
Artificial Vision on Edge IoT Devices:

A Practical Case for 3 D Data Classification

C. Wisultschew, A . Otero, J. Portilla, and E. de la Torre

Universidad Polité cnica de Madrid, Centro de Electró nica Industrial

José Gutié rrez Abascal 2, 28006, Madrid, Spain

{c.wpuigdellivol, joseandres.otero, jorge.portilla, eduardo.delatorre}@upm.es

Abstract—Nowadays, with the huge advance of sensor tech
nology and the increase of the amount of data generated by
them, techniques have to be developed to be able to process all
this amount of information in real-time applications on edge
devices, close to where data is being generated. If all that
information has to be sent to the cloud to be processed, it has
certain disadvantages in terms of latency, bandwidth, privacy
and reliability, compared to locally processing it on the edge. In
this paper, the implementation of deep learning algorithms in
low power and limited resources devices in an Internet of Things
scenario is studied. In order to work in real-time applications,
the influence of different low power consumption deep learning
hardware accelerators is studied. Finally, a practical case for
smart farming is shown with comparative results in terms of
power consumption and performance when running the same
artificial vision algorithm on different devices.

Index Terms—Smart Farming, Neural Networks, Deep Learn
ing, Neural Compute Hardware Accelerator, Internet of Things.

I. I N T R O D U C T I O N

Nowadays sensors are becoming increasingly complex, gen
erating a great amount of information. This increase in the
amount of data needs advanced techniques to be processed.
In the current market, there is a wide variety of complex
sensors that generate a large amount of data such as R G B -
depth cameras, photonic sensors, LiDAR (Light Detection and
Ranging) sensors or hyperspectral cameras, among many oth
ers. This large amount of data allows obtaining a large amount
of information, which processed in a fast and efficient way
enables these complex sensors to be used in IoT applications.
Performing the processing of all these sensors in real time on
autonomous platforms is a challenge in terms of processing
capabilities together with power consumption. One of the aims
of this work is to improve the prediction accuracy in artificial
vision tasks using complex sensors to take advantage of the
large amount of information they provide when compared to
traditional sensors.

A n artificial intelligence subgroup which works fine with
large amounts of information is machine learning. It allows
machines to learn from a database in order to be able to
generate a prediction for each new input. Machine learning
techniques are beginning to be applied on smart farming
scenarios both to improve productivity and product quality.
The information collected by sensors is processed with ma
chine learning algorithms with the aim of providing crop
state information, as well as predicting or detecting possible

failures. This is the case of the work in [1], where the
information from historical weather is processed using neural
networks with the aim of predicting both weather and possible
diseases or pests in grape crops, which are very susceptible to
environmental changes.

Another trend in smart farming is to take advantage of the
IoT to generate autonomous crop systems, connecting all the
sensors to each other to process the information in real time,
in order to generate decisions about how to activate actuators
such as the irrigation circuit, the lighting or ventilation,
among others. This is the case of this work [2], in which an
autonomous hydroponic closed system is controlled without
the need of human intervention.

The proposal of this work is to move the intensive process

ing of deep learning models from the cloud to the edge [3].

This entails certain advantages, which are:

Latency: Network latency is currently a bottleneck. As
•

the processing is carried out locally, the information that

travels through the network is a small amount of all the

raw data generated, allowing the network to be offloaded.

Privacy: Performing processing in the edge allows not to
•

send critical information through the network, achieving
an increase in security.
Scalability: Adding new devices to the network does not

•

imply an increase in the network bandwidth or in the

cloud processing resources.

Reliability: By distributing computation, a problem on
•

the network does not prevent the correct functioning of
the edge devices, as they will perform all the processing
inside the same devices without relying on the connection
with the cloud. Also, a failure on the network has less
impact due to the data can be re-routed through other
ways to ensure that the destination is reached.

