
ar
X

iv
:2

30
1.

02
87

8v
1

 [
cs

.I
T

]
 7

 J
an

 2
02

3

Abstract Huffman Coding and

PIFO Tree Embeddings

Keri D’Angelo∗ Dexter Kozen†

Cornell University
Computer Science Department

Ithaca, New York 14853-7501, USA
∗kd349@cornell.edu †kozen@cs.cornell.edu

January 10, 2023

Abstract

Algorithms for deriving Huffman codes and the recently developed algorithm for
compiling PIFO trees to trees of fixed shape [1] are similar, but work with different
underlying algebraic operations. In this paper, we exploit the monadic structure of
prefix codes to create a generalized Huffman algorithm that has these two applications
as special cases.

1 Introduction

Huffman codes translate letters from a fixed alphabet to d-ary codewords, achieving optimal
compression for a given frequency distribution of letters. There is a well-known greedy
algorithm for producing Huffman codes from a given distribution (see [2]).

A new data structure called a PIFO tree (priority-in first-out) has recently been pro-
posed for implementing a wide range of packet scheduling algorithms in programmable
network routers [3, 4]. A PIFO tree is a tree of priority queues. Currently, most routers
support just a few scheduling algorithms such as strict priority or weighted fair queueing,
which are baked into the hardware. The schedulers can be configured to some extent, but
it is generally not possible to implement more sophisticated scheduling algorithms that
require reordering of already queued packets. This is exactly what PIFO trees permit. It
seems likely that PIFOs will be supported on network devices in the near future.

Some researchers have already begun to explore how the PIFO abstraction can be em-
ulated on conventional routers [4]. In very recent work [1], it was shown how to translate
an algorithm designed for a PIFO tree of arbitrary shape to one that uses a PIFO tree of
fixed shape, perhaps a complete d-ary tree that might be implemented in hardware, with
negligible performance degradation.

1

http://arxiv.org/abs/2301.02878v1
mailto:kd349@cornell.edu
mailto:kozen@cs.cornell.edu

The embedding algorithm is greedy and very similar to the Huffman algorithm, ex-
cept that it is based on different algebraic operations. For Huffman coding, one wishes to
choose a d-ary prefix code C so as to minimize the value of ∑x∈C |x| · r(x), where r(x) is
the frequency of the letter assigned to the codeword x. This minimizes the entropy of the
resulting code. For PIFO trees, one wishes to minimize maxx∈C |x|+ r(x), where r(x) is the
height of a subtree. This minimizes the height of the resulting d-ary tree and determines
whether an embedding is at all possible.

This similarity leads us to seek a unified axiomatic treatment that is parametric in the
algebraic operations and that can be instantiated to produce both applications as special
cases. Our treatment exploits the monadic structure of prefix codes to obtain an abstract
formulation of the problem and its solution. We identify sufficient conditions for our ab-
stract algorithm to produce optimal solutions, where the meaning of optimal is also para-
metric in the instantiation.

We state axioms that are sufficient for optimality in §3. The algorithm is presented in
§4 and its correctness proved in §5. The two applications of Huffman codes and PIFO trees
are derived in §6.

2 Background

We assume familiarity with the basic category-theoretic concepts of category, functor, and
natural transformation. Our exposition is based on the concepts of monad and Eilenberg-
Moore algebra; we briefly review the definitions here. For a more thorough introduction,
we refer the reader to [5–8].

Monads are heavily used in functional programming to model the augmentation of a
computation with extra structure [9–11]. Formally, a monad on a category C is a triple
(T, η, µ), where T : C → C is an endofunctor on C and η : I → T and µ : T2 → T are natural
transformations, called the unit and multiplication respectively, such that for all objects X,
the following diagrams commute:

T
3X T

2X

T
2X TX

µTX

TµX

µX

µX

TX T
2X

T
2X TX

ηTX

TηX

µX

µX
idTX

Typical examples of monads are

• the list monad, in which ηX(a) = [a], the singleton list containing a, and

µX([[a11, . . . , a1k1
], . . . , [an1, . . . , ankn

]]) = [a11, . . . , a1k1
, . . . , an1, . . . , ankn

],

the list flattening operation;

2

• the powerset monad, in which ηX(a) = {a}, the singleton set containing a, and µX(A) =
⋃

A, the operation that takes a set of subsets of X to its union.

