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Abstract—In this paper, we study random gossip processes in
communication models that describe the peer-to-peer networking
functionality included in standard smartphone operating systems.
Random gossip processes spread information through the basic
mechanism of randomly selecting neighbors for connections.
These processes are well-understood in standard peer-to-peer
network models, but little is known about their behavior in
models that abstract the smartphone peer-to-peer setting. With
this in mind, we begin by studying a simple random gossip
process in the synchronous mobile telephone model (the most
common abstraction used to study smartphone peer-to-peer
systems). By introducing a new analysis technique, we prove that
this simple process is actually more efficient than the best-known
gossip algorithm in the mobile telephone model, which required
complicated coordination among the nodes in the network. We
then introduce a novel variation of the mobile telephone model
that removes the synchronized round assumption, shrinking the
gap between theory and practice. We prove that simple random
gossip processes still converge in this setting and that information
spreading still improves along with graph connectivity. This new
model and the tools we introduce provide a solid foundation
for the further theoretical analysis of algorithms meant to
be deployed on real smartphone peer-to-peer networks. More
generally, our results in this paper imply that simple random
information spreading processes should be expected to perform
well in this emerging new peer-to-peer setting.

Index Terms—gossip, distributed algorithms, peer-to-peer net-
works

I. INTRODUCTION

In this paper, we study random gossip processes in smart-
phone peer-to-peer networks. We prove the best-known gossip
bound in the standard synchronous model used to describe this
setting, and then establish new results in a novel asynchronous
variation of this model that more directly matches the real
world behavior of smartphone networks. Our results imply
that simple information spreading strategies work surprisingly
well in this complicated but increasingly relevant environment.

In more detail, a random gossip process is a classical strat-
egy for spreading messages through a peer-to-peer network.
It has the communicating nodes randomly select connection
partners from their eligible neighbors, and then once connected
exchange useful information.1 As elaborated in Section II,
these random processes are well-studied in standard peer-to-
peer models where they have been shown to spread informa-
tion efficiently despite their simplicity.

1The main place where different random gossip processes vary is in their
definition of “eligible.” What unites them is the same underlying approach of
random connections to nearby nodes.

To date, however, little is known about these processes in
the emerging setting of smartphone peer-to-peer networks, in
which nearby smartphone devices connect with direct radio
links that do not require WiFi or cellular infrastructure. As also
elaborated in Section II, both Android and iOS now provide
support for these direct peer-to-peer connections, enabling
the possibility of smartphone apps that generate large peer-
to-peer networks that can be deployed, for example, when
infrastructure is unavailable (i.e., due to a disaster) or censored
(i.e., due to government repression). This paper investigates
whether the random gossip processes that have been shown
to spread information well in other peer-to-peer settings will
prove similarly useful in this intriguing new context.

A. The Mobile Telephone Model (MTM)

The mobile telephone model (MTM), introduced by Ghaffari
and Newport [1], extends the well-studied telephone model of
wired peer-to-peer networks (e.g., [2]–[10]) to better capture
the dynamics of standard smartphone peer-to-peer libraries.
In recent years, several important peer-to-peer problems have
been studied in the MTM, including rumor spreading [1], load
balancing [11], leader election [12], and gossip [13].

As we elaborate in Section III-A, the mobile telephone
model describes a peer-to-peer network topology with an
undirected graph, where the nodes correspond to the wireless
devices, and an edge between two nodes indicates the corre-
sponding devices are close enough to enable a direct device-
to-device link. Time proceeds in synchronous rounds. At the
beginning of each round, each node can advertise a bounded
amount of information to its neighbors in the topology. At this
point, each node can then decide to either send a connection
invitation to a neighbor, or instead receive these invitations,
choosing at most one incoming invitation to accept, forming
a connection. Once connected, a pair of node can perform
a bounded amount of communication before the round ends.
Each node is limited to participate in at most one connection
per round.

B. Gossip in the MTM

The gossip problem assumes that k out of the n ≥ k nodes
start with a gossip message. The problem is solved once all
nodes have learned all k messages. In the context of the MTM,
we typically assume that at most O(1) gossip messages can
be transferred over a connection in a single round, and that
advertisements are bounded to at most O(log n) bits.
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A natural random gossip process in this setting is the
following: In each round, each node advertises a hash of its
token set and flips a fair coin to decide whether to send
or receive connection invitations. If a node u decides to
send, and it has at least one neighbor advertising a different
hash (implying non-equal token sets), then it selects among
these neighbors with uniform randomness to choose a single
recipient of a connection invitation. If the invitation is accepted
the two nodes exchange a constant number of tokens in their
set difference.