In this work, the problem of how to efficiently process a
huge amount of information coming from complex sensors,
such as those used for artificial 3 D vision, is studied. However,
an increase in computing requirements is usually associated
with an increment in power consumption, which is a key
factor in autonomous systems. For this reason, the use of
novel hardware accelerators with reduced power consumption
combined with high performance is considered in this work.
As a result, authors propose a methodology to explore the
implementation of artificial vision algorithms for 3 D object

classification in two different hardware accelerators. On one
side there is Intel Movidius Neural Compute Stick based on
Myriad2 MA2450 SoC [4] and on the other hand, there is
Google Coral edge TPU [5]. These devices have been launched
to the market specifically for running deep learning neural
networks [6] with reduced power consumption. Experimental
results and conclusions are provided in terms of the accuracy
in the predictions, the performance, and power consumption.
As a practical case, a smart farm is studied, in which can be
found autonomous drones, trucks or smart sensors connected
between them on an IoT scenario. A large amount of infor
mation needs to be processed in a fast and efficient manner.
The rest of this paper is organized as follows. In section

2, the most widely used algorithms in the literature for 3D
object classification are described. Section 3 explains the
methodology for the implementation of neural networks on
low power consumption hardware accelerators. Finally, in
section 4, a comparison in terms of performance and power
consumption is made for the implementation of a custom deep
learning neural network running on different devices. Finally,
conclusions are detailed in Section 5.

II. DEEP LEARNING FOR 3D DATA

Nowadays, it is common to find complex sensors such
as LiDAR in autonomous systems. However, many systems
that process 3D information in real time are not able to
take advantage of all the amount of information that can be
extracted due to their low computing resources. One of the best
ways to extract a large amount of information from this type
of sensors are convolutional neuron networks [7]. CNNs rely
on convolutional layers to extract representative features of the
data. The first convolution is able to detect primitive features
such as lines or curves. The more convolutional layers added
to networks, the more complex information can be extracted
from feature maps. After the convolutional layers, there is
typically a final stage called fully connected, that uses these
feature maps to provide a prediction. This type of architecture
really shines in image, text, and voice classification tasks. The
following subsections explain some of the most used neural
networks in 3D object classification tasks.

As point clouds have irregular shapes (they are sparse by
nature, differently to 2D images, where all the pixels contain
information), many solutions in the state-of-the-art preprocess
this data before providing it to the network. This aims at
increasing accuracy, but at the cost of also increasing the com
putational requirements. Accuracy represents the capability of
our neural network to identify a class of an object from the
40 classes available in the ModelNet40 database. The greater
the precision of the network, the more objects it will be able
to predict correctly.

A. PointNet

The PointNet [8] is a solution which works in point clouds
without previous preprocessing them. For this reason, PointNet
achieves very high performance when working with sensors
that generate raw point clouds as an output, such as LiDAR.

PointNet can be used in object classification, segmentation or
semantic analysis of scenes.

As reported in the state-of-the art, this model reaches an
accuracy of 89.2 % trained with the Stanford ModelNet40
database [9], which is composed of 40 categories of C A D 3D
objects divided into 9,843 for training and 2,468 for validation.
A preprocessing is performed to convert C A D objects in the
database to point clouds (which would be the output of a real
sensor). 1024 points are sampled uniformly on the faces of the
mesh according to the area of the face and normalized them on
a unit sphere. To improve the accuracy in the classification,
PointNet randomly rotates the object on the upper axis and
jitters the position of each point with Gaussian noise with
zero mean and 0.02 standard deviation.

B. VoxNet

The VoxNet [10] architecture works with point clouds input
data format. VoxNet starts by segmenting the point cloud,
then converts each of these segments from point cloud to
binary voxel (volumetric pixel) format. This format is used
as input from the network. This conversion makes possible
the acceleration of the processing of the data, due to the fact
that being binary, multiplications are simplified to be only by
0 or 1. To do this, first, it carries out the segmentation and
then performs the prediction using 3D convolutional neural
networks.

This model reaches an accuracy of 83% when trained with
the ModelNet40 [9] database. This is a limited accuracy,
but this network has the advantage of having the shortest
prediction time of all the alternatives, if preprocessing time
is not taken into account. This architecture is even faster
compared with traditional architectures that work with RGB
images for object classification.

