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Abstract—In the context of acoustic monitoring, the location
of a sound source can be passively estimated by exploiting time-
of-arrival and time-difference-of-arrival measurements. To
evaluate the fundamental hardness of a location estimator, the
Cramer-Rao bound (CRB) has been used by many researchers.
The CRB is computed by inverting the Fisher Information
Matrix (FIM), which measures the amount of information
carried by given distance measurements. The measurements
are commonly expressed as actual distances plus white noise.
However, the measurements do include extra noise types caused
by time synchronization, acoustic sensing latency, and signal-to-
noise ratio. Such noise can significantly affect the performance
and depend highly on the sensing platforms such as Android
smartphones. In this paper, we first remodel the acoustic-
based distance measurements considering such additive errors.
Then, we derive a new FIM with the new statistical ranging
error models. As a result, we obtain new CRBs for both non-
cooperative and cooperative localization schemes that provide
better insight into the causality of the uncertainties. Theoretical
analysis also proves that the proposed CRBs for localization
become the old CRBs when the additional errors are ignored,
which gives a robust check for the new CRBs. Thus, the new
CRBs can serve as a benchmark for localization estimators
with both new and old measurement models. The new CRBs
also indicate that there is room to improve current localization
schemes; however, it is a daunting challenge.

Keywords-sound localization; Cramer-Rao bound; time of
arrivals; time difference of arrivals; smartphone diversity;
noise diversity

I. INTRODUCTION

That smartphones with onboard sensors are present every-
where and wirelessly connected promises a low-cost sensing
system for sound source localization applications. However,
sound source localization with current smartphones is a
daunting challenge, especially in indoor environments and
areas blocked by buildings and trees. Common approaches
use either infrastructure-based anchors [1] or less non-
deterministic smartphones such as iPhones [2], [3]. Nev-
ertheless, more than 80% smartphone subscriptions are An-
droid devices that have considerable acoustic uncertainties of
the time synchronization, processing latency, and the signal-
to-noise ratio (SNR). For example, our experiments with 16
Nexus 7 tablets revealed the standard deviations of audio
latency approximate to 7 ms and of time synchronization
about 8 ms. That means the error of ranging can add up to
(7 + 8) ms×0.34029 m/ms ≈ 5 m, where 0.34029 m/ms is

the speed of sound. Meanwhile, the sum of such latencies
is approximate 1 𝑚𝑠 for iPhones and a few microseconds
for dedicated sensor devices in wireless sensor networks [4].
Our experiments also showed that the SNR added a noise
approximate 1 m to the estimated distances. This issue deters
location-based acoustic sensing applications with commer-
cial smartphones from being deployed on a large scale.
The theoretical bound for acoustic localization that will be
presented in this paper can serve as a tool to aid designing
a localization system.

In general, either the Bayesian Bound (BB) [5], the Geo-
metrical Dilution of Precision (GDOP) [6], or the Cramer-
Rao bound (CRB) [7] can be used as the error bound for
localization estimators. As today life is dominated by smart-
phones integrated navigation systems, there is frequently an
abundance of them in public events that can be used as
anchors. Thus, the acoustic source localization problem is
close to unbiased. On the other hand, the CRB is the most
suitable tool for unbiased estimators, especially when the
tolerable noise and geometrical setup are considered like
pointed out in [5] and [6], which respectively compare the
BB and the GDOP to the CRB.

There exist articles studying the CRB for different noise
models including the distance-independent variance model
[8], [9] and the distance-dependent variance model [10].
However, through the experiments with Android devices, we
noticed that practical noises consist of three main terms: the
variances of time-of-arrival (TOA) and time-difference-of-
arrival (TDOA) increasing with distance from the source
emitter due to the variance of the SNR; the variance of the
acoustic latency; and the variance of the time synchroniza-
tion. Since these additive noises are very small in dedicated
acoustic sensing platforms in the conventional systems, they
have not been simultaneously taken into account when
deriving the CRB for localization in previous work.

Therefore, in this paper, we derive the CRBs for local-
ization with regard to such additive errors, which can be
closely modeled as a mix of Gaussian distribution, namely
the multivariate Gaussian mixture model. The derivation
leads to new CRBs that provide better insight into the effects
of the additive noises. In particular, we first introduce an
application we built to measure and analyze the nuisance
(unknown) parameters of the additive errors: the variances
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of clock synchronization, acoustical sensing latency, and
signal-to-noise ratio. Next, we propose new statistical mod-
els for the TOA and TDOA. Considering the realistically
proposed errors in ranging, we derive the new CRBs for
both TOA and TDOA. The numerical examples based on the
experimental parameters show that the localization accuracy
for each position heavily depends on the geometric of all
anchors in the network rather than the acoustic latency.
In addition, the new CRBs confirm that the localization
performance can be improved by increasing the number of
smartphones.

The remainder of this paper is organized as follows. After
describing the related work in Section II, we define the
problem in Section III. Section IV proposes new acoustic-
based distance models for the TOA and TDOA. Section V
describes the localization models with the assistance of
anchors with regard to non-cooperative and cooperative lo-
calization. The derivation of CRB for anchored localization
is presented in Section VI step by step. Finally, we conclude
this work with Section VII.

