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Abstract—In the last years, the Industry 4.0 paradigm is
gaining relevance in the agro-food industry, leading to Smart
Farming. One of the applications in the Smart Farming domain
is the advanced chemical analysis in process monitoring using
distributed, low-cost embedded systems. Optical sensing technol-
ogy is used in conjunction with machine learning techniques for
this advanced analysis. From the embedded system perspective,
it might be required to propose a method for the implementation
of machine learning techniques in heterogeneous platforms. This
paper focuses on implementing Machine Learning techniques
in a System on Programmable Chip, based on an FPGA and
ARM processors. As a use case, we mimic water pollution by
ethanol. Thus, the application might determine the percentage
of ethanol of the water during run-time. As a result, this paper
provides a methodology for implementing a machine learning
technique for ethanol prediction using an FPGA, and the study
of its parameters as resource utilization and accelerator latency
for the architecture proposed.

Index Terms—Smart Farming, Optical Sensing, Machine
Learning, Feature Extraction, SoPC.

I. INTRODUCTION

Nowadays, productivity, efficiency, and automation are the

pillars of the industry, whose improvement has strong rel-

evance in this domain [1]. Furthermore, the integration of

the Internet of Things (IoT) paradigm inside the industry

environment led to the creation of Industry 4.0. One of the

relevant objectives of Industry 4.0 is the development of

advanced data analysis for optimizing resource usage, reducing

the faults and the system downtimes [2].

The application of Industry 4.0 paradigm in the agro-food

industry does not only search for the improvement of produc-

tivity but also sustainability, and it is also known as Smart

Farming. Its purpose is to bring more sophisticated control

of processing, farm, and logistics, increasing the food quality

monitoring [3]. From the advanced data analysis perspective,

food processing requires more advanced chemical detection

for the identification of certain compounds in fluids during

run-time, for instance, identifying pollutants in water.

Currently, advanced chemical analysis, such as compound

detection, is done out of the monitoring process. Commonly,

fluid samples are analyzed in specialized laboratories. There-

fore, the system downtimes and time responses might not be

suitable for certain processes. There are approaches based

on measuring physicochemical properties during run-time,

although they cannot be used for sophisticated chemical

analysis, as compound detection in fluids [4]. For advanced

chemical analysis, optical sensing has strong relevance due to

the capabilities of spectroscopy. Nevertheless, it is done out-

side the monitoring process because of the complexity of the

sensors, acquisition and processing systems. Advances in the

optical sensing domain, such as micro-structure optical sensing

systems, reduced the size and cost of photonic transducers.

This development allows to integrate these transducers inside

the embedded systems, generating a framework for advanced

fluid monitoring at run-time.

Depending on the chemical composition, fluids might have

different Refractive Index (RI) values. Changes in the RI

might be used to determine fluid properties, for instance, the

concentration of a particular molecule inside a fluid. Resonant

Nano-Pillars (RNPs) transducers, based on nano-structures,

are capable of measuring the RI changes of the fluid where

they are dived. The signal of RNPs transducers consists of

a frequency domain response, generating a high amount of

variables to process in each measure. Hence, the generation

of a mathematical model is a sophisticated task. Due to the

complexity of the photonic signal processing, in spectroscopy

domain, there is a trend based on applying machine learning

techniques [5], [6] for compound detection. These techniques

generate a model using a dataset from the application. As a

result, machine learning models should fit better compared to

traditional models.

In the continuum cloud-to-edge in the IoT, machine learning

techniques are usually solved in the cloud layer due to its high

computational capabilities. In [7] a smart farming approach is

developed, whose machine learning and statistical techniques
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Machine Learning techniques RMSE (%) R2 (%) MAE (%)

Linear Regression 1.1219 0.96 0.9502
Interactions Linear 1.1219 0.96 0.9502
Robust Linear 1.2445 0.95 0.9317
Stepwise Linear 1.1219 0.96 0.9502

presents the largest RMSE value, having the largest error and

indicates that, compared to the others, it is the most sensitive

to outliers. Furthermore, it has the lowest R2 value, thus, the

model fits the data worse. Therefore, this regression technique

is not selected. Attending to the other techniques, the results

obtained in terms of performance metrics are equal. Thus,

we decide to select the Linear regression technique due to its

simplicity for the online inference in the SoPC. The equation

of the online inference is given by,

Inference(%) = −1.1466 ∗ 103 + 0.7414 ∗ rpg, (1)

where rpg is the resonant position gap of the spectrum.

Analysing the results of this method, it could be generalized

to other compounds which have a correlation between the RI

and percentage changes.

According to the heterogeneous platform, we select the

XC7Z010 device, from the Zynq-7000 Xilinx family, as the

low-cost SoPC for developing the application. We analyze the

resources utilized by the IP core using the Vivado HLS tool.

We study the parallelization of the system applying the Unroll

pragma. This pragma indicates the number of times a bunch

of code is parallelized.

Table II shows the resources utilized and the latency

obtained for a particular value of the Unroll pragma. As

this pragma increases the value, it also increases the system

parallelization and, therefore, it might decrease the latency.

However, the latency starts to increase from the Unroll value

equal to 4. In the system, there is a bottleneck related to

the search algorithm of the WSRM. The WSRM compares

consecutive values, thus, the limiting factor comprises the time

of accessing the BRAM for a wavelength intensity value.

According to this solution, the minimum latency achieved

is in Unroll pragma equals 4. From a resource perspective,

only solutions from Unroll pragma from 0 to 4 are relevant

because, for the same latency, they use fewer resources. As we

increase the number of Unroll values, it is shown that in Unroll

equals to 20 the number of DSP is reduced. As the algorithm

can not improve its performance in terms of execution time,

the increment of logic generated (FFs and LUTs) is used to

reduce the number of DSPs. Moreover, the system clock for

the synthesis and the implementation is 100 MHz.

IV. CONCLUSION

In the Industry 4.0 domain, there is an effort for implement-

ing advanced data analysis inside the process. Particularly, in

the Smart Farming field, advanced chemical analysis during

run-time is being required for enhancing the monitoring. The

optical sensing technology, such as RNPs transducers, is able

TABLE II: WRSM-Inference Performance for XC7Z010 plat-

form for different unroll values.

Unroll DSP Usage (%) FF Usage (%) LUT Usage (%) Latency (µs)

0 5 5 17 220
2 5 7 24 200
4 5 12 37 190
6 5 19 54 200

20 2 21 66 240

to provide advanced chemical analysis using machine learning

methods. To integrate this technology inside the process, it

requires to deploy this data processing inside low-cost, low-

energy and resource-aware systems, such as heterogeneous

embedded devices. This paper proposes a methodology for

embedding machine learning methods inside SoPCs, particu-

larly FPGAs. Moreover, a hardware accelerator is developed

which executes a feature extraction method and the inference

for ethanol detection application. According to the flexibility

of the platform, a trade-off is established between the latency

of the WSRM-Inference accelerator and the resources utilized.

The designers can choose a minimum latency of 190 µs, using

37% of LUTs, or minimum resource utilization, using 17% of

LUTs, with a latency of 200 µs for this application.

For future work, the integration of the acquisition system

directly to the FPGA might be a system improvement. Further-

more, from the edge layer domain, it would be useful to add

a power consumption analysis as an application performance

metric. Moreover, the search algorithm of the WSRM method

might be improved to avoid current bottlenecks. Also, a

device might be created to testing this system in an industrial

environment.
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