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Abstract—Nowadays, with the huge advance of sensor tech
nology and the increase of the amount of data generated by 
them, techniques have to be developed to be able to process all 
this amount of information in real-time applications on edge 
devices, close to where data is being generated. If all that 
information has to be sent to the cloud to be processed, it has 
certain disadvantages in terms of latency, bandwidth, privacy 
and reliability, compared to locally processing it on the edge. In 
this paper, the implementation of deep learning algorithms in 
low power and limited resources devices in an Internet of Things 
scenario is studied. In order to work in real-time applications, 
the influence of different low power consumption deep learning 
hardware accelerators is studied. Finally, a practical case for 
smart farming is shown with comparative results in terms of 
power consumption and performance when running the same 
artificial vision algorithm on different devices. 

Index Terms—Smart Farming, Neural Networks, Deep Learn
ing, Neural Compute Hardware Accelerator, Internet of Things. 

I. I N T R O D U C T I O N 

Nowadays sensors are becoming increasingly complex, gen
erating a great amount of information. This increase in the 
amount of data needs advanced techniques to be processed. 
In the current market, there is a wide variety of complex 
sensors that generate a large amount of data such as R G B -
depth cameras, photonic sensors, LiDAR (Light Detection and 
Ranging) sensors or hyperspectral cameras, among many oth
ers. This large amount of data allows obtaining a large amount 
of information, which processed in a fast and efficient way 
enables these complex sensors to be used in IoT applications. 
Performing the processing of all these sensors in real time on 
autonomous platforms is a challenge in terms of processing 
capabilities together with power consumption. One of the aims 
of this work is to improve the prediction accuracy in artificial 
vision tasks using complex sensors to take advantage of the 
large amount of information they provide when compared to 
traditional sensors. 

A n artificial intelligence subgroup which works fine with 
large amounts of information is machine learning. It allows 
machines to learn from a database in order to be able to 
generate a prediction for each new input. Machine learning 
techniques are beginning to be applied on smart farming 
scenarios both to improve productivity and product quality. 
The information collected by sensors is processed with ma
chine learning algorithms with the aim of providing crop 
state information, as well as predicting or detecting possible 

failures. This is the case of the work in [1], where the 
information from historical weather is processed using neural 
networks with the aim of predicting both weather and possible 
diseases or pests in grape crops, which are very susceptible to 
environmental changes. 

Another trend in smart farming is to take advantage of the 
IoT to generate autonomous crop systems, connecting all the 
sensors to each other to process the information in real time, 
in order to generate decisions about how to activate actuators 
such as the irrigation circuit, the lighting or ventilation, 
among others. This is the case of this work [2], in which an 
autonomous hydroponic closed system is controlled without 
the need of human intervention. 

The proposal of this work is to move the intensive process

ing of deep learning models from the cloud to the edge [3]. 

This entails certain advantages, which are: 

Latency: Network latency is currently a bottleneck. As 
• 

the processing is carried out locally, the information that 

travels through the network is a small amount of all the 

raw data generated, allowing the network to be offloaded. 

Privacy: Performing processing in the edge allows not to 
• 

send critical information through the network, achieving 
an increase in security. 
Scalability: Adding new devices to the network does not 

• 

imply an increase in the network bandwidth or in the 

cloud processing resources. 

Reliability: By distributing computation, a problem on 
• 

the network does not prevent the correct functioning of 
the edge devices, as they will perform all the processing 
inside the same devices without relying on the connection 
with the cloud. Also, a failure on the network has less 
impact due to the data can be re-routed through other 
ways to ensure that the destination is reached. 

In this work, the problem of how to efficiently process a 
huge amount of information coming from complex sensors, 
such as those used for artificial 3 D vision, is studied. However, 
an increase in computing requirements is usually associated 
with an increment in power consumption, which is a key 
factor in autonomous systems. For this reason, the use of 
novel hardware accelerators with reduced power consumption 
combined with high performance is considered in this work. 
As a result, authors propose a methodology to explore the 
implementation of artificial vision algorithms for 3 D object 



classification in two different hardware accelerators. On one 
side there is Intel Movidius Neural Compute Stick based on 
Myriad2 MA2450 SoC [4] and on the other hand, there is 
Google Coral edge TPU [5]. These devices have been launched 
to the market specifically for running deep learning neural 
networks [6] with reduced power consumption. Experimental 
results and conclusions are provided in terms of the accuracy 
in the predictions, the performance, and power consumption. 
As a practical case, a smart farm is studied, in which can be 
found autonomous drones, trucks or smart sensors connected 
between them on an IoT scenario. A large amount of infor
mation needs to be processed in a fast and efficient manner. 
The rest of this paper is organized as follows. In section 

2, the most widely used algorithms in the literature for 3D 
object classification are described. Section 3 explains the 
methodology for the implementation of neural networks on 
low power consumption hardware accelerators. Finally, in 
section 4, a comparison in terms of performance and power 
consumption is made for the implementation of a custom deep 
learning neural network running on different devices. Finally, 
conclusions are detailed in Section 5. 

