the set of heavy sub-paths of
P . From Lemma 44, neighbours with no common edges with P are characterised by
lca(s, t) ∈ V (π) and/or lca(l, r) ∈ V (π) where π ∈ Π. In Lines 5 to 10 and Lines 15
to 20 of Algorithm 5, the paths with lca in any node u ∈ V (π) are added to Ni using
the function getPathsLCA. Further, in Lines 11 to 14, neighbours of P , for instance,
Q such that V (P) ∩ V (Q) ∩ V (H) 6= φ such that H ∈ H and lca(l, r) ∈ V (H), are

Algorithm 5: For space-efficient representation of path graph (T,P) and
an input path Pi ∈ P , the function returns its neighbours.

1 Function neighbourhood(i):
2 Set Ni, E1, E2 to NULL

3 [l, r]← getEndPoints(i)
4 p← lca(l, r)
5 while l 6= p do
6 Add getPathsLCA(l) to Ni

7 c← parent(l)
8 if getHeavyPath(l) 6= getHeavyPath(c) then
9 Add {c, l} to end of E1

10 l← c

11 h← getHeavyPath(l)
12 L← getLevel(h)
13 {v1, v2} ← getVertices(i, L)
14 Add neighbourhoodIG(v1, L) to Ni

15 while r 6= p do
16 Add getPathsLCA(r) to Ni

17 c← parent(r)
18 if getHeavyPath(r) 6= getHeavyPath(c) then
19 Add {c, r} to end of E2

20 r ← c

21 Concatenate E2 to the end of E1 and assign it to E
22 e′ ← NULL

23 foreach e = (we1, w
e
2) in E do

24 if e′ = NULL then
25 Add getDistinctPaths(we1, w

e
2, NULL) to Ni

26 else
27 Add getDistinctPaths(we1, w

e
2, w

e′
2) to Ni

28 e′ ← e

added to Ni. Thus, neighbours that share no light edge with P will be counted at
least once. A path Q that has lca in V (π) for a π ∈ Π such that lca(l, r) ∈ V (π) will
be counted at most twice.

2. Neighbours that share at least one light edge with P : Let p = lca(l, r). In Lines
23 to 28 of Algorithm 5, the light edges that are encountered as we traverse from
l to p and r to p, respectively, are considered. getDistinctPaths is used to add
paths that contain these light edges to Ni. getDistinctPaths do not repeat paths
that are counted on light edges already visited as P is traversed from l to p. Also,
getDistinctPaths do not repeat paths that are counted on light edges already visited

as P is traversed from r to p. Thus, every neighbour sharing a light edge with P is
counted exactly once.

Some neighbours of P can share a light edge with it and also satisfy, for some π ∈ Π,
lca(s, t) ∈ V (π) or lca(l, r) ∈ V (π). In this case too, they will be over-counted at
most a constant number of times.
Functions getEndPoints, lca, getPathsLCA, getHeavyPath, getLevel, neighbourhoodIG,
and getDistinctPaths are constant time functions. Loops at Line 5 and 15 repeat
a maximum of O(d) times since as per Lemma 45, each node in V (P) is a maximal
clique that contributes at least one distinct neighbour. By the same argument, the
loop at Line 23 repeats O(d) times as the number of edges in P is O(d). Hence, the
time complexity of the neighbourhood query is O(d).

Degree query. The degree of each vertex can be stored using n log n bits and the
degree query can be solved in constant time.

Proof of Theorem 2. Lemma 42 shows that there exists an O(n log2 n) bit space-
efficient data structure for path graphs. Given this representation as input Lemma 46
shows that adjacency between vertices can be checked in constant time. Similarly, us-
ing this representation, Lemma 47 shows an O(d) neighbourhood query. Also, degree
query is satisfied in constant time by accessing it from an array. Thus, we conclude
Theorem 2.

6 Conclusion

In this work, we designed efficient data structures for path graphs. In the future,
we believe some of the following directions would be interesting to explore regarding
path graphs.

