
Simple Worst-Case Optimal Adaptive Prefix-Free
Coding
Travis Gagie #

Faculty of Computer Science, Dalhousie University, Halifax, Canada

Abstract
We give a new and simple worst-case optimal algorithm for adaptive prefix-free coding that matches
Gagie and Nekrich’s (2009) bounds except for lower-order terms, and uses no data structures more
complicated than a lookup table.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Adaptive prefix-free coding, Shannon coding, Lookup tables

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.57

Funding Travis Gagie: Funded by NSERC Discovery Grant RGPIN-07185-2020.

1 Introduction

Suppose Alice has a deck of n cards, each marked with a character from a known alphabet
of size σ, and she wants to send the sequence of the cards’ characters to Bob over a noiseless
binary channel. Moreover, suppose neither of them know in advance the frequencies of the
distinct characters in the deck – perhaps it has just been shuffled – and Alice wants to encode
each card’s character before looking at the next card, such that Bob can recognize the last
bit of that character’s encoding when he receives it, and decode the character.

In 1973 Faller [1] proposed that Alice encode each card’s character with a Huffman
code [7] for the distribution of characters she has already seen, modified to assign codewords
also to characters she has not yet seen. Thus, Alice encodes the ith character using a code
that depends only on the first i − 1 characters. Assuming Bob has already decoded the
first i − 1 characters when he receives the encoding of the ith, he can build the same code.
Because the codewords in a Huffman code are prefix-free – no codeword is a prefix of another
– he can then use that code to decode the ith character when he receives the last bit of
its encoding. Since the codes adapt to the frequencies of the characters as more and more
are seen, Faller’s algorithm is said to perform adaptive Huffman coding or, more generally,
adaptive prefix-free coding.

Building n Huffman codes from scratch takes Ω(nσ) time, but Faller showed how Alice
and Bob can store a Huffman code such that after incrementing the frequency of a character,
they can update the code in time proportional to the length of the codeword previously
assigned to that character. It follows that Faller’s algorithm runs in time proportional
to the total length of the encoding of the sequence. Gallager [6] and Knuth [11] further
developed Faller’s algorithm in 1978 and 1985, respectively, and it is usually known as the
FGK algorithm for their initials. It is commonly taught in courses on data compression and
used in the classic UNIX utility compact, for example.

The same year Knuth published his work on the FGK algorithm, Vitter [15, 16, 17] gave
a more sophisticated algorithm for adaptive Huffman coding. He showed it uses less than
1 more bit per character than Alice would use if she knew the characters’ frequencies in
advance, built a single Huffman code for them, sent it to Bob, and then used it to encode
and send the sequence of characters in the deck. In other words, Vitter’s algorithm uses at
most about n(H + 1 + δ) bits and O(n(H + 1)) time overall, where

© Travis Gagie;
licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 57; pp. 57:1–57:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:travis.gagie@dal.ca
https://orcid.org/0000-0003-3689-327X
https://doi.org/10.4230/LIPIcs.ESA.2022.57
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


57:2 Simple Worst-Case Optimal Adaptive Prefix-Free Coding

H =
σ∑

j=1

nj

n
lg n

nj
≤ lg σ

is the entropy of the distribution n1
n , . . . , nσ

n of characters in the deck and δ ∈ [0, 1) is the
redundancy of a Huffman code for that distribution. (When the distribution is dyadic – each
frequency ni is n divided by a power of 2 – then δ = 0, and when nearly all the cards have
the same character then δ is nearly 1.) Vitter’s algorithm is also commonly taught in courses
on data compression.

Vitter attributed to Chazelle an observation that the FGK algorithm uses at most about
twice as many bits as using a single Huffman code for the characters’ frequencies (the
coefficient 2 can be reduced to about 1.44 using a result by Katona and Nemetz [10]), so
the FGK algorithm also runs in O(n(H + 1)) time. In 1999 Milidiú, Laber and Pessoa [12]
showed that with the FGK algorithm, Alice sends fewer than 2 more bits per character
than she would with a single Huffman code for the characters’ frequencies, or at most about
n(H + 2 + δ) bits overall.