II. DEEP LEARNING FOR 3D DATA 

Nowadays, it is common to find complex sensors such 
as LiDAR in autonomous systems. However, many systems 
that process 3D information in real time are not able to 
take advantage of all the amount of information that can be 
extracted due to their low computing resources. One of the best 
ways to extract a large amount of information from this type 
of sensors are convolutional neuron networks [7]. CNNs rely 
on convolutional layers to extract representative features of the 
data. The first convolution is able to detect primitive features 
such as lines or curves. The more convolutional layers added 
to networks, the more complex information can be extracted 
from feature maps. After the convolutional layers, there is 
typically a final stage called fully connected, that uses these 
feature maps to provide a prediction. This type of architecture 
really shines in image, text, and voice classification tasks. The 
following subsections explain some of the most used neural 
networks in 3D object classification tasks. 

As point clouds have irregular shapes (they are sparse by 
nature, differently to 2D images, where all the pixels contain 
information), many solutions in the state-of-the-art preprocess 
this data before providing it to the network. This aims at 
increasing accuracy, but at the cost of also increasing the com
putational requirements. Accuracy represents the capability of 
our neural network to identify a class of an object from the 
40 classes available in the ModelNet40 database. The greater 
the precision of the network, the more objects it will be able 
to predict correctly. 

A. PointNet 

The PointNet [8] is a solution which works in point clouds 
without previous preprocessing them. For this reason, PointNet 
achieves very high performance when working with sensors 
that generate raw point clouds as an output, such as LiDAR. 

PointNet can be used in object classification, segmentation or 
semantic analysis of scenes. 

As reported in the state-of-the art, this model reaches an 
accuracy of 89.2 % trained with the Stanford ModelNet40 
database [9], which is composed of 40 categories of C A D 3D 
objects divided into 9,843 for training and 2,468 for validation. 
A preprocessing is performed to convert C A D objects in the 
database to point clouds (which would be the output of a real 
sensor). 1024 points are sampled uniformly on the faces of the 
mesh according to the area of the face and normalized them on 
a unit sphere. To improve the accuracy in the classification, 
PointNet randomly rotates the object on the upper axis and 
jitters the position of each point with Gaussian noise with 
zero mean and 0.02 standard deviation. 

B. VoxNet 

The VoxNet [10] architecture works with point clouds input 
data format. VoxNet starts by segmenting the point cloud, 
then converts each of these segments from point cloud to 
binary voxel (volumetric pixel) format. This format is used 
as input from the network. This conversion makes possible 
the acceleration of the processing of the data, due to the fact 
that being binary, multiplications are simplified to be only by 
0 or 1. To do this, first, it carries out the segmentation and 
then performs the prediction using 3D convolutional neural 
networks. 

This model reaches an accuracy of 83% when trained with 
the ModelNet40 [9] database. This is a limited accuracy, 
but this network has the advantage of having the shortest 
prediction time of all the alternatives, if preprocessing time 
is not taken into account. This architecture is even faster 
compared with traditional architectures that work with RGB 
images for object classification. 

C. Frustum PointNet 

Frustrum PointNet [11] works with input data from an RGB-
Depth camera. The architecture of this network is divided into 
three parts, starting by applying a convolutional neural network 
to generate a point cloud with the information provided by 
the RGB image and the depth map together. Next, the point 
cloud is provided as an input to the PointNet network, which 
first segments and then performs the classification. Frustrum 
PointNet works fine for simple cases with objects that are 
not very hidden and at a distance that provides a sufficient 
number of points, and it does not need many points to get a 
prediction. One of the problems with data coming from RGB-
Depth cameras is that accuracy is considerably reduced in 
low light environments. Another disadvantage of working with 
point clouds is the fact that a minimum number of points is 
required to obtain a reliable prediction. Finally, if two objects 
are very close to each other, results produced by the network 
can be erroneous. 

