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Abstract

As an increasing amount of image and video content will be analyzed by machines, there is
demand for a new codec paradigm that is capable of compressing visual input primarily for
the purpose of computer vision inference, while secondarily supporting input reconstruction.
In this work, we propose a learned compression architecture that can be used to build such
a codec. We introduce a novel variational formulation that explicitly takes feature data
relevant to the desired inference task as input at the encoder side. As such, our learned
scalable image codec encodes and transmits two disentangled latent representations for
object detection and input reconstruction. We note that compared to relevant benchmarks,
our proposed scheme yields a more compact latent representation that is specialized for the
inference task. Our experiments show that our proposed system achieves a bit rate savings
of 40.6% on the primary object detection task compared to the current state-of-the-art,
albeit with some degradation in performance for the secondary input reconstruction task.

1 Introduction

It is projected that an increasing amount of captured visual content will be ana-
lyzed by machines in order to conduct vision analytics (e.g., object detection, image
classification, segmentation), instead of being solely viewed by humans [1]. Since re-
cent advances in artificial intelligence using deep neural networks (DNNs) necessitate
heavy computational resource usage, such machine analytics tasks may need to be
offloaded to a remote server. For example, low-end devices on the Internet of Things
(IoT) record a significant amount of visual content that needs to be transmitted to a
remote server to be analyzed and/or stored. To address the heavy communication re-
quirements of such systems, new compression schemes and standards activities such
as MPEG Video Coding for Machines (VCM) [2] have emerged, and have become
attractive areas of research in recent years.

At the same time, DNN-aided data-driven image compression algorithms [3, 4]
have attracted considerable research interest as they outperform the rate-distortion
(RD) performance of off-the-shelf image codecs such as JPEG2000 [5] and HEVC
Intra coding [6] across various experimental setups. Such DNN-based compression
approaches are typically optimized for mean squared error (MSE) and/or multi-scale
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Figure 1: Various methods to separate information into task-relevant data for multiple tasks in
a scalable manner. The data separation is achieved by (a) generating feature data s alongside a
residual r = x− x̃ which encodes the error in the decoder-side reconstruction x̃ of the original input
x, (b) transforming x with a single learned encoder, and (c) transforming x and s with two learned
encoders into two latent representations {y1,y2}. Dotted lines denote the decoder operations.

structural similarity index (MS-SSIM) [7], which are used as distortion metrics be-
tween the original and reconstructed images within the loss function. Moreover, in
the case of DNN-based compression models targeting a machine vision task, the dis-
tortion metric is simply replaced with a task-specific loss, as in [8, 9]. More recently,
the studies in [10, 11] present DNN-based scalable compression frameworks that si-
multaneously support multiple tasks through scalable bitstreams sent to the decoder.
For example, in [11], the base layer bitstream is transmitted to the decoder for the ob-
ject detection task, and the enhancement layer bitstream is additionally transmitted
only when the reconstruction of input images is required. To optimize the compres-
sion performance of such a scalable system, the compression model must learn how
to separate the information into different parts necessary for each task without any
significant overlap.

In this work, we propose a two-task scalable image codec with a new variational
formulation alternative to the current state-of-the-art proposed in [11]. Our scalable
codec provides a base layer supporting a machine vision task, with significant gains
in RD-performance compared to relevant benchmarks, and an enhancement layer
supporting an input reconstruction task. In Section 2, we briefly summarize the most
relevant prior work. Our proposed method is then described in detail in Section 3,
followed by comprehensive experimental results with various configurations of our
model detailed in Section 4. Furthermore, in Section 5, we present an in-depth
comparison of our model with the most relevant benchmark from an information-
theoretic perspective. Finally, in Section 6 we conclude on the analyzed approaches
and suggest possible future research directions.

2 Related Work

Different approaches have been explored in the literature in order to build codecs that
separate the information into multiple parts associated with corresponding end tasks,
some of which are shown in Fig. 1. For example, Yan et al. [10] adopts a scheme
shown in Fig. 1(a) in which the feature representation s, designated for a vision task,
is extracted from the input x with a learned transform, in order to be consecutively
compressed and transmitted to the decoder. Therefore, at the decoder, s is used as an
input to a computer vision network. Additionally, an estimate of the input x̃ can be



Figure 2: VAE-style compression model for our proposed method with latent-space scalability.

determined from s using an auxiliary module. Using this estimate, an encoder may
also compress and transmit a residual r = x− x̃. At the decoder side, r may be used
in conjunction with the previously transmitted s in order to reconstruct the input x.
However, in this scheme, the optimality of r with respect to the image reconstruction
task depends on how well x̃ can be reconstructed from the feature representation s.