Given a monad (T, η, µ) on a category C, an Eilenberg-Moore algebra for (T, η, µ) is a pair
(X, γ), where X is an object of C and γ : TX → X is a morphism of C, called the structure
map of the algebra, such that the following diagrams commute:

T
2X TX

TX X

Tγ

µX

γ

γ

X

TX X

ηX

γ

idX

A morphism of Eilenberg-Moore algebras is a morphism of C that commutes with the structure
maps. That is, if (X, γ) and (Y, δ) are two algebras and h : X → Y is a morphism of C, then
h is a morphism of algebras h : (X, γ) → (Y, δ) if the following diagram commutes:

TX TY

X Y

Th

γ

h

δ

The Eilenberg-Moore algebras for (T, η, µ) and their morphisms form the Eilenberg-Moore
category over the monad T. The Eilenberg-Moore category for the list monad is the cat-
egory of monoids and monoid homomorphisms. The Eilenberg-Moore category for the
powerset monad is the category of complete upper semilattices and semilattice homomor-
phisms.

In our application, we will focus on the monad of d-ary prefix codes on the category Set

of sets and set functions.

3 Axioms

In this section, we state the axioms that are sufficient for the optimality of our generalized
Huffman algorithm.

Recall that a prefix code over a fixed d-ary alphabet Σ is a set of finite-length words over
Σ whose elements are pairwise incomparable with respect to the prefix relation. A prefix
code C is exhaustive if every infinite d-ary string has a prefix in C. As a consequence of
König’s lemma, every exhaustive prefix code over a finite alphabet is finite, but not every
finite prefix code is exhaustive.

Let C : Set → Set be an endofunctor in which

• CX is the set of pairs (C, r) such that C is a prefix code over a d-ary alphabet for some
arbitrary but fixed d ≥ 2 and r : C → X, and

3

• for h : X → Y, Ch : CX → CY with Ch(C, r) = (C, h ◦ r).

The functor C carries a natural monad structure with unit η : I → C and multiplication
µ : C2 → C defined by: for a ∈ X and (C, r) ∈ C

2X with r(x) = (Cx, rx),

ηX(a) = ({ε}, ε 7→ a) µX(C, r) = ({xy | x ∈ C, y ∈ Cx}, xy 7→ rx(y)).

The map xy 7→ rx(y) is well defined, as the string xy can be uniquely split into x ∈ C and
y ∈ Cx because C is a prefix code.

For example, consider the prefix codes C = {0, 10, 110, 111} and C0 = C10 = C110 =
C111 = {00, 11} over the binary alphabet {0, 1}. The code C is exhaustive but the others
are not. Let

r0(00) = 2 r10(00) = 4 r110(00) = 6 r111(00) = 8

r0(11) = 3 r10(11) = 5 r110(11) = 7 r111(11) = 9

r(0) = (C0, r0) r(10) = (C10, r10) r(110) = (C110, r110) r(111) = (C111, r111).

Then (C0, r0), (C10, r10), (C110, r110), (C111, r111) ∈ CN and (C, r) ∈ C
2
N, and µN(C, r) =

(C′, r′) ∈ CN, where

C′ = {000, 011, 1000, 1011, 11000, 11011, 11100, 11111}

r′(000) = 2, r′(011) = 3, r′(1000) = 4, r′(1011) = 5,

r′(11000) = 6, r′(11011) = 7, r′(11100) = 8, r′(11111) = 9.