It is straightforward to establish that with high probability in
n this process solves gossip in O(nk) rounds. The key insight
is that in every round there is at least one potentially produc-
tive connection, and that there can be at most O(nk) such
connections before all nodes know all messages. (See [13] for
the details of this analysis.)

In our previous work on gossip in the MTM [13], we
explored the conditions under which you could improve on this
crude O(nk) bound. We conjectured that a more sophisticated
analysis could show that simple random processes improve
on the nk bound given sufficient graph connectivity, but were
unable to make such an analysis work. Accordingly, in [13] we
turned our attention to a more complicated gossip algorithm
called crowded bin. Unlike the simple structure of random
gossip processes, crowded bin requires non-trivial coordination
among nodes, having them run a distributed size estimation
protocol (based on a balls-in-bins analysis) on k, and then
using these estimates to parametrize a distributed TDMA
protocol that eventually enables k independent token spreading
processes to run in parallel.

In [13], we prove that crowded bin solves gossip in
O((k/α) log5 n) rounds, with high probability in n, when run
in a network topology with vertex expansion α (see below).
For all but the smallest values of α (i.e., least amounts of
connectivity), this result is an improvement over the crude
O(nk) bound achieved by the random process.

A key open question from this previous work is whether or
not it is possible to close the time complexity gap between
the appealingly simple random gossip processes and the more
complicated machinations of crowded bin. As we detail next,
this is the question tackled in this paper.

C. New Result #1: Improved Analysis for Gossip in the MTM

In Section III-A, we consider a variation of the simple
random gossip process described above modified only slightly
such that a node only considers a neighbor eligible if it
advertises a different hash and it has not recently attempted a
connection with that particular neighbor. We call this variation
random spread gossip

By introducing a new analysis technique, we significantly
improve on the straightforward O(nk) bound for random
gossip processes like random spread. Indeed, we prove this
process is actually slightly more efficient than the more
complicated crowded bin algorithm from [13], showing that
with high probability in n, random spread requires only

O((k/α) log4 n) rounds to spread all the messages in a net-
work with vertex expansion α.

The primary advantage of random spread gossip is its
simplicity. As with most random gossip processes, its behavior
is straightforward and easy to implement as compared to
existing solutions. A secondary advantage is that this algorithm
works in the ongoing communication scenario in which new
rumors keep arriving in the system. Starting from any point
in an execution, if there are k rumors that are not yet fully
disseminated, they will reach all nodes in at most an additional
O((k/α) log4 n) rounds, regardless of how many rumors have
been previously spread. The solution in [13], by contrast, must
be restarted for each collection of k rumors, and includes no
mechanism for devices to discover that gossip has completed
for the current collection. Accordingly, this new result fully
supersedes the best known existing results for gossip in the
MTM under similar assumptions.2

At the core of our analysis is a new data structure we call
a size band table that tracks the progress of the spreading
rumors. We use this table to support an amortized analysis of
spreading that proves that the stages in which rumors spread
slowly are balanced out sufficiently by stages in which they
spread quickly, providing a reasonable average rate.

D. New Result #2: Gossiping in the Asynchronous MTM

The mobile telephone model is a high-level abstraction
that captures the core dynamics of smartphone peer-to-peer
communication, but it does not exactly match the behavior
of real smartphone networking libraries. The core difference
between theory and practice in this context is synchronization.
To support deep analysis, this abstract model (like many
models used to study distributed graph algorithms) synchro-
nizes devices into well-defined rounds. Real smartphones, by
contrast, do not offer this synchronization. It follows that
algorithms developed in the mobile telephone model cannot
be directly implemented on real hardware.

With the goal of closing this gap, in Section IV we in-
troduce the asynchronous mobile telephone model (aMTM),
a variation of the MTM that removes the synchronous round
assumption, allowing nodes and communication to operate at
different speeds. The main advantage of the aMTM, is that
algorithms specified and analyzed in the aMTM can be directly
implemented using existing smartphone peer-to-peer libraries.
The main disadvantage is that the introduction of asynchrony
complicates analysis.

In Section IV, we first study the question of whether
simple random gossip processes even still converge in a setting
where nodes and messages can operate at different speeds
controlled by an adversary. We answer this question positively
by proving that a simple random gossip process solves gossip
in O(nkδmax) time, where δmax is an upper bound on the
maximum time certain key steps can occur (as is standard,
we assume δmax is determined by an adversary, can change
between executions, and is unknown to the algorithm).

2In [13], we also study gossip under other assumptions, like changing
communication graphs and the lack of good hash functions.



