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Abstract—In the last years, the Industry 4.0 paradigm is
gaining relevance in the agro-food industry, leading to Smart
Farming. One of the applications in the Smart Farming domain
is the advanced chemical analysis in process monitoring using
distributed, low-cost embedded systems. Optical sensing technol-
ogy is used in conjunction with machine learning techniques for
this advanced analysis. From the embedded system perspective,
it might be required to propose a method for the implementation
of machine learning techniques in heterogeneous platforms. This
paper focuses on implementing Machine Learning techniques
in a System on Programmable Chip, based on an FPGA and
ARM processors. As a use case, we mimic water pollution by
ethanol. Thus, the application might determine the percentage
of ethanol of the water during run-time. As a result, this paper
provides a methodology for implementing a machine learning
technique for ethanol prediction using an FPGA, and the study
of its parameters as resource utilization and accelerator latency
for the architecture proposed.

Index Terms—Smart Farming, Optical Sensing, Machine
Learning, Feature Extraction, SoPC.

I. INTRODUCTION

Nowadays, productivity, efficiency, and automation are the
pillars of the industry, whose improvement has strong rel-
evance in this domain [1]. Furthermore, the integration of
the Internet of Things (IoT) paradigm inside the industry
environment led to the creation of Industry 4.0. One of the
relevant objectives of Industry 4.0 is the development of
advanced data analysis for optimizing resource usage, reducing
the faults and the system downtimes [2].

The application of Industry 4.0 paradigm in the agro-food
industry does not only search for the improvement of produc-
tivity but also sustainability, and it is also known as Smart
Farming. Its purpose is to bring more sophisticated control
of processing, farm, and logistics, increasing the food quality
monitoring [3]. From the advanced data analysis perspective,
food processing requires more advanced chemical detection
for the identification of certain compounds in fluids during
run-time, for instance, identifying pollutants in water.

Currently, advanced chemical analysis, such as compound
detection, is done out of the monitoring process. Commonly,
fluid samples are analyzed in specialized laboratories. There-
fore, the system downtimes and time responses might not be
suitable for certain processes. There are approaches based
on measuring physicochemical properties during run-time,
although they cannot be used for sophisticated chemical
analysis, as compound detection in fluids [4]. For advanced
chemical analysis, optical sensing has strong relevance due to
the capabilities of spectroscopy. Nevertheless, it is done out-
side the monitoring process because of the complexity of the
sensors, acquisition and processing systems. Advances in the
optical sensing domain, such as micro-structure optical sensing
systems, reduced the size and cost of photonic transducers.
This development allows to integrate these transducers inside
the embedded systems, generating a framework for advanced
fluid monitoring at run-time.

Depending on the chemical composition, fluids might have
different Refractive Index (RI) values. Changes in the RI
might be used to determine fluid properties, for instance, the
concentration of a particular molecule inside a fluid. Resonant
Nano-Pillars (RNPs) transducers, based on nano-structures,
are capable of measuring the RI changes of the fluid where
they are dived. The signal of RNPs transducers consists of
a frequency domain response, generating a high amount of
variables to process in each measure. Hence, the generation
of a mathematical model is a sophisticated task. Due to the
complexity of the photonic signal processing, in spectroscopy
domain, there is a trend based on applying machine learning
techniques [5], [6] for compound detection. These techniques
generate a model using a dataset from the application. As a
result, machine learning models should fit better compared to
traditional models.

In the continuum cloud-to-edge in the IoT, machine learning
techniques are usually solved in the cloud layer due to its high
computational capabilities. In [7] a smart farming approach is
developed, whose machine learning and statistical techniques



are computed in a server. This might increase the time response
of the control and communication loads and might reduce the
security of the system. In terms of machine learning for water
quality, there is an intent for the use of machine learning
techniques for processing this system [8], [9]. However, it
is done outside the monitoring process. For improving these
metrics, there is an effort of moving some machine learning
techniques from the cloud to the edge. Furthermore, there is
a current trend in smart farming for deploying intelligence
inside the sensors [10]. Apart from the low-power and low-
cost requirements, edge devices, which implement machine
learning techniques, should also be flexible to be adapted to
different application constraints, such as latency, energy con-
sumption or changes in the machine learning model. Heteroge-
neous embedded platforms based on FPGA technology, such
as System on Programmable Chip (SoPC), can achieve this
flexibility, while accelerates the machine learning techniques
in the FPGA side. Moreover, low-computational tasks might
run in the ARM cores.