In 2003 Gagie [3, 4] showed that if we modify the FGK algorithm to perform adaptive
Shannon coding instead of adaptive Huffman coding, then Alice sends at most about H + 1
bits per character. A Shannon code [13] is a prefix-free code that assigns any character with
probability p a codeword of length at most

⌈
lg 1

p

⌉
so, if Alice pretends she has seen each

character once before she starts encoding the sequence S[1..n] of the cards’ characters, then
she sends at most

n∑
i=1

⌈
lg i + σ − 1

occ(S[i], S[1..i − 1]) + 1

⌉

≤
n∑

i=1
lg(i + σ − 1) −

n∑
i=1

lg
(
occ(S[i], S[1..i − 1]) + 1

)
+ n

< lg n! + σ lg(n + σ) −
σ∑

j=1
lg nj ! + n

= lg
(

n

n1, . . . , nσ

)
+ σ lg(n + σ) + n

bits, where occ(S[i], S[1..i−1]) is the frequency of S[i] in the prefix S[1..i−1] and
(

n
n1,...,nσ

)
is

the number of distinct ways of arranging the cards in the deck. By Stirling’s Approximation,
lg
(

n
n1,...,nσ

)
≤ nH + O(σ log n), so with Gagie’s algorithm Alice sends n(H + 1) + o(n) bits

as long as σ lg(n + σ) ∈ o(n).
In 2006 Karpinski and Nekrich [8, 9] gave a more sophisticated algorithm for adaptive

Shannon coding, with which Alice sends n(H + 1) + O(σ log2 n) bits and encodes S in O(n)
time, and Bob decodes it in O(n(log H + 1)) time. Their algorithm uses canonical codes [14]
and assumes Alice and Bob are working on word RAMs with Ω(log n)-bit words, as we do
henceforth. Notice speeding up encoding on a word RAM is generally easier than speeding
up decoding: for example, given a single prefix-free code whose longest codeword fits in a
constant number of machine words, Alice can build an O(σ)-space lookup table that tells
her the codeword for any character in constant time.

In 2009 Gagie and Nekrich [5] improved Karpinski and Nekrich’s algorithm so that Bob
decodes S also in O(n) time, at the cost of increasing the bound on the total encoding
length to n(H + 1) + O(σ log5/2 n). They also proved Alice must send n

(
lg σ + 1 − o(1)

)
≥



T. Gagie 57:3

Table 1 The per-character bounds for the algorithms discussed, assuming σ ∈ o
(

n1/2

log n

)
, ignoring

lower-order terms and omitting asymptotic notation.

encoding encoding decoding
authors length time time

FGK [1, 6, 11] H + 2 + δ H + 1 H + 1
Vitter [15, 16, 17] H + 1 + δ H + 1 H + 1

Gagie [3, 4] H + 1 H + 1 H + 1
KN [8, 9] H + 1 1 lg H + 1

GN [5] H + 1 1 1
new H + 1 1 1

n(H + 1 − o(1)) bits in the worst case, even when even when σ ∈ ω(1). To see why, suppose
σ = 2⌈lg f(n)⌉ + 1 for some function f(n) ∈ ω(1), so σ ∈ ω(1) and any prefix-free code for the
alphabet assigns some character a codeword of length ⌈lg f(n)⌉+1 = lg σ +1−o(1). For each
i, the adversary chooses S[i] to be a character with codeword length at least lg σ + 1 − o(1)
in the code Alice will use to encode S[i].

Gagie and Nekrich’s algorithm is simultaneously worst-case optimal in terms encoding and
decoding time and of encoding length, as long as σ ∈ o

(
n

log5/2 n

)
, but it relies on constant-

time predecessor queries on sets of O(log1/6 n) elements. These are theoretically possible
on a word RAM with Ω(log n)-bit words [2] but very complicated and totally impractical.
In this paper we give a new algorithm for adaptive prefix-free coding that is simple – it
uses no data structures more complicated than a lookup table – but still uses O(n) time
for both encoding and decoding and n(H + 1) + O

(
n

log n + σ2 log2 n
)

bits, which is within

lower-order terms of optimal when σ ∈ o
(

n1/2

log n

)
. Table 1 shows the per-character bounds

of all the algorithms we have discussed here, assuming σ ∈ o
(

n1/2

log n

)
, ignoring lower-order

terms and omitting asymptotic notation. We leave as future work finding a simple algorithm
that is worst-case optimal even when σ is closer to n.