D. Multi-view Convolutional Neural Networks (MVCNN) 

The M V C N N [12] architecture captures virtual 2D pictures 

from different views of the 3D C A D object, in order to 



aggregate the information coming from each picture. This 
way, it allows obtaining more information than it would be 
obtained from a single picture. To extract the information, 
each view i coming from the 3 D image is provided to a 
convolutional neural network i which is specialized in that 
view i as can be seen in Figure 1. The calculations of each 
of the C N N s are independent between them and have no 
time dependencies. In this stage, feature extraction is carried 
out for each view (using C N N X blocks in Figure 1, which 
are independent convolutional neural networks). Then all the 
information coming from each of the views is aggregated to 
finally give this information as input to the classification stage 
(fully connected layers named as F C block in Figure 1), in 
which the final prediction is made. 

Fig. 1. M V C N N architecture. 

Compared to other networks for 3 D processing in the state-
of-the-art, M V C N N has one of the highest accuracies (90.1 
% ) in object classification using the ModelNet40 database. 
The accuracy also depends on the location of the views and 
the number of views that are used, obtaining a higher accuracy 
when the number of views is increased. However, when more 
views are used the increase in computing resources must be 
taken into account. 

E. RotationNet 

RotationNet [13] has the same architecture as the M V C N N . 
The difference lies in the fact that, during inference, only the 
views that maximize the accuracy in the classification of each 
object are used. To understand how RotationNet works, let’s 
suppose that 3 views on an M V C N N architecture are available. 
As shown in Figure 2, all the possible combinations of view 
configurations are tried with each of the networks in the first 
stage. This way, the configuration that provides the highest 
accuracy in the classification can be selected to be finally used. 
RotationNet is currently the network architecture with greater 
accuracy in the ModelNet40 Benchmark Leaderboard reaching 
a 97.37 % accuracy. 

F. MobileNet 

MobileNet [14] is a image classification deep neural net
work architecture, which is optimized to be used in edge 
devices. One of the aims of MobileNet is to allow the 
implementation of image recognition applications in mobile 
phones and other handheld devices, which do not have high 

Fig. 2. RotationNet architecture. 

computing resources available. The MobileNet algorithm is 
open source and has several versions with different perfor
mances depending on the image size and the accuracy obtained 
in the classification to adapt to the needs of each device. 

A m o n g the architectures studied previously based on point 
clouds, voxels, and multi-view, RotationNet is the one that 
achieves the highest accuracy in the 3 D object classification 
task employing the ModelNet40 database. The main disadvan
tage of RotationNet lies in the inference time for classifying 
one object, since it is a multiple of the number of views. O n 
the other hand, architectures such as PointNet, M V C N N , or 
VoxNet are optimized to obtain very low inference times with 
the disadvantage of not having such a good accuracy when 
compared with RotationNet. A pre-application analysis must 
be carried out taking into account the types of data generated 
by the sensors, together with the limit inference time, the 
minimum admissible accuracy and the power consumption. 
In a smart farming scenario, it would be necessary to use 
networks that provide a very quick response in some critical 
applications as close as possible to the sensors, such as 
detecting an object in the path of an autonomous drone or 
truck. O n the other hand, in some tasks it would be more 
important to obtain good accuracy in the predictions, such as 
identifying pests or fires. 

III. DEEP LEARNING HARDWARE ACCELERATORS 

Nowadays, a large number of low power consumption 
coprocessors capable of accelerating the processing of deep 
learning neural network algorithms are emerging. W h e n work
ing with 3 D data on edge devices, it is necessary to use this 
kind of accelerators due to the intense computing processing 
required. In this section, two of the most widely used edge 
coprocessors are analyzed, with the aim of showing the 
advantages and disadvantages of each one. 

A. Intel Movidius Neural Compute Stick 

Intel® Movidius™ Neural Compute Stick ( N C S ) is a neural 

computing accelerator which is available in the market for 

70 $ and that has a growing community of users behind 

it. It was chosen for its low cost and for its capability to 

implement custom networks to speed them up. Several of these 

devices can also work in parallel to obtain greater acceleration. 

Further, they can be implemented in distributed deep learning 

environments. 

Movidius N C S provides low-power, high-performance vi

sion processing solutions. Intel Movidius Neural Compute 



Stick includes the SoC Myriad 2 [4] family of vision process
ing units (VPUs). The Myriad 2 SoC provides solutions across 
various target applications including embedded deep neural 
networks, pose estimation, 3D depth-sensing, visual inertial 
odometry and gesture/eye tracking. 