II. RELATED WORK

In fact, the Cramér-Rao bound has been widely studied
as the aid of design to estimate the error bounds for
localization estimators [7]–[17]. In [8], [9], the expression
of the CRB is derived for cooperative localization with the
TOA measurements. The CRB expressed by [8], [9] will
be referred as the old CRB in our work since they assume
that the TOA measurement uncertainties are independent of
the distance between emitters and receivers. While this as-
sumption is valid in traditional WSNs with numerous sensors
and anchors, Dulman et. al. showed that the old CRB fails to
capture the geometric characteristics of certain anchors setup
in [14], [16] through the simulation examples. Therefore,
they proposed to optimize the anchor placements in order
to lessen impacts of geometric setup. This proposal indeed
overlaps the well-known problem in localization, the anchor
placement problems [18]–[20]. Conversely, Toa Jia and
Michael Bueher grasped the geometry effects by deriving
the CRB for TOA based on the distance-dependent variance
model for range estimation noise [10]. The derivation leads
to the better CRB, which gives a lower bound and provides
better insight into the impacts of the anchor placements on
localization accuracy. In [11], the CRBs for non-line-of-
sign (NLOS) environments are proposed to overwhelm the
inaccuracy of the old CRBs when the geometric setup is not
ideal.

Besides the CRB, BB and GDOP also serve as the
benchmarks of localization estimators. [5] studies that the
BB equals the CRB when the observed error is Gaussian.
The GDOP is derived from the CRB by simplifying the
assumption of the ranging error models, in which variances
of all distance estimates are equal [6], [8]. This assumption
is not perfectly valid in localization with human-oriented

devices such as smartphones, since the uncertainties are
diverse. On the other hand, it is common to see plenty
of people carrying smartphones at public places that can
play as anchors for localization, especially during events
and festivals. This makes the CRB still valid for local-
ization estimators if the tolerable noise and geometrical
setup are considered. Using the CRB also allows using the
full distance information to estimate better the error bound
for unbiased estimators. Therefore, we address the CRB
approach in this paper.

III. PROBLEM STATEMENT

Without loss of generality, we consider a network com-
prising a set 𝑆 of 𝑛 acoustic emitters with unknown loca-
tion information, namely source nodes, and a set 𝐴 of 𝑚
acoustic sensor devices such as smartphones with known
location information, namely anchor nodes. We assume that
the size of the nodes is small enough to be treated as a
point on a 2D localization map, which has the coordinate
𝑥 = (𝑥, 𝑦)𝑇 ∈ 𝑅2. Each source node generates a limited-
power acoustic signal that can be used to estimate the
distance to the receivers. Let 𝑁𝑘 denote the set of nodes
in the range of the 𝑘𝑡ℎ node. Note that a source node can
be either natural or synthesized. 𝑁𝑘 might consist of not
only anchor nodes but also source nodes that can receive
the acoustic signal from the 𝑘𝑡ℎ node.

Given the ranging measurements from the 𝑘𝑡ℎ node to its
neighboring nodes 𝑁𝑘, the problem is to find the error bound
for the estimated locations of the 𝑘𝑡ℎ node with respect to
the uncertainties included in the measurements.

Since most modern smartphones possess some accurate
positioning systems, we will focus on the lower error
bounds for anchored localization in this work. For anchor-
free localization, the standard CRB analysis fails due to
the Fisher Information Matrix (FIM) is singular [21], [22].
Nevertheless, [9] interprets geometry on a modified CRB
and derives some properties of it. Therefore, the lower bound
error for anchor-free localization is straightforward.

IV. STATISTICAL MODELS

Most previous work assume that the variance is constant
for all nodes and independent from the distance [8], [9].
This is not absolutely correct since the noise of an acoustic
signal is distance-related, proved by [23], [24], the bound
for distance estimation is a function inversely proportional
to SNR. [10] corrects this by modelling the variance as
𝐾𝑒𝑑

𝛽
𝑘𝑖 where 𝐾𝑒 is a proportionality constant to capture

the combined physical layer effect on the distance estimate
and 𝛽 is the path loss exponent. This model is for simplicity
and can be more realistic. However, it does not affect our
derivations since the variance of noise by this model is also
inversely proportional to the SNR.

The models we proposed in this paper specifically target
acoustic-based range measurements that include the afore-
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Figure 1. TOA model with circles to estimate unknown location of sound
source 𝑠 given the location of receivers 𝑎.

mentioned major errors. These errors lead to new statistical
models of the TOA and TDOA measurements.

A. Time of Arrival (TOA)

If the time of signal emission is known, the distance can
be inferred directly by TOA. Without loss of generality,
we consider the TOA distance from an arbitrary emitter
𝑘, 𝑘 ∈ 𝑆, to an arbitrary neighbour receiver 𝑖, 𝑖 ∈ 𝑁𝑘.
The true distance from the 𝑘𝑡ℎ node to the 𝑖𝑡ℎ node, of
which actual 2D positions are respectively (𝑥𝑘, 𝑦𝑘)

𝑇 and
(𝑥𝑖, 𝑦𝑖)

𝑇 , is denoted by 𝑑𝑘𝑖. The source emitter location
can be estimated by the intersections of circles illustrated in
Fig. 1, of which radiuses are the distances {𝑑𝑘𝑖, 𝑖 ∈ 𝑁𝑘}.

Definition 1: (TOA) Let 𝛿𝑘𝑖 denote the TOA distance
measurement and 𝜂𝑘𝑖 denote the corresponding noise, then
distance model based on TOA is given by

Δ = {𝛿𝑘𝑖 = 𝑑𝑘𝑖 + 𝜂𝑘𝑖∣𝑘 ∈ 𝑆, 𝑖 ∈ 𝑁𝑘}, (1)

where
𝑑𝑘𝑖 =

√
(𝑥𝑖 − 𝑥𝑘)2 + (𝑦𝑖 − 𝑦𝑘)2 (2)

is the actual distance.
Our experimental results show that the noise is close

to a Gaussian random variable with zero mean and some
variance, 𝜂𝑘𝑖 ∼ 𝑁(0, 𝜎2

𝑘𝑖). As being pointed out, the noise
is mainly contains the variances of the decay of signal
propagation 𝐾𝑒𝑑