Suppose there is a fixed Eilenberg-Moore algebra (W, w) with w : CW → W. We call
the elements of W weights and (W, w) a weighting. If (C, r) ∈ CW, then thinking of the
elements of C as a tree, the map r : C → W assigns a weight to each leaf of the tree, and
the map w tells how to assign a weight to the object (C, r) based on the leaf weights r.

To define a notion of optimality, we assume that W is totally preordered by ≤; that is,
≤ is reflexive and transitive, and for all x, y ∈ W, either x ≤ y or y ≤ x (or both). Smaller
values of W in the order ≤ are considered better. We write x ≡ y if both x ≤ y and y ≤ x.
Suppose further that we have a preorder on CW, also denoted ≤, satisfying the following
properties.

(i) If f : C → D is bijective and length-nondecreasing, and if r ≤ s ◦ f pointwise, then
(C, r) ≤ (D, s). This says that longer codewords or larger leaf values cannot cause a
decrease in the order ≤.

(ii) (Exchange property) If r(x) ≤ r(y), |x| ≤ |y|, and

s(z) =

r(x), if z = y,

r(y), if z = x,

r(z), if z ∈ C \ {x, y},

then (C, s) ≤ (C, r). That is, it never hurts to swap a larger element deeper in the tree
with a smaller element higher in the tree.

4

(iii) The monad structure maps ηW : W → CW and µW : C2W → CW are monotone with
respect to ≤, where ≤ on C

2W is defined by:

(C, r) ≤ (D, s) ⇔ Cw(C, r) ≤ Cw(D, s).

Some special cases of (i) are

• If f : C → D is bijective and length-nondecreasing, then (C, s ◦ f) ≤ (D, s). Thus
lengthening codewords cannot cause ≤ to decrease.

• If f : C → D is bijective and length-preserving, then (C, s ◦ f) ≡ (D, s). This says
that the order ≤ on trees depends only on the lengths of the codewords in C, not on
the actual codewords themselves.

• If r, s : C → W and r ≤ s pointwise, then (C, r) ≤ (C, s). Thus larger leaf values
cannot cause ≤ to decrease.

We assume these properties hold for the algorithm described in the next section.
For (C, r), (D, s) ∈ CW, let us write (C, r) ∼ (D, s) if the multisets of weights repre-

sented by the two objects are the same; that is, there is a bijective function f : C → D such
that r = s ◦ f . A tree (C, r) ∈ CW is defined to be optimal (for its multiset of weights) if (C, r)
is ≤-minimum in its ∼-class; that is, (C, r) ≤ (D, s) for all (D, s) such that (C, r) ∼ (D, s).

We will give two detailed examples in §6.

4 Algorithm

Suppose we are given a multiset M of weights in W, |M| ≥ 2. We would like to find an
optimal tree for this multiset of weights. The following is a recursive algorithm to find
such an optimal tree.

1. Say there are n ≥ 2 elements in M. Let k ∈ {2, . . . , d} such that n ≡ k mod (d − 1).
Let a0, . . . , ak−1 be the k elements of least weight. Form the object

({0, 1, . . . , k − 1}, i 7→ ai) ∈ CW.

If there are no other elements of M, return that object.

2. Otherwise, let

M′ = {({0, 1, . . . , k − 1}, i 7→ ai)} ∪ {ηW(a) | a ∈ M \ {a0, . . . , ak−1}},

a multiset of n − k + 1 < n elements of CW.

3. Recursively call the algorithm at step 1 with M′′ = {w(E, t) | (E, t) ∈ M′}, a multiset
of elements of W. This returns a tree (D, s) of type CW that is optimal for M′′. The
bijective map s : D → M′′ factors as w ◦ s′ for some bijective s′ : D → M′, and
(D, s′) ∈ C

2W with Cw(D, s′) = (D, w ◦ s′) = (D, s). Flatten this to µW(D, s′) ∈ CW
and return that value.