C. Frustum PointNet

Frustrum PointNet [11] works with input data from an RGB-
Depth camera. The architecture of this network is divided into
three parts, starting by applying a convolutional neural network
to generate a point cloud with the information provided by
the RGB image and the depth map together. Next, the point
cloud is provided as an input to the PointNet network, which
first segments and then performs the classification. Frustrum
PointNet works fine for simple cases with objects that are
not very hidden and at a distance that provides a sufficient
number of points, and it does not need many points to get a
prediction. One of the problems with data coming from RGB-
Depth cameras is that accuracy is considerably reduced in
low light environments. Another disadvantage of working with
point clouds is the fact that a minimum number of points is
required to obtain a reliable prediction. Finally, if two objects
are very close to each other, results produced by the network
can be erroneous.

D. Multi-view Convolutional Neural Networks (MVCNN)

The M V C N N [12] architecture captures virtual 2D pictures

from different views of the 3D C A D object, in order to

aggregate the information coming from each picture. This
way, it allows obtaining more information than it would be
obtained from a single picture. To extract the information,
each view i coming from the 3 D image is provided to a
convolutional neural network i which is specialized in that
view i as can be seen in Figure 1. The calculations of each
of the C N N s are independent between them and have no
time dependencies. In this stage, feature extraction is carried
out for each view (using C N N X blocks in Figure 1, which
are independent convolutional neural networks). Then all the
information coming from each of the views is aggregated to
finally give this information as input to the classification stage
(fully connected layers named as F C block in Figure 1), in
which the final prediction is made.

Fig. 1. M V C N N architecture.

Compared to other networks for 3 D processing in the state-
of-the-art, M V C N N has one of the highest accuracies (90.1
%) in object classification using the ModelNet40 database.
The accuracy also depends on the location of the views and
the number of views that are used, obtaining a higher accuracy
when the number of views is increased. However, when more
views are used the increase in computing resources must be
taken into account.

E. RotationNet

RotationNet [13] has the same architecture as the M V C N N .
The difference lies in the fact that, during inference, only the
views that maximize the accuracy in the classification of each
object are used. To understand how RotationNet works, let’s
suppose that 3 views on an M V C N N architecture are available.
As shown in Figure 2, all the possible combinations of view
configurations are tried with each of the networks in the first
stage. This way, the configuration that provides the highest
accuracy in the classification can be selected to be finally used.
RotationNet is currently the network architecture with greater
accuracy in the ModelNet40 Benchmark Leaderboard reaching
a 97.37 % accuracy.

F. MobileNet

MobileNet [14] is a image classification deep neural net
work architecture, which is optimized to be used in edge
devices. One of the aims of MobileNet is to allow the
implementation of image recognition applications in mobile
phones and other handheld devices, which do not have high

Fig. 2. RotationNet architecture.

computing resources available. The MobileNet algorithm is
open source and has several versions with different perfor
mances depending on the image size and the accuracy obtained
in the classification to adapt to the needs of each device.

A m o n g the architectures studied previously based on point
clouds, voxels, and multi-view, RotationNet is the one that
achieves the highest accuracy in the 3 D object classification
task employing the ModelNet40 database. The main disadvan
tage of RotationNet lies in the inference time for classifying
one object, since it is a multiple of the number of views. O n
the other hand, architectures such as PointNet, M V C N N , or
VoxNet are optimized to obtain very low inference times with
the disadvantage of not having such a good accuracy when
compared with RotationNet. A pre-application analysis must
be carried out taking into account the types of data generated
by the sensors, together with the limit inference time, the
minimum admissible accuracy and the power consumption.
In a smart farming scenario, it would be necessary to use
networks that provide a very quick response in some critical
applications as close as possible to the sensors, such as
detecting an object in the path of an autonomous drone or
truck. O n the other hand, in some tasks it would be more
important to obtain good accuracy in the predictions, such as
identifying pests or fires.

III. DEEP LEARNING HARDWARE ACCELERATORS

Nowadays, a large number of low power consumption
coprocessors capable of accelerating the processing of deep
learning neural network algorithms are emerging. W h e n work
ing with 3 D data on edge devices, it is necessary to use this
kind of accelerators due to the intense computing processing
required. In this section, two of the most widely used edge
coprocessors are analyzed, with the aim of showing the
advantages and disadvantages of each one.

A. Intel Movidius Neural Compute Stick

Intel® Movidius™ Neural Compute Stick (N C S) is a neural

computing accelerator which is available in the market for

70 $ and that has a growing community of users behind

it. It was chosen for its low cost and for its capability to

implement custom networks to speed them up. Several of these

devices can also work in parallel to obtain greater acceleration.