Choi et al. [11] introduce a latent-space scalable codec based on the Cheng et
al. [4] architecture. As shown in Fig. 1(b), a single learned transform in the encoder
maps the input x into a latent space consisting of two learned latent representations
y1 and y2. To carry out the machine vision task at the decoder side, y1 is subse-
quently fed into another learned transform, referred to as latent-space transform, in
order to obtain an estimate of s, which will be used as an input to a computer vision
network. For the input reconstruction task, both latent representations y1 and y2 are
concatenated and used as input to a pixel reconstruction decoder. In order to ensure
that there is no loss in compression efficiency when coding y1 and y2 separately, the
aforementioned latent representations should be maximally independent of one an-
other. Thus, a model should ideally be trained to minimize the information-theoretic
mutual information (MI) [12] quantity I(y1;y2). Although works such as [13] pro-
pose methods for estimating MI, it is well-known that estimating MI is especially
challenging for high dimensional variables.

In this study, we explore an alternative framework by introducing s as an ad-
ditional input to a learned transform in the encoder, as shown in Fig. 1(c). This
helps reduce the size of the bitstream associated with y1, while allowing y1 and y2

to become more disentangled. Making y1 more compact should be indeed beneficial
for the VCM paradigm, which considers the vision inference as its primary task.

3 Proposed Framework

We propose a DNN-based compression model that supports both object detection and
input reconstruction tasks. We follow a methodology similar to the two-task scalable
compression model with latent-space scalability in [11], but with some architectural
changes. Namely, we feed the feature representation s that is outputted by an in-
termediate layer of a vision task model directly as an input into our encoder. Fig. 2
provides a conceptual system architecture for our proposed method, where the base
latent representation y1 is designated to capture the common information between x
and s, whereas the enhancement latent representation y2 captures information only
relevant to x. To be optimal from a compression point of view, the information in y2

should not have any overlap with the information in y1. In this section, we discuss



the rationale for this compression model with a variational formulation as well as the
implementation details of the neural network architecture.

3.1 Scalable compression model with an alternative variational formulation

Similar to [14], we derive our formulation from a Bayesian variational inference per-
spective. Given sample observations of a random variable x, accompanied with a
generative model p(x | y), one seeks a posterior distribution p(y | x). The poste-
rior distribution cannot be, in general, expressed in closed form. Therefore, one can
approximate it using a variational density of q(y | x). One may then parameterize
the approximate posterior as qφ(y | x;φ) and the generative model distribution as
pθ(x | y; θ), and consecutively, seek to minimize the Kullback–Leibler (KL) diver-
gence DKL(qφ(y | x;φ) ‖ pθ(y | x; θ)).

In our case, the distributions qφ(y1 | x, s;φs) and qφ(y2 | x;φx) are learned by
the encoder-side analysis transforms ge,s and ge,x, respectively, and are parameterized
by the weights φs and φx. Both latent representations y1 and y2 are then rounded
to the closest integer values to obtain ŷ1 and ŷ2 before being fed into an entropy
coder. During training, we follow the same strategy for quantization as in [15], by re-
placing the rounding operation with additive uniform random noise to obtain “noisy”
counterparts of the latent representations, ỹ1 and ỹ2, which approximate ŷ1 and ŷ2.

At the decoder side, the synthesis transforms gd,x and gd,s learn the marginal
distributions pθ(x | y1,y2; θx) and pθ(s | y1; θs), both parameterized by the weights
θx and θs, respectively. Note that y1 is jointly learned from both variables x and s,
and also is given as an input to both synthesis transforms. Conversely, y2 is only
extracted from the input image x and is thus given as input only to gd,x.

We model the variables y1 and y2 using a parametric, fully factorized density
function as in [3]. More specifically, each element of the latent representations is
modeled as a zero-mean Gaussian distribution with a standard deviation that is pre-
dicted from a latent via a hyperprior block. Following the graphical model induced
in Fig. 2, we model the joint distribution of random variables as pθ(x, s,y1,y2) =
p(y1)p(y2)pθ(x | y1,y2; θx)pθ(s | y1; θs). In order to approximate the posterior den-
sities of the latent variables, we factorize the approximate posterior distribution as
qφ(y1,y2 | x, s) = qφ(y1 | x, s;φs)qφ(y2 | x;φx). Then, the loss function to minimize
is given by the KL divergence between the approximate posterior qφ(ỹ1, ỹ2 | x, s)
and the true posterior pθ(ỹ1, ỹ2 | x, s) over the data distribution p(x, s):