To adapt machine learning approaches to edge devices, we
focus on the following Machine Learning structure: Feature
Extraction and Machine Learning Model (see Figure 1). The
feature extraction reduces the number of input variables which
are going to feed the model. Then, the reduced set of variables
will be applied to the model, whose output is the value of the
desired monitoring property, for instance, the percentage of a
compound in a fluid.

According to the water pollutants, we propose to identify
the percentage of a compound which is not commonly present
in water. In particular, the use case consists of detecting the
percentage of ethanol in water media, mimicking contamina-
tion during a chemical process.

Based on this, the purpose of this paper is to present a
hardware-accelerated implementation for fluid characterization
inside SoPCs, based on machine learning techniques and
RNPs transducer signals. To this end, the paper follows a
methodology for implementing machine learning algorithms
in resource-aware platforms. Moreover, the use case provides
a framework for evaluating not only the machine learning
system but the performance of the machine learning system
inside the heterogeneous device. As an expected contribution,
this paper presents a hardware architecture for predicting the
amount of ethanol in water media, using a hardware acceler-
ator controlled by a processor. This accelerator integrates the
machine learning technique for the ethanol prediction.

The remainder of this paper is structured as follows. Section
IT describes the methodology followed and the hardware
architecture. Section III includes the dataset from the use case
and the evaluation of the machine learning system and the
hardware architecture. Section IV comprises the final remarks
and future work of the research.

II. METHODOLOGY AND SYSTEM ARCHITECTURE

In this section, we present the sensors technology, the design
of the machine learning system, the feature extraction method,
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Fig. 1: Embedded Machine Learning System

Fig. 2: RNP Photonic Sensor [11]

the heterogeneous system architecture inside the SoPC, and the
hardware architecture of the machine learning approach.

A. RNPs transducer

The sensor is manufactured as a chip with a layer of the
quartz substrate. In this layer, 8 square cells of 17mm? of nano-
pillars arrays are distributed (see Fig. 2). Each cell of nano-
pillars is considered as an RNPs transducer. Each Resonant
Nano-pillar consists of 10 pairs of Bragg Reflectors with a
central cavity of 200nm. The diameter of the pillars is close
to 200nm, and the height is approximately 2000nm.

These photonic transducers are passive devices, and it is
required to use an external light source to stimulate the trans-
ducer and acquire the light, reflected by the RNPs transducer,
with a spectrometer. This light has an interference pattern
that depends on the RI of the surrounding media. A response
from the RNPs transducer can be seen in Figure 3, which has
a Photonic Band Gap with a resonant mode in the center.
Additionally, each point of this signal corresponds to the
intensity value of a particular wavelength, being the number
of points in the range of thousand points.

B. Machine Learning System Design

As it is shown in Figure 1, our embedded system receives
the response of the RNPs transducer from the acquisition sys-
tem. The input data consists of an spectral response from the
RNPs transducers, which has 3648 points. The points are the
number of input variables the system has. From the machine
learning point of view, this is a high-dimensional problem.
Therefore, our machine learning approach is composed of two
stages: Feature Extraction and the Machine Learning Model
(see Figure 1). The Feature Extraction technique consists of a
dimensionality reduction method. Thus, the feature extraction
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Fig. 4: Development of a Machine Learning Approach for
Embedded Systems

methods reduce the input variables space (m) to a lower one
(n), being m >> n. This set of n variables is used for the
model to infer the desired property.