Further, they can be implemented in distributed deep learning

environments.

Movidius N C S provides low-power, high-performance vi

sion processing solutions. Intel Movidius Neural Compute

Stick includes the SoC Myriad 2 [4] family of vision process
ing units (VPUs). The Myriad 2 SoC provides solutions across
various target applications including embedded deep neural
networks, pose estimation, 3D depth-sensing, visual inertial
odometry and gesture/eye tracking.

The Myriad 2 MA2450 SoC contains 12 parallelizable
vectors cores, each of them working as a Very Long Instruction
Word (VLIW) architecture, which allows performing S I M D
operations. This processor architecture is designed to perform
a large number of operations in parallel, which accelerates,
among others, the convolutional stage, composed by mul
tiplications and additions. Furthermore, the SoC contains a
Streaming Image Processing Pipeline (SIPP), which has more
than 20 programmable hardware accelerators specific for im
age processing. Some of these are the Harris Corner detector,
luminance and chrominance denoising, gamma correction,
sharpening filter among others. The communication between
the host and the SoC is managed through 2 RISC processors.
The Myriad 2 MA2450 SoC has 4 Gbit of L P D D R III R A M .

Movidius provides an S D K to convert networks previ
ously designed in TensorFlow [15] or Caffe [16] (which
are frameworks to create, modify, train and inference neural
networks) to a Movidius N C S compatible format called graph
file. This S D K has the disadvantage of not admitting several
operations which can be performed in TensorFlow or Caffe,
so implementing complex networks is not an easy task. In
the case of networks that use 3D data, it must be notice that
Movidius N C S does not support operations working with 3D
data.

Once the network in a format supported by Movidius N C S
is generated, the API provided by the manufacturer is used
to perform the inference. This is done with C or Python
languages, which allow to load the graph file in Movidius
NCS. In version 2 of the API, specific virtual FIFOs are
provided to load the images, with the aim of increasing the
performance of this process.

When using Movidius N C S it is necessary to ascertain that
the size of the network in memory does not exceed the limit
of Movidius N C S which is 320 M B , due to the fact that if it
is larger, it brings to inference times which can be up to 50
times greater. This is due to the fact that if this happens, the
inference has to be repeated multiple times for the different
pieces of the image. This has to be taken into account, since
loading and offloading a network takes more time than making
an inference, since it is necessary to load in the Movidius
memory both the network architecture and the neuron weights.

B. Google Coral edge TPU

In 2016 Google presented the first generation of Tensor
Processing Units (TPUs) [17], which are dedicated proces
sors for training complex machine learning algorithms. T P U
processors are optimized to accelerate data processing by
parallelizing operations as a G P U do. However, the ALUs in a
T P U are connected to each other as an array in such a way that
data follows a systolic flow. The disadvantage of TPUs is its
high power consumption. Google has just presented in 2019 a

Google edge T P U machine learning accelerator coprocessor,
a low power consumption T P U designed for edge devices.
This device works well in neural network applications such as
image processing, speech recognition or text processing. The
cost of this device is 75 $, it has a U S B 3.1 type C connection
(5Gb / s transfer speed) and is powered at 5V with a current
of at least 500 m A .

IV. I M P L E M E N T A T I O N

The motivation for using information in 3D instead of 2D
is that a greater amount of information that can be obtained
this way, including depth, which is an essential parameter in
autonomous systems to accurately determine the distance of
the obstacles.

Due to the limited number of supported operations of
Tensorflow by the compilers of both Movidius N C S and Coral
edge TPU, the M V C N N architecture has been selected to be
used as the baseline in this work, and modified using part of
the MobileNet v1 architecture, which has Tensorflow opera
tions admitted by both compilers. This way, the unavailability
of unsupported operations in Movidius N C S and Coral edge
T P U is overcome.