L = DKL(qφ(ỹ1, ỹ2 | x, s) ‖ pθ(ỹ1, ỹ2 | x, s) | p(x, s))

= Ex,s∼p(x,s)

[
DKL (qφ(ỹ1, ỹ2 | x, s) ‖ pθ(ỹ1, ỹ2 | x, s))

]

= Ex,s∼p(x,s)Eỹ1,ỹ2∼qφ

[(
log qφ(ỹ1 | x, s;φs) + log qφ(ỹ2 | x;φx)

)

−
(

log pθ(x | ỹ1, ỹ2; θx)︸ ︷︷ ︸
Dx

+ log pθ(s | ỹ1; θs)︸ ︷︷ ︸
Ds

+ log p(ỹ1)︸ ︷︷ ︸
Ry1

+ log p(ỹ2)︸ ︷︷ ︸
Ry2

)]
+ const. (1)

The first parenthesized group of terms within the expectation is zero since the den-
sities q are a product of uniform densities of unit width, due to perturbation with
uniform noise during training. The terms labeled Dx and Ds coincide with distortion



Figure 3: Schematic of the proposed neural network architecture. Hyperprior blocks and side
information bitstreams similar to [3] are also present, but are not visualized here.

Table 1: Network layer configurations of the encoder and of the decoder.

Encoder Decoder
ge,s ge,x gd,s gd,x

No. Layer In/Out Layer In/Out Layer In/Out Layer In/Out

1 conv5s1 Cs + 3/N conv5s2 3/N deconv5s1 M1/N deconv5s2 M/N
2 conv5s1 N/N conv5s2 N/N deconv5s1 N/N deconv5s2 N/N
3 conv5s2 N/M1 conv5s2 N/N deconv5s2 N/Cs deconv5s2 N/N
4 conv5s2 N/M2 deconv5s2 N/3

terms associated with the input image x and feature representation s for the targeted
vision task, respectively. The terms labeled Ry1 and Ry2 represent the cross-entropy
values, corresponding to the bit costs of encoding ỹ1 and ỹ2 under the respective
learned entropy models.

By linking the parameterized density functions to the transform coding paradigm,
we observe that the minimization of the KL divergence effectively corresponds to
optimizing the VCM model for rate-distortion performance associated with both input
image reconstruction and object detection tasks. In the case of using the MSE metric,
the distortion terms Dx and Ds in Eq. (1) correspond to closed-form likelihoods, or
more specifically, to Gaussian distributions (see [15] for relevant discussion). We can
write the loss function from Eq. (1) compactly as

L = Ry1
+Ry2

+ λ ·Dx + γ ·Ds, (2)

where the scalars λ and γ denote the Lagrange multipliers corresponding to the
distortion budgets associated with x and s, respectively.

3.2 Implementation of the neural network architecture

As seen in Fig. 3, we build our neural network architecture based on the approach
in [3]. We generate the feature representation s ∈ RCs×Hs×Ws by feeding the input
image x ∈ R3×H×W through the first few layers of a machine vision model, denoted
as V front in Fig. 3. To have a fair comparison with [11], we use the first consecutive
13 layers of the YOLOv3 [16] object detection model to generate s with Cs = 256
channels, and spatial dimensions of Hs = H

8
and Ws = W

8
.

The analysis transform ge,s generates the base latent representation y1 using as
input the channel-wise concatenation of s and Resize(x), where we have chosen a
spatial bicubic interpolation filter for Resize : R3×H×W → R3×Hs×Ws . The analysis



transform ge,x generates the enhancement latent representation y2 using only x as
input. Next, y1 and y2 are quantized (Q) and fed into an arithmetic encoder (AE),
which yields the base and enhancement bitstreams, respectively.

At the decoder side, the respective bitstreams are then fed into an arithmetic
decoder (AD) in order to reconstruct the base and enhancement latent represen-
tations ŷ1 and ŷ2. Using ŷ1, the synthesis transform gd,s reconstructs the feature
representation ŝ, which we feed into the remaining part of the machine vision model,
denoted as Vback, in order to generate the inference results t̂. Using the channel-wise
concatenation of ŷ1 and ŷ2, the synthesis transform gd,x reconstructs the input x̂.