As introduced before, the machine learning model has to
identify the percentage of ethanol. In this regard, it is necessary
to provide labels to the machine learning approach for model
generation. The type of machine learning which uses labeled
dataset is called supervised learning [12]. In this case, the label
corresponds to the theoretical percentage value of ethanol.
High computational capabilities are necessary to create a
machine learning model, therefore, this task is done offline.
Offline tasks are executed out of the embedded system, for
instance, on a computer or a server. On the other hand, online
tasks correspond to the tasks deployed in the embedded system
for inferring the percentage of ethanol (see Figure 4). In
both, offline and online tasks, the feature extraction method
is required.

For offline tasks, the first step is to develop a labeled dataset.
This dataset comprises the measures from the RNPs transduc-
ers, called instances. Each instance is composed of the value
of the input variables and the label. The model generation
has two phases: training and testing. In this regard, 10-fold
cross-validation is proposed for training and testing. Before
the training phase, we select the machine learning models. In
the training phase, the parameters of the selected models are
calculated. Once this phase is finished, in the testing phase the

machine learning models are evaluated according to particular
performance metrics.

The percentage of ethanol of a fluid is a continuous variable,
thus, the machine learning approach which might be followed
is regression learning. Moreover, in [13] it is demonstrated
that there is a linear correlation between the RI of the
media, measured by the RNPs transducer, and the compound
detection. Therefore, we propose to explore four well-known
regression learning models: Linear Regression, Interactions
Linear, Robust Linear, and Stepwise Linear. The performance
metrics used for evaluating these models are: Root Mean
Square Error (RM SE), Mean Absolute Error (M AE) and
coefficient of determination (R?) [14], [15].

After the training and the testing, a designer should select
which model has to be deployed in the embedded system
regarding the performance metrics. Thus, we developed a
hardware accelerator which implements the feature extraction
and the selected model. This model is also called inference.
Moreover, an architecture is created for controlling this accel-
erator and for testing the accelerator behavior.

C. Feature Extraction: WSRM method

As introduced before, feature extraction methods might be
used in order to enhance the model generation based on
machine learning techniques. The objective is to reduce the
model complexity and its computational load. Moreover, the
reduction of the number of features might lead to a reduction
of the noise fed into the model.

There are multiple feature extraction approaches, however,
in this paper, we focus on the Wavelength Shift of the Resonant
Mode (WSRM) method. The WSRM method is commonly
used in the literature for RNPs signal characterization [16],
[17], [18], [19]. According to the response of the RNPs
transducers (see Figure 3), there is a minimum local point
between the two local maximum points, this minimum local
point is called the resonant gap point. In [19] a correlation
between the Refractive Index of the fluid inside the transducers
and the resonant mode displacement is presented. Hence,
the displacement of the resonant mode might depend on the
ethanol concentration.

Therefore, this domain-expert method searches a single
point from the whole signal of the response of the RNPs trans-
ducers, the resonant gap point. Hence, this method reduces the
number of input variables, the response signal (m = 3648), to
one variable, the resonant gap position (n = 1). As a result,
it gives the wavelength where this particular point is placed.

D. Heterogeneous System Architecture

For the development of the heterogeneous system archi-
tecture, we propose the utilization of an SoPC. This type
of platform adds flexibility to the system design and devel-
opment, providing control and communications capabilities.
According to the heterogeneous systems, there are multiple
platforms depending on the computational requirements. How-
ever, we decide to focus on low-cost platforms from Xilinx,
the XC7Z010 platform, to minimize the deployment cost. The
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architecture developed in the SoPC for this application consists
of an ARM Cortex-A9 processor, a WSRM-Inference IP, and
the RAM are connected by an AMBA bus (see Figure 5).

In this processor, a Linux OS is deployed to manage
the external communications of the embedded device, the
hardware accelerator control and the write operation of the
RAM. The use of Linux OS not only permits to update the
software layer during run-time but to modify the hardware
architecture of the FPGA part. Therefore, Dynamic Partial
Reconfiguration techniques might be applied to update the
model during run-time without stopping the embedded system.