The Myriad 2 MA2450 SoC contains 12 parallelizable 
vectors cores, each of them working as a Very Long Instruction 
Word (VLIW) architecture, which allows performing S I M D 
operations. This processor architecture is designed to perform 
a large number of operations in parallel, which accelerates, 
among others, the convolutional stage, composed by mul
tiplications and additions. Furthermore, the SoC contains a 
Streaming Image Processing Pipeline (SIPP), which has more 
than 20 programmable hardware accelerators specific for im
age processing. Some of these are the Harris Corner detector, 
luminance and chrominance denoising, gamma correction, 
sharpening filter among others. The communication between 
the host and the SoC is managed through 2 RISC processors. 
The Myriad 2 MA2450 SoC has 4 Gbit of L P D D R III R A M . 

Movidius provides an S D K to convert networks previ
ously designed in TensorFlow [15] or Caffe [16] (which 
are frameworks to create, modify, train and inference neural 
networks) to a Movidius N C S compatible format called graph 
file. This S D K has the disadvantage of not admitting several 
operations which can be performed in TensorFlow or Caffe, 
so implementing complex networks is not an easy task. In 
the case of networks that use 3D data, it must be notice that 
Movidius N C S does not support operations working with 3D 
data. 

Once the network in a format supported by Movidius N C S 
is generated, the API provided by the manufacturer is used 
to perform the inference. This is done with C or Python 
languages, which allow to load the graph file in Movidius 
NCS. In version 2 of the API, specific virtual FIFOs are 
provided to load the images, with the aim of increasing the 
performance of this process. 

When using Movidius N C S it is necessary to ascertain that 
the size of the network in memory does not exceed the limit 
of Movidius N C S which is 320 M B , due to the fact that if it 
is larger, it brings to inference times which can be up to 50 
times greater. This is due to the fact that if this happens, the 
inference has to be repeated multiple times for the different 
pieces of the image. This has to be taken into account, since 
loading and offloading a network takes more time than making 
an inference, since it is necessary to load in the Movidius 
memory both the network architecture and the neuron weights. 

B. Google Coral edge TPU 

In 2016 Google presented the first generation of Tensor 
Processing Units (TPUs) [17], which are dedicated proces
sors for training complex machine learning algorithms. T P U 
processors are optimized to accelerate data processing by 
parallelizing operations as a G P U do. However, the ALUs in a 
T P U are connected to each other as an array in such a way that 
data follows a systolic flow. The disadvantage of TPUs is its 
high power consumption. Google has just presented in 2019 a 

Google edge T P U machine learning accelerator coprocessor, 
a low power consumption T P U designed for edge devices. 
This device works well in neural network applications such as 
image processing, speech recognition or text processing. The 
cost of this device is 75 $, it has a U S B 3.1 type C connection 
(5Gb / s transfer speed) and is powered at 5V with a current 
of at least 500 m A . 

IV. I M P L E M E N T A T I O N 

The motivation for using information in 3D instead of 2D 
is that a greater amount of information that can be obtained 
this way, including depth, which is an essential parameter in 
autonomous systems to accurately determine the distance of 
the obstacles. 

Due to the limited number of supported operations of 
Tensorflow by the compilers of both Movidius N C S and Coral 
edge TPU, the M V C N N architecture has been selected to be 
used as the baseline in this work, and modified using part of 
the MobileNet v1 architecture, which has Tensorflow opera
tions admitted by both compilers. This way, the unavailability 
of unsupported operations in Movidius N C S and Coral edge 
T P U is overcome. 

When modifying M V C N N with part of the MobileNet 
architecture the TensorFlow accuracy is not reduced by work
ing with the ModelNet40 database. This also occurs with 
RotationNet due to the fact that it has the same architecture 
as M V C N N . The remaining networks shown in this work 
were customized employing TensorFlow in order to have 
operations supported by Movidius N C S or Coral edge TPU. 
However, some architectures such as PointNet and Frustrum 
PointNet did not get adequate accuracy. Furthermore VoxNet 
architecture has some operations such as 3D convolutions that 
are not replaceable. There are networks that can not be im
plemented in Movidius N C S or Coral edge TPU, due to there 
are irreplaceable operations in certain types of architectures. 
Before implementing a network in Mvoidius N C S or Coral 
edge T P U it is recommended to make sure if the operations 
that are in the network are supported by the compilers due to 
the fact that the information provided by the error messages 
of the compilers is limited. 