As our network architecture builds upon [3], it employs separate hyperprior mod-
ules for both latent representations y1 and y2. However, these are omitted in Fig. 3
for brevity. The layer configurations for the hyperprior modules are the same as those
presented in [3], whereas details on the employed encoder/decoder modules are shown
in Table 1. We adopt a similar configuration for the encoder/decoder architecture
as in [3], for our ge,i and gd,i where i = {x, s}. We define the analysis transforms
ge,i using convolutional layers with 5 × 5 kernels and a stride of 2 (i.e., conv5s2),
interleaved with generalized divisive normalization (GDN) layers [17]. The synthe-
sis transforms gd,i consist of transposed convolutional layers for upsampling with a
stride of 2 (i.e., deconv5s2), interleaved with inverse GDN (IGDN) layers. Note that
in order to match the spatial dimension of the latent representations, the number
of layers at the analysis/synthesis transforms both at the encoder and decoder sides
differ. Table 1 lists the layers used in our model, along with their corresponding input
and output channel dimensions. In our experiments, we fix N = 192 for all models,
and vary M1 and M2 depending on the configuration as detailed in Section 4.2.

4 Experiments and Results

4.1 Experimental setup

We implemented all DNN-based models using the CompressAI library [18]. The
models are trained on randomly cropped patches of size 256×256 from the Vimeo-90K
[19] dataset, with a batch size of 8. We use an Adam optimizer with an initial learning
rate of 1× 10−4, where the rate is reduced by a factor of 10 whenever the decrease in
validation loss stagnates, up to 4 times, after which we stop training. We use the loss
function from Eq. 2 with Dx = MSE(x, x̂) and Ds = MSE(s, ŝ). Our models have
been trained to operate across a wide range of bit rates by varying the hyperparameter
λ ∈ {0.0067, 0.0100, 0.0130, 0.0250, 0.0300, 0.0483} and fixing γ = 0.006 · λ.

To explore how the overall performance changes with our proposed approach under
various configurations, we vary the number of channels of the base and enhancement
latent representations (i.e., M1 and M2, respectively), and the number of hyperprior
blocks employed (i.e., H). We use the tuple (M1,M2, H) to express each configuration.

Because our proposed approach is built upon [3] for the sake of reduced com-
putational load, we have reimplemented [11] on top of a comparable base architec-
ture with its original configuration (128, 64, 1) in order to ensure a fairer compari-
son. We also compare with the latest standard codecs in intra-only mode using the
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Figure 4: Performance comparisons across various metrics. (a) Object detection in terms of mAP
(IoU=0.5) vs. bpp on the COCO 2014 validation dataset. (b) Input reconstruction in terms of
PSNR vs. bpp and (c) input reconstruction in terms of MS-SSIM vs. bpp on the Kodak dataset.

reference implementations of HEVC1 and VVC2 over the quantization parameters
QP ∈ {22, 25, 28, . . . , 40}.

We evaluate object detection performance on COCO 2014 validation dataset [20]
consisting of around 5000 JPEG-compressed images with annotated bounding boxes
belonging to 80 object categories. We resize the input images to 512 × 512 with
a bilinear interpolation filter before encoding. Additionally, we also evaluate input
reconstruction performance on all 24 images from the Kodak dataset [21].

4.2 Results

Fig. 4 compares the performance of our models and relevant codecs. Fig. 4(a) shows
the object detection performance using a rate-accuracy curve in terms of mean average
precision (mAP) for an Intersection over Union (IoU) threshold of 0.5 versus bits per
pixel (bpp). Fig. 4(b) and (c) show the input reconstruction performance using rate-
distortion curves in terms of peak signal-to-noise ratio (PSNR) and MS-SSIM versus
bpp, respectively.

For the primary machine vision task, the object detection performance of our
method with (64, 128, 1) reaches near 2% mAP loss3 (dashed line) at around 0.3
bpp, whereas Choi et al. [11] with a configuration of (128, 64, 1) reaches a similar
accuracy at around 0.58 bpp. When repurposed for this compression task, HEVC
and VVC show relatively poor performance. In comparison with [11], our method
approximately achieves 55% bit savings at the 2% mAP loss threshold.

For the secondary input reconstruction task, VVC achieves the best performance
among all methods for both the PSNR and MS-SSIM metrics. However, our method
still shows competitive performance at low bpp compared to HEVC and Choi et

1http://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.20+SCM-8.8/
2https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tags/VTM-12.3.
3Default performance of YOLOv3 on COCO2014 dataset, including JPEG-compressed images,

is around 55.85% mAP at 4.80 bpp.

http://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.20+SCM-8.8/
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tags/VTM-12.3
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y1) discussed in Sec. 5. Both curves in all figures correspond to the models trained with λ = 0.0483.