𝛽
𝑘𝑖, the acoustic sensing latency 𝜉2𝑖 and the

time synchronisation errors 𝜁2.
Lemma 1: (TOA Noise Model) Let 𝛿𝑘𝑖 be influenced

by noises that have Gaussian distribution: 𝑁(0,𝐾𝑒𝑑
𝛽
𝑘𝑖),

𝑁(0, 𝜉2𝑖 ) and 𝑁(0, 𝜁2). Then the distribution of 𝜂𝑘𝑖 is also
Gaussian:

𝜂𝑘𝑖 ∼ 𝑁(0, 𝜎2
𝑘𝑖), (3)

where
𝜎2
𝑘𝑖 = 𝐾𝑒𝑑

𝛽
𝑘𝑖 + 𝜉2𝑖 + 𝜁2. (4)

X Position (m)
0 5 10 15 20

Y
 P

os
iti

on
 (

m
)

0

2

4

6

8

10

12

14

16

18

20

a 1

a 2

a 3

a 4

s 

Figure 2. TDOA model with hyperbolic lines to estimate the location of
the source 𝑠 given the location of receivers 𝑎.

Proof: Since the partial noise distributions are assumed
to be normally distributed independent variables:

𝑋1 ∼ 𝑁(0,𝐾𝑒𝑑
𝛽
𝑘𝑖)

𝑋2 ∼ 𝑁(0, 𝜉2𝑖 )
𝑋3 ∼ 𝑁(0, 𝜁2),

then their sum 𝜂𝑘𝑖 = 𝑋1 + 𝑋2 + 𝑋3 is also normally
distributed, 𝜂𝑘𝑖 ∼ 𝑁(0 + 0 + 0,𝐾𝑒𝑑

𝛽
𝑘𝑖 + 𝜉2𝑖 + 𝜁2).

B. Time Different of Arrival (TDOA)

If the emission time of the 𝑘𝑡ℎ source emitter is unavail-
able, then the TDOA technique is frequently used. The actual
distance from the 𝑘𝑡ℎ source node to the 𝑖𝑡ℎ receiver cannot
be computed directly like TOA. It has to be paired with the
distance from the same 𝑘𝑡ℎ emitter to another 𝑗𝑡ℎ receiver
in the neighborhood, 𝑗 ∕= 𝑖 and 𝑖, 𝑗 ∈ 𝑁𝑘. In fact, the actual
TDOA distance is 𝑑𝑘𝑖𝑗 = 𝑑𝑘𝑗 − 𝑑𝑘𝑖.

Note that each 𝑑𝑘𝑖𝑗 corresponds to a position (𝑥, 𝑦)𝑇

along a hyperbola that goes through the 𝑘𝑡ℎ source node
between the 𝑖𝑡ℎ and 𝑗𝑡ℎ nodes. Finding the intersections of
such hyperbolic lines will give the estimated position of the
𝑘𝑡ℎ source node, see Fig. 2.

Definition 2: (TDOA) Let 𝛿𝑘𝑖𝑗 denote the TDOA distance
measurement and 𝜂𝑘𝑖𝑗 denote the corresponding noise, then
the distance model based on TDOA is

Δ = {𝛿𝑘𝑖𝑗 = 𝑑𝑘𝑖𝑗 + 𝜂𝑘𝑖𝑗 ∣ 𝑘 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝑁𝑘, 𝑗 > 𝑖}, (5)

where
𝑑𝑘𝑖𝑗 = 𝑑𝑘𝑗 − 𝑑𝑘𝑖. (6)

Lemma 2: (TDOA Noise Model) Let 𝜂𝑘𝑖 ∼ 𝒩 (0, 𝜎2
𝑘𝑖)

and 𝜂𝑘𝑗 ∼ 𝒩 (0, 𝜎2
𝑘𝑗). Then the distribution of 𝜂𝑘𝑖𝑗 is also

Gaussian:
𝜂𝑘𝑖𝑗 ∼ 𝒩 (0, 𝜎2

𝑘𝑖𝑗), (7)
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where

𝜎2
𝑘𝑖𝑗 = 𝜎2

𝑘𝑖 + 𝜎2
𝑘𝑗 = 𝐾𝑒(𝑑

𝛽
𝑘𝑖 + 𝑑𝛽𝑘𝑗) + 𝜉2𝑖 + 𝜉2𝑗 + 2𝜁2. (8)

Proof: Since the variance model of the TOA range
measurements are normally distributed random variables,

𝑋1 ∼ 𝑁(0, 𝜎2
𝑘𝑖)

𝑋2 ∼ 𝑁(0, 𝜎2
𝑘𝑗),

then their subtraction 𝜂𝑘𝑖𝑗 = 𝑋2 − 𝑋1 is also normally
distributed, 𝜂𝑘𝑖𝑗 ∼ 𝑁(0− 0, 𝜎2

𝑘𝑖 + 𝜎2
𝑘𝑗).

We remark that for the TDOA model, the measurement set
of each source node consists of ∣𝑁𝑘∣(∣𝑁𝑘∣ − 1)/2 possible
TDOA measurements [25], illustrated as the number of
hyperbolic lines in Fig. 2. Meanwhile, the measurement set
of each source node with TOA model contains only ∣𝑁𝑘∣
distinguished TOA measurements, illustrated as the number
of circles in Fig. 1.

V. ANCHORED LOCALIZATION MODELS

Within anchored localization, the localization problem is
categorised into non-cooperative localization and coopera-
tive localization. Non-cooperative localization estimates the
unknown locations, given location information of anchor
nodes only. Conversely, cooperative localization uses not
only location information given by anchor nodes, but also
estimated location information of other source nodes. This
categorization leads to different models for non-cooperative
and cooperative localizations.