5

Note that the number of items combined in step 1 will be d in all recursive calls except
possibly the first. This is because in every step, if k ∈ {2, 3, . . . , d}, then after that step
the number of remaining elements will be (c(d − 1) + k) − k + 1 = c(d − 1) + 1, which
is congruent to d mod d − 1, so d elements will be taken in the next step. But from that
point on, it is an invariant of the recursion that the number of elements remaining is 1 mod
d − 1, since in each step we remove d elements and add one back, decreasing the number
by d − 1.

5 Correctness

In this section, we prove the correctness of the algorithm, making use of the following
lemma.

Lemma 1. Let k ∈ {2, 3, . . . , d} and k ≡ |M| mod (d − 1). Let a0, . . . , ak−1 be the k elements of
M of least weight, listed in nondecreasing order of weight. There is an optimal tree in CW in which
a0, . . . , ak−1 are sibling leaves at the deepest level and have no other siblings.

Proof. Let (C, r) ∈ CW be optimal. Axiom (i) allows us to transform (C, r) so that there
are no deficient nodes (nodes with fewer than d children) at any level except the deepest,
and only one deficient node at the deepest level. Thus we can assume without loss of
generality that there are k elements x0, . . . , xk−1 ∈ C of maximum length n in C with a
common prefix of length n − 1, and no other y ∈ C has that prefix. Say the x0, . . . , xk−1 are
listed in nondecreasing order of r(xi); that is, r(xi) ≤ r(xj) for all 0 ≤ i ≤ j ≤ k − 1. Let
y0, . . . , yk−1 ∈ C such that r(yi) = ai. Since the ai are minimal, r(yi) ≤ r(xi). Because the
|xi| are of maximum length, |yi| ≤ |xi|. Now we can swap using axiom (ii). Let

s(z) =

r(xi), if z = yi,

r(yi), if z = xi,

r(z), otherwise.

Then (C, s) ≤ (C, r). But since (C, r) was optimal, (C, r) ≡ (C, s) and (C, s) is also optimal.

Theorem 2. The algorithm of §4 produces an optimal tree.

Proof. By induction on n. The basis is n ≤ d, in which case the result is straightforward.
Suppose that we have a multiset M of n > d elements of W. Let (C, r) be an optimal tree

for M. Let k ∈ {2, 3, . . . , d} be congruent mod d− 1 to |M|. Let a0, . . . , ak−1 be the k smallest
elements of M. By Lemma 1, we can assume without loss of generality that a0, . . . , ak−1 are
siblings and occur at maximum depth in (C, r), so there exist strings x0, x1, . . . , x(k − 1) ∈
C of maximum length with a common prefix x and r(xi) = ai. Remove the strings xi from
C and replace them with x. Call the resulting set C′. For z ∈ C′, let

r′(z) =

{

({0, 1, . . . , k − 1}, i 7→ ai), if z = x,

ηW(r(z)), otherwise.

6

Then (C′, r′) ∈ C
2W and (C, r) = µW(C′, r′). The multiset of values of r′ is just the M′ of

step 2 of the algorithm.
The algorithm will form the multiset

M′′ = {w(E, t) | (E, t) ∈ M′} = {w(r′(z)) | z ∈ C′}

and recursively call with these weights. By the induction hypothesis, the return value will
be a tree (D, s) ∈ CW that is optimal for M′′, thus (D, s) ≤ (C′, w ◦ r′), and the bijective
map s : D → M′′ factors as s = w ◦ r′ ◦ f for some bijective f : D → C′. Let s′ = r′ ◦ f . By
axiom (iii),

Cw(D, s′) = (D, w ◦ s′) = (D, s) ≤ (C′, w ◦ r′) = Cw(C′, r′),

therefore (D, s′) ≤ (C′, r′), and since µW is monotone,

µW(D, s′) ≤ µW(C′, r′) = (C, r).