(a)

y2

y1

y2

y1 −40

−20

0

20

40

O
u
rs

[1
1
]

(b)

Figure 6: (a) A sample input image from Kodak [21] and (b) top-8 latent channels ordered by rate
for the base (y1) and enhancement (y2) latent representations of the models employed in Fig. 5.

al. [11]. Nonetheless, the performance gap between our method for well-chosen con-
figurations and the benchmarks increases somewhat for larger bpp. The best con-
figuration for our method in terms of PSNR is with M2 = 192 channels for the
enhancement layer. When comparing input reconstruction performance using MS-
SSIM, all tested configurations of our method show competitive performance with
respect to HEVC. We note that our worst-performing configuration (M2 = 64) in
terms of PSNR is still competitive when measured with MS-SSIM.

In summary, our proposed approach is capable of achieving a significant reduction
in bit rate for the object detection task at the cost of slight performance degradation
for the input reconstruction task.

5 Insight into Information Flow

We introduce the redundancy metric Rdn (yi | yj) ,
I(yi;yj)

H(yi)
= 1 − H(yi|yj)

H(yi)
, also

referred to as the uncertainty coefficient [22] in the literature, which measures what
portion of the information within yi is redundantly contained in the other variable yj.
Following the conditional entropy estimation approach employed in [11], we separate
yi and yj into fibers with a size of m × 1 × 1, where m ∈ {Mi,Mj} is the number
of channels of the respective latent tensor. Then, we group the fibers for yj into
K = 128 clusters using the k-means algorithm. Finally, we estimate

R̃dn (yi | yj) = 1− 1

H(yi)

∑

k∈{1,...,K}

p(k)H(ȳi | c(ȳj) = k), (3)

where c : RMj×1×1 → {1, . . . , K} is a fixed clustering function, p(k) denotes the ap-
proximate probability density associated with each cluster k, and (ȳi, ȳj) is a random



variable representing one of L pairs of fibers sampled over 256 images. To estimate
H(yi), we employ the entropy bottleneck module of [3], and also use it in computing

the estimate H(ȳi | c(ȳj) = k) ≈∑l∈{1,...,L}H(ȳ
(l)
i ) δ[c(ȳ

(l)
j )− k].

We compare the evolution of the aforementioned metric during training for our

method and for the benchmark model [11]. As Fig. 5(a) shows, R̃dn (y1 | y2) sta-
bilizes near the desired value of zero for our method, whereas it is larger for [11].

Conversely, as Fig. 5(b) shows, R̃dn (y2 | y1) stabilizes near one for our method,
and zero for [11]. This confirms that our proposed approach yields a more compact
base latent representation, while producing a suboptimal enhancement latent repre-
sentation. Furthermore, it affirms that the model from [11] offers a more graceful
degradation in the context of image reconstruction quality as its enhancement latent
representation contains less redundancy compared to ours. Although the loss in cod-
ing efficiency due to scalability has been previously studied in [11], we argue that our
way of looking into information flow through an information-theoretic lens provides
deeper understanding about degree of redundancy between the latent representations.

Fig. 6 visualizes the top-8 channels, ordered by rate, of the base and enhancement
latent representations for both our method and the one in [11]. For our approach,
y1 contains very little visible image structure, suggesting that it is well optimized for
the object detection task. Without achieving comparative gains in task accuracy, as
seen in Fig. 4, [11] produces significant visible image structure within y1, leading to
a significantly higher bit cost for the base bitstream. Thus, our method efficiently
encodes only what is necessary for a given task within its respective bitstream.

6 Conclusion

This paper presents a DNN-based image codec with a new variational formulation,
offering latent-space scalability for human and machine vision tasks by disentangling
the learned latent representations. For this end, the information related to the object
detection task is extracted at the encoder side to be used as an additional input,
together with original input image, to a learned transform at the encoder. As such,
compared to the state-of-the-art benchmark in [11], we achieve significant bit re-
ductions at the base layer bitstream for the object detection task, hence yielding a
desirable scalable image codec for the VCM paradigm. Additionally, we introduce an
information-theoretic metric to analyze the characteristics of the amount of redun-
dancy between two learned latent representations. We leave the investigation of how
to further improve image reconstruction quality while not compromising the object
detection performance for future work.
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[15] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image compression,”
in Proc. ICLR, 2017.

[16] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” arXiv preprint
arXiv:1804.02767, 2018.
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