In non-cooperative localization, all the source nodes act
as emitters only. In other words, the locations of source
nodes can only be estimated using location information of
anchor nodes. The common application of this model is
localizing natural acoustic sources, for instance, where a car
is sounding the horn or a glass is broken.

Definition 3: (Non-cooperative Localization) If 𝑁𝑘 ⊆ 𝐴,
∀𝑘 ∈ 𝑆 and ∣𝐴∣ ⩾ 3 (in 2D space), then it is possible
to estimate the absolute coordinates of each source node
𝑋𝑆 = {(𝑥𝑘, 𝑦𝑘)𝑇 ∣ 𝑘 ∈ 𝑆} given observations Δ and known
location information of anchor nodes in 𝑁𝑘.

On the other hand, if the source nodes can simultaneously
transmit and receive acoustic signals, they can provide their
location information to their neighbors to obtain better
estimates. In other words, the location of a sound node can
be estimated by not only the known locations of anchors
but also the estimated locations of other sound nodes. This
technique is called cooperative localization. A common
application of cooperative localization is localizing devices
that can emit synthesized sounds.

Definition 4: (Cooperative Localization) If 𝑁𝑘 ⊈ 𝐴,
∀𝑘 ∈ 𝑆 and ∣𝐴∣ ⩾ 3 (in 2D space), it is possible
to estimate the absolute coordinates of each source node
𝑋𝑆 = {(𝑥𝑘, 𝑦𝑘)𝑇 ∣ 𝑘 ∈ 𝑆}, given the observations Δ, the
known location of anchor nodes, and estimated location of
source nodes in 𝑁𝑘.

VI. CRB FOR ANCHORED LOCALIZATION

The FIM has been derived to compute the CRB by [8]–
[10]; however, we derive the FIM again in this work since
the uncertainty models have been modified. Let 𝜃 denote the
unknown parameters that need to be estimated, and 𝜃 ∈ Θ,
where Θ is the parameter space. We have

Θ = {𝜃𝑘, 𝑘 ∈ 𝑆}. (9)

In our localization problem, 𝜃𝑘 is the estimated coordi-
nates of the 𝑘𝑡ℎ node, 𝜃𝑘 = (𝑥̂𝑘, 𝑦𝑘). Let the probability
function of 𝛿, which is also the likelihood function of Θ,
be the function 𝑓(𝛿∣𝜃). If log 𝑓(𝛿∣Θ) is twice differentiable
with respect to Θ, the FIM is computed by

𝐽 = −𝐸
[
∂2 log 𝑓(𝛿∣Θ)

∂𝜃2𝑘

∣∣∣Θ] (10)

Suppose that the distance measurements are normally dis-
tributed around the actual distance, we derive the FIM for
the TOA and TDOA.

A. FIM for TOA

The conditional probability density function (pdf) of 𝛿
given Θ:

𝑓(𝛿∣Θ) =
∏
𝑘∈𝑆

𝑓(𝛿∣𝜃𝑘) =
∏
𝑘∈𝑆
𝑖∈𝑁𝑘

1√
2𝜋𝜎𝑘𝑖

𝑒
− (𝛿−𝑑𝑘𝑖)

2

2𝜎2
𝑘𝑖 (11)

where 𝑑𝑘𝑖 and 𝜎𝑘𝑖 are given by (2) and (4) respectively.
To derive the FIM, we define 𝐿(𝛿∣𝜃𝑘) = log 𝑓(𝛿∣𝜃𝑘) as the
log-likelihood function, and

𝐿(𝛿∣𝜃𝑘) = − log
√
2𝜋

− 1

2
log(𝐾𝑒𝑑

𝛽
𝑘𝑖 + 𝜉2𝑖 + 𝜁2)

− (𝛿 − 𝑑𝑘𝑖)
2

2(𝐾𝑒𝑑
𝛽
𝑘𝑖 + 𝜉2𝑖 + 𝜁2)

.

(12)

Partially derivating 𝐿(𝛿∣𝜃𝑘) twice, we obtain the FIM
elements for the non-cooperative anchored localization and
cooperative localization given the TOA measurements. For
simplification, we express the FIM as a function of angles
between nodes. For example, the angles between the 𝑘𝑡ℎ

node and the 𝑖 node is defined as:

cos𝛼𝑘𝑖 =
𝑥𝑖 − 𝑥𝑘
𝑑𝑘𝑖

,

sin𝛼𝑘𝑖 =
𝑦𝑖 − 𝑦𝑘
𝑑𝑘𝑖

.
(13)

Theorem 1: (FIM for Non-cooperative TOA) Every arbi-
trary 𝑘𝑡ℎ source node has its own FIM denoted by 𝐽2×2, of
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Figure 3. New CRB for TOA non-cooperative localization with four
different kinds of anchors. Color bar on the right indicates error bound
in meters.

which elements are

𝐽1,1 =
∑

𝑖∈𝑁𝑘

∩
𝐴

𝜔𝑘𝑖 cos
2 𝛼𝑘𝑖

𝜎2
𝑘𝑖

,

𝐽2,2 =
∑

𝑖∈𝑁𝑘

∩
𝐴

𝜔𝑘𝑖 sin
2 𝛼𝑘𝑖

𝜎2
𝑘𝑖

,

𝐽1,2 = 𝐽2,1 =
∑

𝑖∈𝑁𝑘

∩
𝐴

𝜔𝑘𝑖 cos𝛼𝑘𝑖 sin𝛼𝑘𝑖

𝜎2
𝑘𝑖

,

(14)

where

𝜔𝑘𝑖 = 1 +
𝛽2𝐾2

𝑒𝑑
2𝛽−2
𝑘𝑖

2𝜎2
𝑘𝑖

(15)

is referred to as the scaling weight, which is always equal
to 1 in the old CRBs [8], [9].