When modifying M V C N N with part of the MobileNet
architecture the TensorFlow accuracy is not reduced by work
ing with the ModelNet40 database. This also occurs with
RotationNet due to the fact that it has the same architecture
as M V C N N . The remaining networks shown in this work
were customized employing TensorFlow in order to have
operations supported by Movidius N C S or Coral edge TPU.
However, some architectures such as PointNet and Frustrum
PointNet did not get adequate accuracy. Furthermore VoxNet
architecture has some operations such as 3D convolutions that
are not replaceable. There are networks that can not be im
plemented in Movidius N C S or Coral edge TPU, due to there
are irreplaceable operations in certain types of architectures.
Before implementing a network in Mvoidius N C S or Coral
edge T P U it is recommended to make sure if the operations
that are in the network are supported by the compilers due to
the fact that the information provided by the error messages
of the compilers is limited.

A. MVCNN on Movidius NCS

The deep neural network M V C N N is designed and trained
using TensorFlow. In order to adapt it to a format supported
by Movidius N C S it is necessary to use the Movidius SDK,
which does not accept all TensorFlow operations. Unaccepted
operations must be removed from the network to be imple
mented in Movidius NCS. This process is long and many
errors arise when using this tool. As a practical case, Boolean
variables are not accepted by Movidius SDK, so if the original
Tensorflow network contains some Boolean variable it will
have to be removed. After customize the M V C N N network
using part of MobileNet architecture, it is necessary to check
that its accuracy is not affected. In the case of the TensorFlow
M V C N N custom network used in this work the accuracies
remain closely similar to the original network.

Fig. 3. Movidius Neural Compute Stick Workflow.

As shown in the Figure 3, the workflow to deploy a deep
neural network in Movidius N C S begins with the design and
training of the network in Tensorflow. W h e n the model is
trained, it has to be frozen, which is a process to save all
the parameters that define the architecture and weights of the
network in a single file in a way that facilitates its later use.
Next, a file that defines the architectures and the weights of
the network in Movidius N C S format is generated using the
Movidius S D K . Finally, the Movidius API is used to deploy
the network in the stick.

W h e n converting the network from Tensorflow to Movidius
N C S format, certain modifications are made, such as convert
ing all the variables to f l o a t 1 6 data-type. This might cause
a reduction in the accuracy of the predictions, whether the
network was designed with larger data types. For this reason,
it is necessary to check the validity of the network. Movidius
S D K has a tool for this validation, mvNCCheck. With this tool,
comparisons are obtained in terms of accuracy between the
original network in Tensorflow and the custom Movidius N C S
network. It can also be used to quickly check if the network
is compatible with Movidius N C S . Using mvNCCheck in our
custom network based on M V C N N , it may be verified that
the format conversion to f l o a t 1 6 allows an increase in
performance, due to the fact that the original network was
designed with f l o a t 3 2 data type. However, using m v N C -
Check can also be verified that there is no significant reduction
in prediction accuracy.

B. MVCNN on Coral edge TPU

The implementation of deep neural networks in Coral edge
T P U has the same problem as in the case of Movidius N C S ,
since the Coral compiler does not support all the operations
supported by Tensorflow. As shown in Figure 4 the workflow
to achieve the implementation of a neural network in Coral
edge T P U starts by training a model in Tensorflow. W h e n it
is trained, the model is converted to Tensorflow Lite format
using the Tensorflow Lite converter tool. This conversion is
performed to optimize the Tensorflow architecture in order to
be implemented in devices with low computational resources.
Many errors appear in this step due to operations that are not
supported by Tensorflow Lite. Once the file is generated, the
online web compiler called edge T P U model compiler is used
to generate a format supported by Coral edge TPU. Finally,
the network is deployed using Coral API.

C. Experimental Results

The M V C N N network has been divided into thirteen parts

as can be seen in Figure 1. Twelve of them belong to each

of the convolutional networks of each view (C N N X blocks

Fig. 4. Coral edge TPU Workflow.

T A B L E I

INFERENCE TIMES O N OUR CUSTOM M V C N N USING MODELNET40
DATASET.