2 Algorithm

Before we describe our new algorithm, we briefly review how length-restricting a prefix-free
code can speed up decoding. Our starting point is Gagie’s [3, 4] observation that if we
smooth the probability distribution n1

n , . . . , nσ

n by averaging it with the uniform distribution
and apply Shannon’s construction [13] to the result, then we obtain a prefix-free code with
average codeword length

σ∑
j=1

nj

n

⌈
lg 1

1
2
(nj

n + 1
σ

)⌉ <

σ∑
j=1

nj

n

(
lg n

nj
+ 2
)

= H + 2

when encoding S, and maximum codeword length at most ⌈lg σ⌉ + 1.
In O(σ) time we can build an O(σ)-space lookup table that, for any binary string of

length ⌈lg σ⌉ + 1, tells us which character’s codeword is a prefix of that string and the length
of that codeword. If we encode S by replacing each character by its codeword – which we
can do in O(n) time using an O(σ)-space lookup table that tells us the codeword for any
character – then later we can decode S in O(n) time by repeatedly taking prefixes of the
encoding consisting ⌈lg σ⌉ + 1 bits, looking up which character’s codeword is a prefix of the
encoding and the length of that codeword, and deleting the codeword from the beginning of
the encoding. Unfortunately, we may use about H + 2 bits per character.

ESA 2022



57:4 Simple Worst-Case Optimal Adaptive Prefix-Free Coding

If we take a weighted average of n1
n , . . . , nσ

n and the uniform distribution, however, then
we can reduce the number of bits we use per character, at the cost of increasing the maximum
codeword length and the space needed by the table. For example, if we assign weight lg n−1

lg n

to n1
n , . . . , nσ

n and weight 1
lg n to the uniform distribution before averaging them and applying

Shannon’s construction, then the average codeword length when encoding S is
σ∑

j=1

nj

n

⌈
lg 1

lg n−1
lg n · nj

n + 1
lg n · 1

σ

⌉
<

σ∑
j=1

nj

n

(
lg n

nj
+ lg lg n

lg n − 1 + 1
)

< H + 1 + lg e

lg n − 1

and the maximum codeword length is at most ⌈lg(σ lg n)⌉ = ⌈lg σ + lg lg n⌉, so the lookup
table takes O(2lg σ+lg lg n) = O(σ log n) space. Building this table takes O(σ log n) time.

We are now ready to describe our new algorithm. First, Alice encodes S[1..⌈σ lg n⌉] using
a Shannon code C0 for the uniform distribution, that assigns every character a codeword of
length ⌈lg σ⌉. This takes her O(σ log n) time. Then, for k ≥ 1, after encoding S[1..k⌈σ lg n⌉],
Alice builds a Shannon code Ck for a weighted average of the distribution of characters she
has encoded so far and the uniform distribution:

lg n − 1
ln n

·
occ

(
a1, S[1..k⌈σ lg n⌉]

)
k⌈σ lg n⌉) + 1

lg n
· 1
σ

, . . . ,
lg n − 1

ln n
·
occ

(
aσ, S[1..k⌈σ lg n⌉]

)
k⌈σ lg n⌉

+ 1
lg n

· 1
σ

,

where occ
(
aj , S[1..k⌈σ lg n⌉]

)
is the frequency in S[1..k⌈σ lg n⌉] of the jth character aj in the

alphabet. She builds an O(σ)-space lookup table for Ck that lets her encode S[k⌈σ lg n⌉ +
1..(k + 1)⌈σ lg n⌉] in O(σ log n) time.

Because the codewords in C0 have length ⌈lg σ⌉, Bob can build an O(σ)-space lookup
table that lets him decode S[1..⌈σ lg n⌉] in O(σ log n) time. Then, for k ≥ 1, after encoding
S[1..k⌈σ lg n⌉], Bob builds the same Shannon code Ck that Alice used to encode S[k⌈σ lg n⌉ +
1..(k +1)⌈σ lg n⌉]. Because the longest codeword in Ck has length at most ⌈lg σ +lg lg n⌉, Bob
can build an O(σ log n)-space lookup table that lets him decode S[k⌈σ lg n⌉+1..(k+1)⌈σ lg n⌉]
in O(σ log n) time.

3 Analysis

For each k ≥ 0, building Ck and the lookup tables for encoding and decoding with it takes
Alice and Bob O(σ log n) time, and that cost is amortized over the ⌈σ lg n⌉ characters in
S[k⌈σ lg n⌉ + 1..(k + 1)⌈σ lg n⌉]. Since encoding and decoding S[k⌈σ lg n⌉ + 1..(k + 1)⌈σ lg n⌉]
also takes O(σ log n) time, Alice and Bob each spend O(n) time in total, or constant time
per character in S.