Proof: From (12) we define the following two terms

𝑈 = −1

2
log(𝐾𝑒𝑑

𝛽
𝑘𝑖 + 𝜉2𝑖 + 𝜁2), (16)

𝑉 = − (𝛿 − 𝑑𝑘𝑖)
2

2(𝐾𝑒𝑑
𝛽
𝑘𝑖 + 𝜉2𝑖 + 𝜁2)

. (17)

Therefore, we have

𝐸

[
∂2𝐿(𝛿∣𝜃𝑘)

∂𝑥2𝑘

]
= 𝐸

[
∂2𝑈

∂𝑥2𝑘

]
+ 𝐸

[
∂2𝑉

∂𝑥2𝑘

]
.

Through steps of partial derivatives, we obtain

𝐸

[
∂2𝐿(𝛿∣𝜃𝑘)

∂𝑥2𝑘

]
= −cos2 𝛼𝑘𝑖

𝜎2
𝑘𝑖

(
1 +

𝛽2𝐾2
𝑒𝑑

2𝛽−2
𝑘𝑖

2𝜎2
𝑘𝑖

)
.

Analogously, we have other entries of J.
By definition, the CRB for the localization error of the

𝑘𝑡ℎ node can be described by the sum of the trace of the
inverse FIM matrix denoted by 𝐽−1,

𝐸[(𝑥̂𝑘 − 𝑥𝑘)
2 + (𝑦𝑘 − 𝑦𝑘)

2] ⩾ 𝐽−1
1,1 + 𝐽−1

2,2 . (18)
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Figure 4. Old CRB vs. new CRB for TOA non-cooperative localization
with the average standard deviation of noises is 5.64 meters.

In order to present the numerical results of our derived
CRB, we consider an area of 20 m × 20 m with four anchors
asymmetrically placed at coordinates 𝑥𝑎1 = (10, 18)𝑇 ,
𝑥𝑎2 = (3, 6)𝑇 , 𝑥𝑎3 = (10, 2)𝑇 and 𝑥𝑎4 = (17, 6)𝑇 , (see
Fig. 3). These anchors represent for four different brand
smartphones that cause different ranging errors. We set
𝜉1 ∼ 𝑁(3.5, 0.1), 𝜉2 ∼ 𝑁(2.2, 0.1), 𝜉3 ∼ 𝑁(13, 0.1), and
𝜉4 ∼ 𝑁(1.8, 0.1) that are close to our measurements of
Motorola G, LG G2, Nexus 7, and Samsung Galaxy Note
II, respectively.

For simplicity, we assume that 𝐾𝑒 and 𝛽 are constant,
particularly 𝐾𝑒 = 0.004 m−1 and 𝛽 = 3. Note that we put
more value on 𝐾𝑒 and 𝛽 to emphasise the dependence on
distance. Since the average distance between two nodes in
the area is 8 𝑚, the standard deviation of noise due to signal
propagation is approximate

√
0.004 𝑚−1 × 83 𝑚3 ≈ 1.4 m,

which somewhat exaggerates our real measurement (1 m).
The aim is to have a better visualization of the discrepancy
between the old and new CRBs. Since localization perfor-
mance with the same anchor placement and settings varies
with the true position of sounds on the map, we would like to
investigate the bound of sound nodes uniformly distributed
on the area. To do that, we place 441 source nodes that need
to be localized on grids of 1 m × 1 m. In order to make
the measurements fully pairwise, we assume that a sound
emitted by any source node placed within the area can be
received by the other nodes. Remark that this network setup
is applied to all numerical examples in this section for a fair
comparison. Each experimental result described hereafter is
the average of 20 trials. Moreover, for a fair comparison,
we set a similar constant standard deviation for the standard
CRB (5.64 𝑚), which is the average of all above pairwise
standard deviations.

Fig. 3 shows the new CRB derived with our proposed
TOA model for non-cooperative localization. The CRB
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Figure 5. New CRB for TOA cooperative localization with four different
kinds of anchors and source nodes. Color bar on the right indicates error
bound in meters.

values vary from about 3.5 meters at the centre to about
7.5 meters at the corners. We noticed that the bound values
are high even for the locations near to 𝑎2 and 𝑎4, devices
with low acoustic latency. Meanwhile, the estimation is quite
good for locations near to 𝑎3 that has very high acoustic
latency. This means the error of estimation depends more on
the geometric configuration of anchors more than acoustic
latency. This is also our intuitive guess. The presence of
abundant devices would compensate the acoustic latency
since it provides more observations to obtain better estimated
values of distribution parameters.

The observation in Fig. 4 shows that both CRBs have
a similar shape. However, the new CRB depends more on
geometric setup than the old one. The reason is that the
old CRB does not fully take geometry into account. That
creates similar CRB values for all source nodes. Conversely,
the new CRB successfully reflects the geometric effects on
localization. The comparison also shows that the new error
bound is lower than the old one. This explains why the old
bound is limited in integrated geometric impacts, and could
be broken by a good location estimator.

Theorem 2: (FIM for Cooperative TOA) All source nodes
in S have a shared FIM of which dimension is 2𝑛 × 2𝑛,
denoted by 𝐽2𝑛×2𝑛. Note that J can be written as 𝑛2 block
matrices, of which dimension is 2× 2.

The elements of diagonal blocks are given by

𝐽2𝑘−1,2𝑘−1 =
∑
𝑖∈𝑁𝑘

𝜔𝑘𝑖 cos
2 𝛼𝑘𝑖

𝜎2
𝑘𝑖

,

𝐽2𝑘,2𝑘 =
∑
𝑖∈𝑁𝑘

𝜔𝑘𝑖 sin
2 𝛼𝑘𝑖

𝜎2
𝑘𝑖

,

𝐽2𝑘−1,2𝑘 = 𝐽2𝑘,2𝑘−1 =
∑
𝑖∈𝑁𝑘

𝜔𝑘𝑖 cos𝛼𝑘𝑖 sin𝛼𝑘𝑖

𝜎2
𝑘𝑖

.