A. MVCNN on Movidius NCS 

The deep neural network M V C N N is designed and trained 
using TensorFlow. In order to adapt it to a format supported 
by Movidius N C S it is necessary to use the Movidius SDK, 
which does not accept all TensorFlow operations. Unaccepted 
operations must be removed from the network to be imple
mented in Movidius NCS. This process is long and many 
errors arise when using this tool. As a practical case, Boolean 
variables are not accepted by Movidius SDK, so if the original 
Tensorflow network contains some Boolean variable it will 
have to be removed. After customize the M V C N N network 
using part of MobileNet architecture, it is necessary to check 
that its accuracy is not affected. In the case of the TensorFlow 
M V C N N custom network used in this work the accuracies 
remain closely similar to the original network. 



Fig. 3. Movidius Neural Compute Stick Workflow. 

As shown in the Figure 3, the workflow to deploy a deep 
neural network in Movidius N C S begins with the design and 
training of the network in Tensorflow. W h e n the model is 
trained, it has to be frozen, which is a process to save all 
the parameters that define the architecture and weights of the 
network in a single file in a way that facilitates its later use. 
Next, a file that defines the architectures and the weights of 
the network in Movidius N C S format is generated using the 
Movidius S D K . Finally, the Movidius API is used to deploy 
the network in the stick. 

W h e n converting the network from Tensorflow to Movidius 
N C S format, certain modifications are made, such as convert
ing all the variables to f l o a t 1 6 data-type. This might cause 
a reduction in the accuracy of the predictions, whether the 
network was designed with larger data types. For this reason, 
it is necessary to check the validity of the network. Movidius 
S D K has a tool for this validation, mvNCCheck. With this tool, 
comparisons are obtained in terms of accuracy between the 
original network in Tensorflow and the custom Movidius N C S 
network. It can also be used to quickly check if the network 
is compatible with Movidius N C S . Using mvNCCheck in our 
custom network based on M V C N N , it may be verified that 
the format conversion to f l o a t 1 6 allows an increase in 
performance, due to the fact that the original network was 
designed with f l o a t 3 2 data type. However, using m v N C -
Check can also be verified that there is no significant reduction 
in prediction accuracy. 

B. MVCNN on Coral edge TPU 

The implementation of deep neural networks in Coral edge 
T P U has the same problem as in the case of Movidius N C S , 
since the Coral compiler does not support all the operations 
supported by Tensorflow. As shown in Figure 4 the workflow 
to achieve the implementation of a neural network in Coral 
edge T P U starts by training a model in Tensorflow. W h e n it 
is trained, the model is converted to Tensorflow Lite format 
using the Tensorflow Lite converter tool. This conversion is 
performed to optimize the Tensorflow architecture in order to 
be implemented in devices with low computational resources. 
Many errors appear in this step due to operations that are not 
supported by Tensorflow Lite. Once the file is generated, the 
online web compiler called edge T P U model compiler is used 
to generate a format supported by Coral edge TPU. Finally, 
the network is deployed using Coral API. 

C. Experimental Results 

The M V C N N network has been divided into thirteen parts 

as can be seen in Figure 1. Twelve of them belong to each 

of the convolutional networks of each view ( C N N X blocks 

Fig. 4. Coral edge TPU Workflow. 

T A B L E I 

INFERENCE TIMES O N OUR CUSTOM M V C N N USING MODELNET40 
DATASET. 

Averge time Averge time Averge total 
Device o n C N N X onFC timetomake a 

layer [ms] layer [ms] prediction [ms] 

Coral Edge TPU 0.408 0.067 4.963 
Movidius NCS 13.94 2.62 169.9 

in Figure 1), independent of each other, since each one is 
specialized in a view. These networks are responsible for 
taking the input image and generating feature maps at the 
output. The convolutional layer is the one that requires the 
most operations compared with fully connected layer. A s a 
result, is the one that takes the most processing time (shown 
in Table I). Therefore, all the information coming from the 
feature maps is grouped and given to the last network, the fully 
connected stage (FC block in Figure 1), which processes all the 
information, to finally provide a prediction. It must be taken 
into account that a convolutional layer is carried out for each 
view, which means that the time will have to be multiplied 
by 12 if the processing is made in one device. However, the 
time can be reduced by distributing the processing of each 
convolutional stage as they do not depend on each other. Table 
I shows the average processing times in the different parts of 
the network, each part were evaluated using 10000 samples. 