As (C, r) was optimal, so is µW(D, s′), and this is the value returned by the algorithm.

6 Applications

By choosing two specific weightings (W, w) and defining the ordering relations ≤ appro-
priately, we can recover two special cases of this algorithm.

6.1 Huffman coding

Our first application is Huffman codes. Here we wish to minimize the expected length of
variable-length codewords, given frequencies of the letters to be coded. For this applica-
tion, we take W = R+ = {a ∈ R | a ≥ 0} with weighting

w(C, r) = ∑
x∈C

r(x).

Recall that for a ∈ W and (C, r) ∈ C
2W with r(x) = (Cx, rx),

ηW(a) = ({ε}, ε 7→ a) µW(C, r) = ({xy | x ∈ C, y ∈ Cx}, xy 7→ rx(y)).

Then (W, w) is an Eilenberg-Moore algebra for the monad (C, µ, η), as

w(ηW(a)) = w({ε}, ε 7→ a) = ∑
x∈{ε}

(ε 7→ a)(x) = a,

w(µW(C, r)) = ∑
x∈C

∑
y∈Cx

rx(y) = ∑
x∈C

w(Cx, rx)

= ∑
x∈C

w(r(x)) = w(C, w ◦ r) = w(Cw(C, r)).

In addition, let us define α : CW → W by

α(C, r) = ∑
x∈C

|x| · r(x).

7

Lemma 3.

α(ηW(a)) = 0 α(µW(C, r)) = α(C, w ◦ r) + w(C, α ◦ r).

Proof.

α(ηW(a)) = α({ε}, ε 7→ a) = ∑
x∈{ε}

|x| · (ε 7→ a)(x) = |ε| · a = 0,

α(µW(C, r)) = α({xy | x ∈ C, y ∈ Cx}, xy 7→ rx(y))

= ∑
x∈C

∑
y∈Cx

|xy| · rx(y) = ∑
x∈C

|x| ∑
y∈Cx

rx(y) + ∑
x∈C

∑
y∈Cx

|y| · rx(y)

= ∑
x∈C

|x| · w(Cx, rx) + ∑
x∈C

α(Cx, rx) = ∑
x∈C

|x| · w(r(x)) + ∑
x∈C

α(r(x))

= α(C, w ◦ r) + w(C, α ◦ r).

Note that α and w agree on trees of depth one:

w({0, 1, . . . , k − 1}, i 7→ ai) =
k−1

∑
i=0

ai,

α({0, 1, . . . , k − 1}, i 7→ ai) =
k−1

∑
i=0

|i| · ai =
k−1

∑
i=0

ai,

where |i| refers to the length of i as a string, which in this case is 1.
The map α is related to the Shannon entropy H. If r(x) = d−|x|, the probability of a

d-ary codeword x under the uniform distribution on a d-ary alphabet, then

H(C, r) = ∑
x∈C

−d−|x| log d−|x| = ∑
x∈C

|x| · d−|x| log d = α(C, r) log d,

so α(C, r) = H(C, r)/ log d.
To use the algorithm in §4, we need an order ≤ on CW. Define (C, r) ≤ (D, s) if (C, r) ∼

(D, s), that is, there is a bijective map f : C → D such that r = s ◦ f , and

α(C, r) ≤ α(D, s).

Note that if (C, r) ≤ (D, s), then

w(C, r) = ∑
x∈C

r(x) = ∑
x∈C

s(f (x)) = ∑
y∈D

s(y) = w(D, s).

According to axiom (iii), for (C, r), (D, s) ∈ C
2W,

(C, r) ≤ (D, s) ⇔ Cw(C, r) ≤ Cw(D, s)

⇔ α(Cw(C, r)) ≤ α(Cw(D, s))

⇔ α(C, w ◦ r) ≤ α(D, w ◦ s). (1)

Also, if (C, r) ≤ (D, s) in C
2W, then

w(C, α ◦ r) = ∑
x∈C

α(r(x)) = ∑
x∈C

α(s(f (x))) = ∑
y∈D

α(s(y)) = w(D, α ◦ s). (2)

8

Lemma 4. µW : C2W → CW and ηW : W → CW are monotone with respect to ≤.