(19)
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Figure 6. Old CRB vs. new CRB for TOA cooperative localization with
the average standard deviation of noises is 5.64 meters.

The elements of non-diagonal blocks, 𝑖 ∕= 𝑘, if 𝑖 ∈
𝑁𝑘

∩
𝑆:

𝐽2𝑘−1,2𝑖−1 = 𝐽2𝑖−1,2𝑘−1 = −𝜔𝑘𝑖 cos
2 𝛼𝑘𝑖

𝜎2
𝑘𝑖

,

𝐽2𝑘,2𝑖 = 𝐽2𝑖,2𝑘 = −𝜔𝑘𝑖 sin
2 𝛼𝑘𝑖

𝜎2
𝑘𝑖

,

𝐽2𝑘−1,2𝑖 = 𝐽2𝑖,2𝑘−1 = 𝐽2𝑘,2𝑖−1 = 𝐽2𝑖−1,2𝑘

= −𝜔𝑘𝑖 cos𝛼𝑘𝑖 sin𝛼𝑘𝑖

𝜎2
𝑘𝑖

.

(20)

Proof: The elements of the diagonal blocks, 𝑘 = 𝑖, are
derived very similarly the non-cooperative TOA case with
regard to all neighbouring nodes, which can be either other
source nodes or anchor nodes. Thus the details are omitted
for brevity.

The CRB for cooperative localization error of the 𝑘𝑡ℎ

node can be described by the sum of the trace of the 𝑘𝑡ℎ

block in the inverse matrix of 𝐽

𝐸[(𝑥̂𝑘 − 𝑥𝑘)
2 + (𝑦𝑘 − 𝑦𝑘)

2] ⩾ 𝐽−1
2𝑘−1,2𝑘−1 + 𝐽−1

2𝑘,2𝑘. (21)

Fig. 5 and 6 show the new CRB and its comparison for
cooperative localization using TOA measurements, respec-
tively. Since cooperative localization provides many more
observations of the parameters to be estimated, it is possible
to achieve much lower error bounds than non-cooperative
localization. The error bound has smallest values at positions
that are covered by more anchors. That means the accuracy
is more affected by the anchor placement than the acoustic
latency. The new CRB is also lower than the old one. This
observation is consistent with Theorem 2. Consider a similar
level of noise for both CRBs, the new CRB is always lower
than the old one when 𝛽 ≥ 1. Furthermore, it is remarkable
that the new CRB can show the impacts of the uncertainties
even in a cooperative localization manner. In Fig. 6, the
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impacts of the uncertainties are represented in the shape of
a canal. We observe that once the anchor density increases,
the effect tends to fade away and becomes similar to the old
CRB [8], [9] with 𝜔𝑘𝑖 = 1, but still much lower. This is
expected.

B. FIM for TDOA

Since the TDOA model is different from the TOA model,
the conditional probability density function (pdf) needs to
be rewritten so that the FIM can be derived appropriately,
we have

𝑓(𝛿∣Θ) =
∏
𝑘∈𝑆

𝑓(𝛿∣𝜃𝑘) =
∏
𝑘∈𝑆

𝑖,𝑗∈𝑁𝑘
𝑗>𝑖

1√
2𝜋𝜎𝑘𝑖𝑗

𝑒
− (𝛿−𝑑𝑘𝑖𝑗)

2

2𝜎2
𝑘𝑖𝑗 (22)

where 𝑑𝑘𝑖𝑗 and 𝜎𝑘𝑖𝑗 are given by Equation 6 and 8, respec-
tively. To derive the FIM, we define 𝐿(𝛿∣𝜃𝑘) = log 𝑓(𝛿∣𝜃𝑘)
as the log-likelihood function for the TDOA measurements

𝐿(𝛿∣𝜃𝑘) = − log
√
2𝜋

− 1

2
log(𝐾𝑒𝑑

𝛽
𝑘𝑖 +𝐾𝑒𝑑

𝛽
𝑘𝑗 + 𝜉2𝑖 + 𝜉2𝑗 + 2𝜁2)

− (𝛿 − 𝑑𝑘𝑖𝑗)
2

2(𝐾𝑒𝑑
𝛽
𝑘𝑖 +𝐾𝑒𝑑

𝛽
𝑘𝑗 + 𝜉2𝑖 + 𝜉2𝑗 + 2𝜁2)

(23)
Derivating (23), we obtain the FIM elements for non-

cooperative and cooperative localization with TDOA mea-
surements. For brevity, we define the TDOA angles

cos𝛼𝑘𝑖𝑗 = cos𝛼𝑘𝑖 − cos𝛼𝑘𝑗 ,

sin𝛼𝑘𝑖𝑗 = sin𝛼𝑘𝑖 − sin𝛼𝑘𝑗 .
(24)

Theorem 3: (FIM for Non-cooperative TDOA) Every ar-
bitrary 𝑘𝑡ℎ source node has its own FIM is 𝐽2×2, of which
elements are

𝐽1,1 =
∑

𝑖∈𝑁𝑘

∩
𝐴

∑
𝑗∈𝑁𝑘

∩
𝐴

𝑗>𝑖

(
cos𝛼2

𝑘𝑖𝑗

𝜎2
𝑘𝑖𝑗

+
𝛽2𝐾2

𝑒 (cos𝛼𝑘𝑖𝑑
𝛽−1
𝑘𝑖 + cos𝛼𝑘𝑗𝑑

𝛽−1
𝑘𝑗 )2

2𝜎4
𝑘𝑖𝑗

)
,

(25)