From the dataflow perspective, a software program receives
a complete measure from the RNPs transducer, then, it loads
the BRAM of the FPGA and starts the IP core. The IP core
receives the start order, from the ARM, and applies the WSRM
method and the model, called WSRM-Inference IP core. Once
it finishes the operation, it saves the result, the percentage of
ethanol, in a register and sets a flag to indicate to the processor
that the operation is done.

From the hardware architecture point of view, instead of
using an external RAM, we use a Block RAM (BRAM)
integrated into the SoPC for saving the measurement from the
RNPs transducers. The objective is to gather all the resources
inside the FPGA. The flexibility permits to add other IPs,
BRAMs or the external RAM, whenever the system requires
it. The architecture was developed using the Vivado tool from
Xilinx, which permits to manage communication and RAM
parameters. The development of the device tree is made using
the Vivado SDK tool, and the SW application was directly
made on the Linux OS.

E. WRSM-Inference Accelerator

After developing the software prototype and its verification,
the next step is to create the hardware architecture of the
IP core. The tool used for developing the IP core hardware
architecture was Vivado High-Level Synthesis (Vivado HLS).
High-Level Synthesis tools permit to describe the architec-
ture by means of High-level languages, instead of hardware
description languages, leading to a reduction of development
time.

On the one hand, the WSRM method has access to the
BRAM. It fetches, sequentially, the measured values to iden-
tify the resonant gap. Once the resonant gap is found, the value
is passed to the model. The constants used by the WSRM
method and the Inference model are written in particular
registers by the processor, during the hardware programming
of the FPGA. Moreover, this approach can adapt the model

during run-time only modifying the values of the registers. As
in the SW design of the system core, the 32-floating point
is used in the IP in order to maintain the same level of
accuracy. Moreover, in HLS there are pragmas which permit
the designers to modify the architecture. In this case, we use
the Unroll pragma which tries to increase the parallelization
of the accelerator. As the WSRM is a search algorithm, the
Pipeline cannot be used due to the fact in this strategy there
are dependencies between the current value analysed and the
previous values.

III. EXPERIMENTS AND RESULTS

In this section, we present the datasets used for training and
testing the machine learning system, the parameters selected
to define the experiments and the results obtained.

A. Dataset

The machine learning techniques proposed in this paper
are based on supervised learning approaches. Therefore, it is
necessary to provide a labeled dataset for training and testing
(see Section II-B. Furthermore, this dataset is used for testing
the resulting machine learning application implemented in the
SoPC. The dataset generation consists of adding pure ethanol
to a water media from 1% to 20%, applying steps of 1%. In
each step, 200 measurements were done, thus, the dataset has
4000 instances.

The use case consists of inferring the concentration of
ethanol in the fluid, thus, we have to label each instance with
the amount of ethanol which the water media contains.

The variables of the dataset correspond to the intensity
values of the wavelengths interrogated in each measurement.
This transducer operates in the visible waveband. Due to the
sensitivity of the spectrometer, 3648 variables were obtained.
As a result, we obtained a dataset of 4000 samples, with 3648
input variables and its corresponding label.

B. System Evaluation

In this section, we train and test the machine learning
approach proposed in Section II-B. Moreover, a trade-off
might be established between different regression learning
techniques attending the performance metrics. The objective is
to provide a machine learning approach before the architecture
application.

For training and testing the machine learning techniques, the
Statistical and Machine Learning Toolbox of Matlab is used.
In this regard, the supervised regression learning techniques
selected are Linear Regression, Interactions Linear, Robust
Linear, and Stepwise Linear.

From the dataset point of view, first, we update the dataset
applying the WSRM method. Instead of having the input
variables for training and testing the model, the dataset will
provide the resonant position gap value and its label. As a
result, we reduce the number of features from 3468 variables
to 1 variable (see Section II-C).

Table I shows the values of the performance metrics for
each regression learning technique. The robust linear technique



TABLE I: Machine Learning Algorithm Evaluation.