1. The best implementations of BFS and DFS are of significant interest as many
other problems for path graphs use them as subroutines. In the work by Acan
et al. [4], for interval graphs we can see that the representation permits very
efficient BFS and DFS algorithms. Can we perform BFS/DFS efficiently on
path graphs assuming our representation?

2. Can we show time/space trade-off lower bounds for our data structures? More
specifically, can we prove tight space lower bound of redundancy with respect
to query time?

3. Are there other graph classes amenable to our techniques for designing succinct
data structures?

Reference

[1] D. D. Sleator and R. E. Tarjan, “A data structure for dynamic trees,” Proceedings of
the Thirteenth Annual ACM Symposium on Theory of Computing, p. 114–122, 1981.

[2] V. Mäkinen and G. Navarro, “Rank and select revisited and extended,” Theoretical
Computer Science, vol. 387, no. 3, pp. 332–347, 2007.

[3] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, North-Holland Pub-
lishing Co., NLD, 2004.

[4] H. Acan, S. Chakraborty, S. Jo, and S. R. Satti, “Succinct data structures for families
of interval graphs,” WADS, vol. 11646, 2019.

[5] S. Chakraborty and K. Sadakane, “Indexing graph search trees and applications,” in
44th MFCS, 2019, pp. 67:1–67:14.

[6] J. I. Munro and V. Raman, “Succinct representation of balanced parentheses and
static trees,” SIAM J. Comput., vol. 31, no. 3, pp. 762–776, 2001.

[7] L. C. Aleardi, O. Devillers, and G. Schaeffer, “Succinct representations of planar
maps,” Theor. Comput. Sci., vol. 408, no. 2-3, pp. 174–187, 2008.

[8] A. Farzan and S. Kamali, “Compact navigation and distance oracles for graphs with
small treewidth,” Algorithmica, vol. 69, no. 1, pp. 92–116, 2014.

[9] A. Farzan and J. I. Munro, “Succinct encoding of arbitrary graphs,” Theor. Comput.
Sci., vol. 513, pp. 38–52, 2013.

[10] J. I. Munro and K. Wu, “Succinct data structures for chordal graphs,” in ISAAC, 2018,
vol. 123 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 67:1–67:12.

[11] F. Gavril, “A recognition algorithm for the intersection graphs of paths in trees,” 1978.

[12] C. L. Monma and V. K.-W. Wei, “Intersection graphs of paths in a tree,” J. Comb.
Theory, Ser. B, vol. 41, no. 2, pp. 141–181, 1986.

[13] Reinhard Diestel, Graph Theory, Springer Publishing Company, Incorporated, 5th
edition, 2017.

[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Intro-
duction to Algorithms, Third Edition, The MIT Press, 3rd edition, 2009.

[15] R. Grossi and G. Ottaviano, “Fast compressed tries through path decompositions,”
ACM J. Exp. Algorithmics, vol. 19, Jan. 2015.

[16] P. Ferragina, R. Grossi, A. Gupta, R. Shah, and J. S. Vitter, “On searching compressed
string collections cache-obliviously,” 2008, PODS ’08, p. 181–190, ACM.

[17] G. Navarro and K. Sadakane, “Fully functional static and dynamic succinct trees,”
ACM Trans. Algorithms, vol. 10, no. 3, May 2014.

[18] R. Raman, V. Raman, and S. R. Satti, “Succinct indexable dictionaries with appli-
cations to encoding k -ary trees, prefix sums and multisets,” ACM Trans. Algorithms,
vol. 3, no. 4, pp. 43, 2007.

[19] G. Navarro, Compact Data Structures - A Practical Approach, Cambridge University
Press, 2016.

[20] Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao, “Rank/select operations on
large alphabets: A tool for text indexing,” in Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithm, USA, 2006, SODA ’06, p. 368–373,
Society for Industrial and Applied Mathematics.