𝐽2,2 =
∑

𝑖∈𝑁𝑘

∩
𝐴

∑
𝑗∈𝑁𝑘

∩
𝐴

𝑗>𝑖

(
sin𝛼2

𝑘𝑖𝑗

𝜎2
𝑘𝑖𝑗

+
𝛽2𝐾2

𝑒 (sin𝛼𝑘𝑖𝑑
𝛽−1
𝑘𝑖 + sin𝛼𝑘𝑗𝑑

𝛽−1
𝑘𝑗 )2

2𝜎4
𝑘𝑖𝑗

)
,

(26)

𝐽1,2 = 𝐽2,1

=
∑

𝑖∈𝑁𝑘

∩
𝐴

∑
𝑗∈𝑁𝑘

∩
𝐴

𝑗>𝑖

(
cos𝛼𝑘𝑖𝑗 sin𝛼𝑘𝑖𝑗

𝜎2
𝑘𝑖𝑗

+
𝛽2𝐾2

𝑒

2𝜎4
𝑘𝑖𝑗

(cos𝛼𝑘𝑖𝑑
𝛽−1
𝑘𝑖 + cos𝛼𝑘𝑗𝑑

𝛽−1
𝑘𝑗 )(sin𝛼𝑘𝑖𝑑

𝛽−1
𝑘𝑖

+ sin𝛼𝑘𝑗𝑑
𝛽−1
𝑘𝑗 )

)
.

(27)
Proof: From (23) we define the following two terms

𝑈 = −1

2
log(𝐾𝑒𝑑

𝛽
𝑘𝑖 +𝐾𝑒𝑑

𝛽
𝑘𝑗 + 𝜉2𝑖 + 𝜉2𝑗 + 2𝜁2) (28)

𝑉 = − (𝛿 − 𝑑𝑘𝑖)
2

2(𝐾𝑒𝑑
𝛽
𝑘𝑖 +𝐾𝑒𝑑

𝛽
𝑘𝑗 + 𝜉2𝑖 + 𝜉2𝑗 + 2𝜁2)

(29)

The error bound is

𝐸

[
∂2𝐿(𝛿∣𝜃𝑘)

∂𝑥2𝑘

]
= 𝐸

[
∂2𝑈

∂𝑥2𝑘

]
+ 𝐸

[
∂2𝑉

∂𝑥2𝑘

]
.

Through steps of partial derivatives, we obtain

𝐸

[
∂2𝐿(𝛿∣𝜃𝑘)

∂𝑥2𝑘

]
= −cos𝛼2

𝑘𝑖𝑗

𝜎2
𝑘𝑖𝑗

− 𝛽2𝐾2
𝑒 (cos𝛼𝑘𝑖𝑑

𝛽−1
𝑘𝑖 + cos𝛼𝑘𝑗𝑑

𝛽−1
𝑘𝑗 )2

2𝜎4
𝑘𝑖𝑗

.

Analogously, we have other entries of J.
Fig. 7 shows that the new CRB for TDOA non-cooperative

localization is a bit higher than that of the TOA, which
is shown in Fig. 3. However, the error bounds are almost
similar in the center. This result is also consistent with Monte
Carlo simulations in previous work [15]. The TDOA and
TOA non cooperative localization yield roughly the same
results, especially in the area bounded by the sensors. In
fact, Hahn and Tretter [25] showed that it is possible for
TDOA to obtain higher accuracy than TOA when using
∣𝑁𝑘∣(∣𝑁𝑘∣ − 1)/2 TDOA measurements for all possible
anchor pairs instead of using only (∣𝑁𝑘∣ − 1) TDOAs. We
also noticed that the error is more centralized inside the
overlapped coverages of anchors in TDOA non-cooperative
localization.

Compared with the old CRB in Fig. 8, the new CRB for
the TDOA is always lower (noise uncertainties are set equal).
The difference is more significant for positions outside of the
anchor boundary. Maximum error bound computed by the
old CRB is up to 98 m at (0, 0)𝑇 and (0, 21)𝑇 . The reason
is that the old CRB does not fully exploit the information
gained by the TDOA measurements, but the new CRB can.

Theorem 4: (FIM for cooperative TDOA) All source
nodes in S have a shared FIM of which dimension is 2𝑛×2𝑛,
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Figure 7. New CRB for TDOA non-cooperative localizationwith four
different kinds of anchors and source nodes. Color bar on the right indicates
error bound in meters.

denoted 𝐽2𝑛×2𝑛.

𝐽2𝑘−1,2𝑘−1 =
∑
𝑖∈𝑁𝑘

∑
𝑗∈𝑁𝑘
𝑗>𝑖

(
cos𝛼2

𝑘𝑖𝑗

𝜎2
𝑘𝑖𝑗

+
𝛽2𝐾2

𝑒 (cos𝛼𝑘𝑖𝑑
𝛽−1
𝑘𝑖 + cos𝛼𝑘𝑗𝑑

𝛽−1
𝑘𝑗 )2

2𝜎4
𝑘𝑖𝑗

)
,

(30)

𝐽2𝑘,2𝑘 =
∑
𝑖∈𝑁𝑘

∑
𝑗∈𝑁𝑘
𝑗>𝑖

(
sin𝛼2

𝑘𝑖𝑗

𝜎2
𝑘𝑖𝑗

+
𝛽2𝐾2

𝑒 (sin𝛼𝑘𝑖𝑑
𝛽−1
𝑘𝑖 + sin𝛼𝑘𝑗𝑑

𝛽−1
𝑘𝑗 )2

2𝜎4
𝑘𝑖𝑗

)
,

(31)

𝐽2𝑘−1,2𝑘 = 𝐽2𝑘,2𝑘−1

=
∑
𝑖∈𝑁𝑘

∑
𝑗∈𝑁𝑘
𝑗>𝑖

(
cos𝛼𝑘𝑖𝑗 sin𝛼𝑘𝑖𝑗

𝜎2
𝑘𝑖𝑗

+
𝛽2𝐾2

𝑒

2𝜎4
𝑘𝑖𝑗

(cos𝛼𝑘𝑖𝑑
𝛽−1
𝑘𝑖 + cos𝛼𝑘𝑗𝑑

𝛽−1
𝑘𝑗 )(sin𝛼𝑘𝑖𝑑

𝛽−1
𝑘𝑖

+ sin𝛼𝑘𝑗𝑑
𝛽−1
𝑘𝑗 )

)
.