Machine Learning techniques RMSE (%) R2 (%) MAE (%)

Linear Regression 1.1219 0.96 0.9502
Interactions Linear 1.1219 0.96 0.9502
Robust Linear 1.2445 0.95 0.9317
Stepwise Linear 1.1219 0.96 0.9502

presents the largest RMSE value, having the largest error and
indicates that, compared to the others, it is the most sensitive
to outliers. Furthermore, it has the lowest R? value, thus, the
model fits the data worse. Therefore, this regression technique
is not selected. Attending to the other techniques, the results
obtained in terms of performance metrics are equal. Thus,
we decide to select the Linear regression technique due to its
simplicity for the online inference in the SoPC. The equation
of the online inference is given by,

Inference(%) = —1.1466 * 10° + 0.7414 x rpg, (1)

where rpg is the resonant position gap of the spectrum.
Analysing the results of this method, it could be generalized
to other compounds which have a correlation between the RI
and percentage changes.

According to the heterogeneous platform, we select the
XC7Z010 device, from the Zyng-7000 Xilinx family, as the
low-cost SoPC for developing the application. We analyze the
resources utilized by the IP core using the Vivado HLS tool.
We study the parallelization of the system applying the Unroll
pragma. This pragma indicates the number of times a bunch
of code is parallelized.

Table II shows the resources utilized and the latency
obtained for a particular value of the Unroll pragma. As
this pragma increases the value, it also increases the system
parallelization and, therefore, it might decrease the latency.
However, the latency starts to increase from the Unroll value
equal to 4. In the system, there is a bottleneck related to
the search algorithm of the WSRM. The WSRM compares
consecutive values, thus, the limiting factor comprises the time
of accessing the BRAM for a wavelength intensity value.
According to this solution, the minimum latency achieved
is in Unroll pragma equals 4. From a resource perspective,
only solutions from Unroll pragma from 0 to 4 are relevant
because, for the same latency, they use fewer resources. As we
increase the number of Unroll values, it is shown that in Unroll
equals to 20 the number of DSP is reduced. As the algorithm
can not improve its performance in terms of execution time,
the increment of logic generated (FFs and LUTSs) is used to
reduce the number of DSPs. Moreover, the system clock for
the synthesis and the implementation is 100 MHz.

IV. CONCLUSION

In the Industry 4.0 domain, there is an effort for implement-
ing advanced data analysis inside the process. Particularly, in
the Smart Farming field, advanced chemical analysis during
run-time is being required for enhancing the monitoring. The
optical sensing technology, such as RNPs transducers, is able

TABLE II: WRSM-Inference Performance for XC7Z010 plat-
form for different unroll values.

Unroll DSP Usage (%) FF Usage (%) LUT Usage (%) Latency (us)

0 5 5 17 220
2 5 7 24 200
4 5 12 37 190
6 5 19 54 200
20 2 21 66 240

to provide advanced chemical analysis using machine learning
methods. To integrate this technology inside the process, it
requires to deploy this data processing inside low-cost, low-
energy and resource-aware systems, such as heterogeneous
embedded devices. This paper proposes a methodology for
embedding machine learning methods inside SoPCs, particu-
larly FPGAs. Moreover, a hardware accelerator is developed
which executes a feature extraction method and the inference
for ethanol detection application. According to the flexibility
of the platform, a trade-off is established between the latency
of the WSRM-Inference accelerator and the resources utilized.
The designers can choose a minimum latency of 190 ps, using
37% of LUTs, or minimum resource utilization, using 17% of
LUTs, with a latency of 200 s for this application.

For future work, the integration of the acquisition system
directly to the FPGA might be a system improvement. Further-
more, from the edge layer domain, it would be useful to add
a power consumption analysis as an application performance
metric. Moreover, the search algorithm of the WSRM method
might be improved to avoid current bottlenecks. Also, a
device might be created to testing this system in an industrial
environment.
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