Data
Structure

Query Functionality To store Ref

Ordinal
trees

lca(u, v) returns lowest common
ancestor of nodes u and
v

the clique tree
in Sections 4
and 5

[17]

parent(u) returns parent of node u [17]

first child(u) returns first child of node
u

[17]

rmost child(u) returns rightmost leaf of
the sub-tree rooted at u

[17]

child rank(u) returns the number of
siblings to the left of u

[17]

Bit
string

rank(B, b, i) returns the number of bit
b’s up to and including
position i on bit vector B
from left

for instance,
the BP rep-
resentation of
clique tree

[18]

select(B, b, i) returns the position of
the i−th bit b in the bit
vector B from left

[18]

Increas-
ing
number
sequence

accessNS(B, i) returns the i−th number
in the sequence B

the start-
ing nodes
of paths in
clique tree in
Section 4

Section
2.8 of
[19]

Wavelet
tree

access(S, c) returns the y−coordinate
of the point with
x−coordinate value c
stored in wavelet tree S

the paths as
points in a
two dimen-
sional grid in
Section 4

[2]

select(S, [i, i′], [j, j′]) returns the points in the
input range [i, i′]× [j, j′]

[2]

count(S, [i, i′], [j, j′]) returns the number of
points in the input range
[i, i′]× [j, j′]

[2]

Table 1: Summary of the data structures used. Note that b ∈ {0, 1}.

Condition Range

i = 1

R1 a > 1 R1(1) = [1, a1 − 1]

a = 1 R1(1) = NULL

R2 R2(1) = [a1, b1]

R3 succ(π1, 1) 6= NULL R3(1) = R1
3(1) ∪R2

3(1)

1. R1
3(1): R1

3(1) = [b1 + 1, a2 − 1].

2. R2
3(1): If rmost leaf(a2) 6=

rmost leaf(b1) then R2
3(1) =

[rmost leaf(a2) + 1, rmost leaf(b1)]
else R2

3(1) = NULL.

succ(π1, 1) = NULL If rmost leaf(a2) 6= rmost leaf(b1)
then R2

3(1) = [rmost leaf(a2) +
1, rmost leaf(b1)] else R2

3(1) = NULL

R4 succ(π1, 2) 6= NULL R4(1) = R1
4(1) ∪R2

4(1)

1. R1
4(1): If rmost leaf(b1) + 1 6= at then

R1
4(1) = [rmost leaf(b1)+1, at−1] else

R1
4(1) = NULL.

2. R2
4(1): If rmost leaf(at) 6=

rmost leaf(a1) then R2
4(1) =

[rmost leaf(at) + 1, rmost leaf(a1)]
else R2

4(1) = NULL.

succ(π1, 2) = NULL If rmost leaf(a1) 6= b1 then R4(1) =
[rmost leaf(b1) + 1, rmost leaf(a1)] else
R4(1) = NULL

Table 2: Ranges for heavy sub-path π1 ∈ Π.

Condition Range

i 6= 1

R1 R1(i) = NULL

R2 R2(i) = [ai, bi]

R3 succ(πi, 1) 6= NULL R3(i) = R1
3(i) ∪R2

3(i)

1. R1
3(i): R1

3(i) = [bi + 1, ai+1 − 1].

2. R2
3(i): If rmost leaf(ai+1) 6=

rmost leaf(bi) then R2
3(i) =

[rmost leaf(ai+1) + 1, rmost leaf(bi)]
else R2

3(i) = NULL.

succ(πi, 1) = NULL If rmost leaf(bi) 6= rmost leaf(bi) then
R3(i) = [bi + 1, rmost leaf(bi)] else R3(i) =
NULL

R4 rmost leaf(ai) 6= bi R4(i) = [rmost leaf(bi)+1, rmost leaf(ai)]

rmost leaf(ai) = bi R4(i) = NULL

Table 3: Ranges for heavy sub-path πi ∈ Π. Note that for i 6= 1, succ(πi, 2) = NULL.