Probably the most complicated aspect of our algorithm is the analysis showing the total
length of the encoding is at most n(H + 1) + O

(
n

log n + σ2 log2 n
)

. Consider that each
character in S is encoded with O(σ log n) bits so, in particular, the first ⌈σ lg n⌉ occurrences
of each distinct character are encoded with a total of O(σ2 log2 n) bits. Let Ij be the set
of positions i such that character S[i] of S is an occurrence of the jth character aj in the
alphabet but not one of aj ’s first ⌈σ lg n⌉ occurrences. For i ∈ Ij , Alice encodes S[i] using at
most⌈

lg
(

1
lg n−1

lg n · i−1
occ(aj ,S[1..i])−⌈σ lg n⌉

)⌉
< lg i − 1

occ(aj , S[1..i]) − ⌈σ lg n⌉) + 1 + lg e

lg n − 1

bits. Therefore, the total number of bits in the encoding is∑
j

∑{
lg i − 1

occ(aj , S[1..i]) − ⌈σ lg n⌉
: i ∈ Ij

}
+ n + O

(
n

log n
+ σ2 log2 n

)
.



T. Gagie 57:5

Notice
∑

j

∑
{lg(i − 1) : i ∈ Ij} ≤ lg n! and for each j,∑{

lg
(
occ(aj , S[1..i]) − ⌈σ lg n⌉

)
: i ∈ Ij

}
= lg(nj − ⌈σ lg n⌉)! = lg nj ! − O(σ log2 n) .

Therefore, the total number of bits in the encoding is at most

lg n! −
σ∑

j=1
lg nj ! + n + O

(
n

log n
+ σ2 log2 n

)

= lg
(

n

n1, . . . , nσ

)
+ n + O

(
n

log n
+ σ2 log2 n

)
≤ n(H + 1) + O

(
n

log n
+ σ2 log2 n

)
.

References
1 Newton Faller. An adaptive system for data compression. In Record of the 7th Asilomar

Conference on Circuits, Systems and Computers, pages 593–597, 1973.
2 Michael L Fredman and Dan E Willard. Surpassing the information theoretic bound with

fusion trees. Journal of Computer and System Sciences, 47(3):424–436, 1993.
3 Travis Gagie. Dynamic length-restricted coding. Master’s thesis, University of Toronto, 2003.
4 Travis Gagie. Dynamic Shannon coding. In Proceedings of the 12th European Symposium on

Algorithms (ESA), pages 359–370, 2004.
5 Travis Gagie and Yakov Nekrich. Worst-case optimal adaptive prefix coding. In Proceedings

of the 11th Symposium on Algorithms and Data Structures (WADS), pages 315–326, 2009.
6 Robert Gallager. Variations on a theme by Huffman. IEEE Transactions on Information

Theory, 24(6):668–674, 1978.
7 David A Huffman. A method for the construction of minimum-redundancy codes. Proceedings

of the IRE, 40(9):1098–1101, 1952.
8 Marek Karpinski and Yakov Nekrich. A fast algorithm for adaptive prefix coding. In Proceedings

of the International Symposium on Information Theory (ISIT), pages 592–596, 2006.
9 Marek Karpinski and Yakov Nekrich. A fast algorithm for adaptive prefix coding. Algorithmica,

55(1):29–41, 2009.
10 Gyula O H Katona and Tibor O H Nemetz. Huffman codes and self-information. IEEE

Transactions on Information Theory, 22(3):337–340, 1976.
11 Donald E Knuth. Dynamic Huffman coding. Journal of Algorithms, 6(2):163–180, 1985.
12 Ruy Luiz Milidiú, Eduardo Sany Laber, and Artur Alves Pessoa. Bounding the compression

loss of the FGK algorithm. Journal of Algorithms, 32(2):195–211, 1999.
13 Claude Elwood Shannon. A mathematical theory of communication. The Bell System Technical

Journal, 27(3):379–423, 1948.
14 Jan van Leeuwen. On the construction of Huffman trees. In Proceedings of the 3rd International

Colloquium on Automata, Languages and Programming (ICALP), pages 382–410, 1976.
15 Jeffrey Scott Vitter. Design and analysis of dynamic Huffman coding. In Proceedings of the

26th Symposium on Foundations of Computer Science (FOCS), pages 293–302, 1985.
16 Jeffrey Scott Vitter. Design and analysis of dynamic Huffman codes. Journal of the ACM,

34(4):825–845, 1987.
17 Jeffrey Scott Vitter. Algorithm 673: dynamic Huffman coding. ACM Transactions on

Mathematical Software, 15(2):158–167, 1989.

ESA 2022


	1 Introduction
	2 Algorithm
	3 Analysis