(32)

For non-diagonal elements 𝑖 ∕= 𝑘, if 𝑖, 𝑗 ∈ 𝑁𝑘

∩
𝑆 and
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Figure 8. Old CRB vs. new CRB for TDOA non-cooperative localization
with the average standard deviation of noises is 5.64 meters.

𝑗 ∕= 𝑖,

𝐽2𝑘−1,2𝑖−1 = 𝐽2𝑖−1,2𝑘−1 = −
∑

𝑗∈𝑁𝑘

∩
𝑆

𝑗 ∕=𝑖

(
cos𝛼2

𝑘𝑖𝑗

𝜎2
𝑘𝑖𝑗

+
𝛽2𝐾2

𝑒 (cos𝛼𝑘𝑖𝑑
𝛽−1
𝑘𝑖 + cos𝛼𝑘𝑗𝑑

𝛽−1
𝑘𝑗 )2

2𝜎4
𝑘𝑖𝑗

)
,

(33)

𝐽2𝑘,2𝑖 = 𝐽2𝑖,2𝑘 = −
∑

𝑗∈𝑁𝑘

∩
𝑆

𝑗 ∕=𝑖

(
sin𝛼2

𝑘𝑖𝑗

𝜎2
𝑘𝑖𝑗

+
𝛽2𝐾2

𝑒 (sin𝛼𝑘𝑖𝑑
𝛽−1
𝑘𝑖 + sin𝛼𝑘𝑗𝑑

𝛽−1
𝑘𝑗 )2

2𝜎4
𝑘𝑖𝑗

)
,

(34)

𝐽2𝑘−1,2𝑖 = 𝐽2𝑖,2𝑘−1 = 𝐽2𝑘,2𝑖−1 = 𝐽2𝑖−1,2𝑘

= −
∑

𝑗∈𝑁𝑘

∩
𝑆

𝑗 ∕=𝑖

(
cos𝛼𝑘𝑖𝑗 sin𝛼𝑘𝑖𝑗

𝜎2
𝑘𝑖𝑗

+
𝛽2𝐾2

𝑒

2𝜎4
𝑘𝑖𝑗

(cos𝛼𝑘𝑖𝑑
𝛽−1
𝑘𝑖 + cos𝛼𝑘𝑗𝑑

𝛽−1
𝑘𝑗 )(sin𝛼𝑘𝑖𝑑

𝛽−1
𝑘𝑖

+ sin𝛼𝑘𝑗𝑑
𝛽−1
𝑘𝑗 )

)
.

(35)
Proof: The elements of diagonal blocks are derived very

similarly to the non-cooperative TDOA case with respect to
all neighboring nodes, which may be either source nodes or
anchor nodes. Thus the details are omitted for brevity.

For TDOA-based cooperative localization, the new CRB
is numerically shown in Fig. 9. Because of the ultimately
large amount of observations, the new error bound for
TDOA-based cooperative localization is significantly lower
compared to other approaches. The lowest errors belong to
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Figure 9. New CRB for TOA cooperative localization with four different
kinds of anchors and source nodes. Color bar on the right indicates error
bound in meters.

the positions at the center. The error increases when the
source location moves outwards the anchor ring. Fig. 10
shows the comparison between the new and old CRBs. As
it is consistent with Theorem 4, the new CRB is always
smaller than the old CRB.

We remark that error bounds for anchored localization
in this work are with regard to unbiased estimators. With
the advantage of numerous anchors and line-of-sight (LOS)
environment in most crowdsensing scenarios, the CRB-
based error bounds are valid for most biased estimators too.
If the localization problem is significantly biased due to
the geometric setup such as inappropriate anchor placement
and/or a lot of NLOS environments, it is possible to derive
the CRB of biased estimators. However, the bias of the
biased estimator needs to be known. Let 𝑏(𝜃) denote the
given bias, the bound is given by

𝐸[(𝜃 − 𝜃)2] ⩾ [1 + 𝑏′(𝜃)]
𝐽

. (36)

The bound for any unbiased estimator is a special case of
(36) when 𝑏(𝜃) = 0.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the new CRBs for an-
chored localization with regard to diverse non-deterministic
noise found in TOA and TDOA measurements. In partic-
ular, we developed an Android application and measured
the possible noises in the context of crowd monitoring
applications developed with Android smartphones. With the
new range-based models that include the measured noises,
the derivation leads to the new FIM that is different from
the former ones. The new bounds for both non-cooperative
and cooperative localization categories are theoretically and
numerically shown to be better in terms of providing insight
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Figure 10. Old CRB vs. new CRB for TDOA cooperative localization
with the average standard deviation of noises is 5.64 meters.

into the effects of signal-to-noise ratio, data processing
latency, inaccurate time synchronization, and anchor place-
ment. Therefore, the new localization bounds can serve as
a tool to aid designing a localization system. The new
CRBs also show the potential of sound localization with
Android smartphones, albeit finding a good solution of
which performance is close to the new bound is challenging.
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