Averge time Averge time Averge total
Device o n C N N X onFC timetomake a

layer [ms] layer [ms] prediction [ms]

Coral Edge TPU 0.408 0.067 4.963
Movidius NCS 13.94 2.62 169.9

in Figure 1), independent of each other, since each one is
specialized in a view. These networks are responsible for
taking the input image and generating feature maps at the
output. The convolutional layer is the one that requires the
most operations compared with fully connected layer. A s a
result, is the one that takes the most processing time (shown
in Table I). Therefore, all the information coming from the
feature maps is grouped and given to the last network, the fully
connected stage (FC block in Figure 1), which processes all the
information, to finally provide a prediction. It must be taken
into account that a convolutional layer is carried out for each
view, which means that the time will have to be multiplied
by 12 if the processing is made in one device. However, the
time can be reduced by distributing the processing of each
convolutional stage as they do not depend on each other. Table
I shows the average processing times in the different parts of
the network, each part were evaluated using 10000 samples.

The custom M V C N N network used in this work has been
implemented in several devices measuring inference time and
power consumption. First of all, it has been implemented on an
Intel i7-860 and i7-8700 processors using TensorFlow model,
as the role of a traditional desktop computer employing a
general purpose processors. O n the other hand, it has been
implemented on a Raspberry Pi 3 B using TensorFlow model,
with the role of a traditional edge device as it has low
power consumption and high computing resources based on
general purpose processors. Finally, it has been implemented
in Movidius N C S and Google Coral edge T P U with the role
of low power AI accelerator ASICs. The employed models
are custom Movidius Neural Network and TensorFlow Lite
specific for edge T P U respectively.

In terms of data types, it must be taken into account that
in the original Tensorflow network design, the data are in
fl o a t 3 2 format. W h e n using the Movidius N C S the data is
converted to f l o a t 1 6 and the Coral edge T P U is designed
to use u i n t 8 data types. In the CPUs (I7-860, I7-8700,
A R M v 8 - A) the data are in the original network format, which
is float32. Afterwards, it is shown that these changes have
repercussions in terms of inference time and accuracy in the
prediction.

As it is shown in Table II, when using Coral edge TPU,
the shortest inference times are obtained due to, first, to the
systolic array architecture and, second, to the data-type used.
Working with u i n t 8 data type performance increases at the
cost of providing lower accuracy, due to the quantization of
the data that were originally in float32. Coral edge T P U
has the lowest energy consumption of all the devices used
in this work, reaching an average of 0.446 W when making
inference on our custom M V C N N N network. A s it is shown in
Table II, there is another factor corresponding to the number of
inferences consuming one W in one second, it can be verified
that Coral edge T P U is by far the best.

T A B L E II
COMPARATIVE STUDY O N DIFFERENT DEVICES RUNNING OUR CUSTOM

M V C N N USING MODELNET40 DATASET.

Devices

i7-860 processor
i7-8700 processor
Raspberry Pi 3B
Movidius N C S
Coral edge TPU

Averge time
on classify

an object [ms]
270.46
80.28
1092.23
169.9
4.963

Averge
power

consumption [W]

95
328
2.85
0.98
0.446

Inferences
consuming
1 W per s

0.039
0379
0324
6.005
451.8

Movidius N C S is the second fastest device. There is so
much difference between Movidius N C S and Coral edge T P U
performance due to the data-type used since Movidius N C S
uses float16, dissimilar Coral edge T P U that uses 8-bits
unsigned integer with the advantage that the accuracy obtained
by Movidius N C S is greater than those of Coral edge TPU.
The Raspberry Pi 3 has a 1.2GHz 64-bit quad-core A R M v 8 -
A processor and has a power consumption of only 2.85 W ,
with the disadvantage of being the slowest of all alternatives
studied. With regard to CPUs, the core operates at 2.8 G H z in
i7-860 and at 3.2 G H z in i7-8700. The biggest drawback of
these platforms is their high power consumption, being more
than 100 times higher than Coral edge TPU. In the same way,
regarding the time to classify an object, it is necessary to know
that the CPUs use f l o a t 3 2 as data-type, which reduces the
performance and increases the accuracy of the prediction.

V. C ONCLUSIONS
Different architectures and hardware accelerators have been

evaluated int this work to find an optimal solution for the
implementation of deep neural networks working on 3 D data
in edge devices.