Proof. For ηW , suppose a, b ∈ W and a ≤ b. By Lemma 3,

α(ηW(a)) = 0 = α(ηW(b)) w(ηW(a)) = a ≤ b = w(ηW(b)).

For µW , suppose (C, r), (D, s) ∈ C
2W and (C, r) ≤ (D, s). By Lemma 3, (1), and (2),

α(µW(C, r)) = α(C, w ◦ r) + w(C, α ◦ r)

≤ α(D, w ◦ s) + w(D, α ◦ s) = α(µW(D, s)).

Theorem 5. The algorithm in §4 for the algebra (R+, w) and ordering relation ≤ defined by α is
equivalent to Huffman’s algorithm and produces an optimal Huffman code for a given multiset of
weights.

Proof. Take X ⊂ R+ to be a finite multiset and sort the set X in increasing order. For the
binary case of Huffman codes (the d-ary version follows the same way), we always choose
k = 2. For the first step, let a0, a1 ∈ X be the two smallest elements in the list. Form the
object ({0, 1}, i 7→ ai) ∈ CX. In the case n = 2, this is the only remaining object in the list.
Otherwise, we combined them into one element with the sum of the weights of a0 and a1

as the weight of the new element, exactly as the Huffman coding does.
For the case n > 2, there are remaining elements in the set X. Take all remaining

a ∈ X\{a0, a1} and replace a by ηX(a) ∈ CX. We are left with n − 1 elements of type CX.
If we recursively call the algorithm in step 1, we are continually combining the least two
elements in the remaining set with the elements weighted by w. Note by the weighting
w, w(ηX(a)) = a and on elements in CX, w takes the sum of r(x)′s, exactly as Huffman
coding does. Finally, this leaves us with a tree in C

2X where leaves have weights of the
form ηX(ai). Denote this tree by (D, s). Taking µX(D, S) gives our desired tree in CX.

6.2 PIFO trees

PIFO trees were introduced in [3] as a model for programmable packet schedulers. In the
recent work of [1], further work was done on PIFO trees giving a semantics that allows
for certain embedding algorithms. The notion of a homomorphic embedding was defined for
the purpose determining when a PIFO tree could be represented by another PIFO tree and
for finding an embedding if so. The embedding algorithm we consider takes an arbitrary
PIFO tree and embeds it into a d-ary tree. This becomes a special case of the algorithm of
§4, where we choose w in the weighting (W, w) to minimize the height of the target d-ary
tree into which the source tree can embed.

For this application, we take W = N with weighting

w(C, r) = max
x∈C

|x|+ r(x).

This gives an Eilenberg-Moore algebra (W, w) for the monad (C, µ, η). For a ∈ W and
(C, r) ∈ C

2W with r(x) = (Cx, rx), as before we have

ηW(a) = ({ε}, ε 7→ a) µW(C, r) = ({xy | x ∈ C, y ∈ Cx}, xy 7→ rx(y)),

9

so

w(ηW(a)) = w({ε}, ε 7→ a) = max
x∈{ε}

|x|+ (ε 7→ a)(x) = |ε|+ a = a,

w(µW(C, r)) = w({xy | x ∈ C, y ∈ Cx}, xy 7→ rx(y)) = max
x∈C

max
y∈Cx

|xy|+ rx(y)

= max
x∈C

max
y∈Cx

|x|+ |y|+ rx(y) = max
x∈C

|x|+ max
y∈Cx

|y|+ rx(y)

= max
x∈C

|x|+ w(Cx, rx) = max
x∈C

|x|+ w(r(x))

= w(C, w ◦ r) = w(Cw(C, r)).