The custom M V C N N network used in this work has been 
implemented in several devices measuring inference time and 
power consumption. First of all, it has been implemented on an 
Intel i7-860 and i7-8700 processors using TensorFlow model, 
as the role of a traditional desktop computer employing a 
general purpose processors. O n the other hand, it has been 
implemented on a Raspberry Pi 3 B using TensorFlow model, 
with the role of a traditional edge device as it has low 
power consumption and high computing resources based on 
general purpose processors. Finally, it has been implemented 
in Movidius N C S and Google Coral edge T P U with the role 
of low power AI accelerator ASICs. The employed models 
are custom Movidius Neural Network and TensorFlow Lite 
specific for edge T P U respectively. 

In terms of data types, it must be taken into account that 
in the original Tensorflow network design, the data are in 
fl o a t 3 2 format. W h e n using the Movidius N C S the data is 
converted to f l o a t 1 6 and the Coral edge T P U is designed 
to use u i n t 8 data types. In the CPUs (I7-860, I7-8700, 
A R M v 8 - A ) the data are in the original network format, which 
is float32. Afterwards, it is shown that these changes have 
repercussions in terms of inference time and accuracy in the 
prediction. 



As it is shown in Table II, when using Coral edge TPU, 
the shortest inference times are obtained due to, first, to the 
systolic array architecture and, second, to the data-type used. 
Working with u i n t 8 data type performance increases at the 
cost of providing lower accuracy, due to the quantization of 
the data that were originally in float32. Coral edge T P U 
has the lowest energy consumption of all the devices used 
in this work, reaching an average of 0.446 W when making 
inference on our custom M V C N N N network. A s it is shown in 
Table II, there is another factor corresponding to the number of 
inferences consuming one W in one second, it can be verified 
that Coral edge T P U is by far the best. 

T A B L E II 
COMPARATIVE STUDY O N DIFFERENT DEVICES RUNNING OUR CUSTOM 

M V C N N USING MODELNET40 DATASET. 

Devices 

i7-860 processor 
i7-8700 processor 
Raspberry Pi 3B 
Movidius N C S 
Coral edge TPU 

Averge time 
on classify 

an object [ms] 
270.46 
80.28 
1092.23 
169.9 
4.963 

Averge 
power 

consumption [W] 

95 
328 
2.85 
0.98 
0.446 

Inferences 
consuming 
1 W per s 

0.039 
0379 
0324 
6.005 
451.8 

Movidius N C S is the second fastest device. There is so 
much difference between Movidius N C S and Coral edge T P U 
performance due to the data-type used since Movidius N C S 
uses float16, dissimilar Coral edge T P U that uses 8-bits 
unsigned integer with the advantage that the accuracy obtained 
by Movidius N C S is greater than those of Coral edge TPU. 
The Raspberry Pi 3 has a 1.2GHz 64-bit quad-core A R M v 8 -
A processor and has a power consumption of only 2.85 W , 
with the disadvantage of being the slowest of all alternatives 
studied. With regard to CPUs, the core operates at 2.8 G H z in 
i7-860 and at 3.2 G H z in i7-8700. The biggest drawback of 
these platforms is their high power consumption, being more 
than 100 times higher than Coral edge TPU. In the same way, 
regarding the time to classify an object, it is necessary to know 
that the CPUs use f l o a t 3 2 as data-type, which reduces the 
performance and increases the accuracy of the prediction. 

V. C ONCLUSIONS 
Different architectures and hardware accelerators have been 

evaluated int this work to find an optimal solution for the 
implementation of deep neural networks working on 3 D data 
in edge devices. 

To accelerate processing on edge devices there are two 
different alternatives available. O n the one hand, Movidius 
N C S , which accelerates deep neural networks maintaining 
the original precision of the network implemented. O n the 
other hand, there is Coral edge TPU, which achieves 30 
times faster acceleration than Movidius N C S running on our 
custom M V C N N network, with the disadvantage of reduc
ing the accuracy considerably in the network studied. This 
reduction depends on the neural network architecture to be 
used. Both solutions can be used together, as could happen 

in a autonomous drone operating in a smart farming scenario, 
which needs to detect very quickly if it has any object in its 
path using Coral edge T P U to avoid the collision with it as 
quickly as possible. Then, it could analyze more in detail the 
object that was detected using Movidius N C S to provide a 
more accurate prediction. 
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