To accelerate processing on edge devices there are two
different alternatives available. O n the one hand, Movidius
N C S , which accelerates deep neural networks maintaining
the original precision of the network implemented. O n the
other hand, there is Coral edge TPU, which achieves 30
times faster acceleration than Movidius N C S running on our
custom M V C N N network, with the disadvantage of reduc
ing the accuracy considerably in the network studied. This
reduction depends on the neural network architecture to be
used. Both solutions can be used together, as could happen

in a autonomous drone operating in a smart farming scenario,
which needs to detect very quickly if it has any object in its
path using Coral edge T P U to avoid the collision with it as
quickly as possible. Then, it could analyze more in detail the
object that was detected using Movidius N C S to provide a
more accurate prediction.

A C K N O W L E D G M E N T

This work has been partially funded by Spanish R & D
PLATINO project (Ref. TEC2017-86722-C4-2-R).

REFERENCES

[1] S. Sannakki, V. S. Rajpurohit, F. Sumira, and H . Venkatesh, “A neural
network approach for disease forecasting in grapes using weather
parameters,” in 2013 Fourth International Conference on Computing,
Communications and Networking Technologies (ICCCNT), July 2013,
pp. 1–5.

[2] M . A . Zamora-Izquierdo, J. Santa, J. A . Mart́ ınez, V. Mart́ ınez, and
A . F. Skarmeta, “Smart farming iot platform based on edge and cloud
computing,” Biosystems Engineering, vol. 177, pp. 4 – 17, 2019,
intelligent Systems for Environmental Applications. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1537511018301211

[3] P. Garcia Lopez, A . Montresor, D. Epema, A . Datta, T. Higashino,
A . Iamnitchi, M . Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” SIGCOMM Comput. Commun.
Rev., vol. 45, no. 5, pp. 37–42, Sep. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2831347.2831354

[4] B . Barry, C . Brick, F. Connor, D . Donohoe, D . Moloney, R. Richmond,
M . O’Riordan, and V. Toma, “Always-on vision processing unit for
mobile applications,” IEEE Micro, vol. 35, no. 2, pp. 56–66, Mar 2015.

[5] S. Cass, “Taking ai to the edge: Google’s tpu now comes in a maker-
friendly package,” IEEE Spectrum, vol. 56, no. 5, pp. 16–17, May 2019.

[6] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85 – 117, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608014002135

[7] A . Krizhevsky, I. Sutskever, and G . E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K . Q . Weinberger, Eds. Curran Associates, Inc., 2012,
pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.pdf

[8] C . R. Qi, H . Su, K . Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July
2017.

[9] Zhirong Wu, S. Song, A . Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and J. Xiao, “3d shapenets: A deep representation for volumetric
shapes,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015, pp. 1912–1920.

[10] D . Maturana and S. Scherer, “Voxnet: A 3d convolutional neural net
work for real-time object recognition,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sep. 2015, pp.
922–928.

[11] C . R. Qi, W . Liu, C . Wu, H . Su, and L. J. Guibas, “Frustum pointnets
for 3d object detection from rgb-d data,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[12] H . Su, S. Maji, E. Kalogerakis, and E . Learned-Miller, “Multi-view
convolutional neural networks for 3d shape recognition,” in The IEEE
International Conference on Computer Vision (ICCV), December 2015.

[13] A . Kanezaki, Y. Matsushita, and Y. Nishida, “Rotationnet: Joint object
categorization and pose estimation using multiviews from unsupervised
viewpoints,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[14] A . G . Howard, M . Zhu, B . Chen, D . Kalenichenko, W . Wang, T. Weyand,
M . Andreetto, and H . Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017. [Online]. Available: http://arxiv.org/abs/1704.04861

http://www.sciencedirect.com/science/article/pii/S1537511018301211
http://doi.acm.org/10.1145/2831347.2831354
http://www.sciencedirect.com/science/article/pii/S0893608014002135
http://papers.nips.cc/paper/4824imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1704.04861

[15] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
and X. Zhang, “Tensorflow: A system for large-scale machine learning,”
05 2016.

[16] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in Proceedings of the 22Nd ACM
International Conference on Multimedia, ser. M M ’14. New
York, NY, USA: ACM, 2014, pp. 675–678. [Online]. Available:
http://doi.acm.org/10.1145/2647868.2654889

[17] N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for and
evaluation of the first tensor processing unit,” IEEE Micro, vol. 38, no. 3,
pp. 10–19, May 2018.

http://doi.acm.org/10.1145/2647868.2654889