For (C, r), (D, s) ∈ CW, let us define (C, r) ≤ (D, s) if there is a bijective function
f : C → D such that r = s ◦ f and

w(C, r) ≤ w(D, s).

Lemma 6. µW : C2W → CW and ηW : W → CW are monotone with respect to ≤.

Proof. For ηW , if a ≤ b, then w(ηW(a)) = a ≤ b = w(ηW(b)).
For µW , suppose (C, r), (D, s) ∈ C

2W and (C, r) ≤ (D, s). According to axiom (iii),

(C, r) ≤ (D, s) ⇔ Cw(C, r) ≤ Cw(D, s)

⇔ w(Cw(C, r)) ≤ w(Cw(D, s)).

Then

w(µW(C, r)) = w(Cw(C, r)) ≤ w(Cw(D, s)) = w(µW(D, s)).

Theorem 7. The algorithm of §4 for the algebra (N, w) and ordering relation ≤ defined by w is
equivalent to determining whether an embedding of a PIFO tree in a bounded d-ary tree exists and
finding the embedding if so.

7 Conclusion

We have presented a generalized Huffman algorithm and shown that two known algo-
rithms, Huffman codes and embedding of PIFOs trees, can be derived as special cases.
The PIFO embedding algorithm was introduced in [1] and observed to be very similar to
the usual combinatorial algorithm for optimal Huffman codes, albeit based on a different
algebraic structure. This suggested the common generalization presented in this paper.

Our generalized algorithm exploits the monadic structure of prefix codes, which al-
lows a more algebraic treatment of the Huffman algorithm than the usual combinatorial
approaches. The two applications fit naturally in the categorical setting by choosing spe-
cific Eilenberg-Moore algebras for each one. It is possible that other greedy algorithms
might fit into this framework as well.

10

References

[1] Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dex-
ter Kozen, “Formal abstractions for packet scheduling,” Tech.
Rep. http://arxiv.org/abs/2211.11659, Cornell University, November 2022.

[2] Thomas M. Cover and Joy A. Thomas, Elements of Information Theory, Wiley, second
edition, 2006.

[3] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,
Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown, “Programmable packet scheduling at line rate,” in SIGCOMM,
2016.

[4] Albert Gran Alcoz, Alexander Dietmüller, and Laurent Vanbever, “SP-PIFO: Approx-
imating push-in first-out behaviors using strict-priority queues,” in NSDI, 2020.

[5] Andrea Asperti and Giuseppe Longo, Categories, Types and Structures: An introduction
to category theory for the working computer scientist, Foundations of Computing. MIT
Press, 1991.

[6] Michael Barr and Charles Wells, Toposes, Triples and Theories, vol. 278 of Grundlehren
der mathematischen Wissenschaften, Springer, 2013.

[7] Michael Barr and Charles Wells, Category Theory for Computing Science, Prentice Hall,
1990.

[8] Jiřı́ Adámek, Horst Herrlich, and George E. Strecker, Abstract and concrete categories,
Dover Publications, 2009.

[9] Eugenio Moggi, “Notions of computation and monads,” Inf. and Comp., vol. 93, no. 1,
pp. 55–92, 1991.

[10] Philip Wadler, “Comprehending monads,” Mathematical Structures in Computer Sci-
ence, vol. 2, pp. 461–493, 1992.

[11] Philip Wadler, “Monads for functional programming,” in Advanced Functional Pro-
gramming: 1st Int. School on Advanced Functional Programming Techniques, Johan Jeur-
ing and Erik Meijer, Eds., vol. 925 of Lecture Notes in Computer Science, pp. 24–52.
Springer-Verlag, 1995.

11

http://arxiv.org/abs/2211.11659

	1 Introduction
	2 Background
	3 Axioms
	4 Algorithm
	5 Correctness
	6 Applications
	6.1 Huffman coding
	6.2 PIFO trees

	7 Conclusion