We then tackle the question of whether it is still possible
to show that the time complexity of information spreading
improves with vertex expansion in an asynchronous setting.
The corresponding analyses in the synchronous MTM, which
treats nodes as implicitly running an approximate maximum
matching algorithm between nodes that know a certain token
and those that do not, depend heavily on the synchronization
of node behavior.

We introduce a novel analysis technique, in which we
show that the probabilistic connection behavior in the aMTM
over time sufficiently approximates synchronized behavior to
allow our more abstract graph theory results to apply. In
particular, we prove that for k = 1, the single message
spreads in at most O(

√
(n/α) · log2 nα · δmax) time. This

result falls somewhere between our previous O(nδmax) result
for gossip with k = 1 in the aMTM, and the bound of
O(polylog(n)/α) rounds possible in the synchronous MTM
for k = 1. The remaining gap with the synchronous results
seems due the ability of synchronous algorithms to keep a
history of recent connection attempts (crucial to the underlying
matching analysis), whereas in the asynchronous model such
histories might be meaningless if some nodes are making
connections attempts much faster than others.

We argue that our introduction of the aMTM, as well as a
powerful set of tools for analyzing information spreading in
this setting, provides an important foundation for the future
study of communication processes in realistic smartphone
peer-to-peer models.

II. RELATED WORK

In recent years, there has been a growing amount of research
on smartphone peer-to-peer networking [14]–[20] (see [21] for
a survey). There has also been recent work on using device-
to-device links to improve cellular network performance, e.g.,
the inclusion of peer-to-peer connections in the emerging LTE-
advanced standard [22]–[24], but these efforts differ from the
peer-to-peer applications studied here as they typically assume
coordination provided by the cellular infrastructure.

In this paper, we both study and extend the mobile telephone
model introduced in 2016 by Ghaffari and Newport [1]. This
model modifies the classical telephone model of wired peer-to-
peer networks (e.g., [2]–[10]) to better match the constraints
and capabilities of the smartphone setting. In particular, the
mobile telephone model differs from the classical telephone
model in that it allows small advertisements but restricts the
number of concurrent connections at a given node. As agued
in [1], these differences (especially the latter) significantly
change achievable results, algorithm strategy, and analysis
techniques. The details of this model are inspired, in particular,
but the multipeer connectivity framework offered in iOS.

Our random spread gossip algorithm disseminates k rumors
in at most O((k/α) log4 n) rounds in the mobile telephone
model in a network with n nodes and vertex expansion α (see
Section III-C). The previous best known algorithm for this

model is crowded bin gossip [13], which is significantly more
complicated and requires O((k/α) log5 n) rounds.3

To put these time bounds into context, we note that previous
work in the mobile telephone model solved rumor spread-
ing [1] and leader election [12] in O(polylog(n)/α) rounds. In
the classical telephone model, a series of papers [7]–[10] (each
optimizing the previous) established that simple random rumor
spreading requires O(log2 n/α) rounds [10], which is optimal
in the sense that for many α values, there exists networks with
a diameter in Ω(log2 n/α). The fact that our gossip solution
increases these bounds by a factor of k (ignoring log factors) is
natural given that we allow only a constant number of tokens
to be transferred per round.

As mentioned, random gossip processes more generally
have been studied in other network models. These abstractions
generally model time as synchronized rounds and by definition
require nodes to select a neighbor uniformly at random in each
round [25] [26]. More recent work has demonstrated that these
protocols take advantage of key graph properties such as vertex
expansion and graph conductance [27]. Asynchronous variants
of these protocols have also been explored, where asynchrony
is captured by assigning each node a clock following an
unknown but well-defined probability distribution [25] [28].
The asynchronous MTM model introduced in our paper, by
contrast, deploys a more general and classical approach to
asynchrony in which an adversarial scheduler controls the time
required for key events in a worst-case fashion.

III. RANDOM GOSSIP IN THE MOBILE TELEPHONE MODEL

Here we study a simple random gossip process in the
mobile telephone model. We begin by formalizing the model,
the problem, and some graph theory preliminaries, before
continuing with the algorithm description and analysis.

A. The Mobile Telephone Model

The mobile telelphone model describes a smartphone peer-
to-peer network topology as an undirected connected graph
G = (V,E). A computational process (called a node in the
following) is assigned to each vertex in V . The edges in E
describe which node pairs are within communication range.
In the following, we use u ∈ V to indicate both the vertex
in the topology graph as well as the computational process
(node) assigned to that vertex. We use n = |V | to indicate the
network size.

Executions proceed in synchronous rounds labeled 1, 2, ...,
and we assume all nodes start during round 1. At the beginning
of each round, each node u ∈ V selects an advertisement to
broadcast to its neighbors N(u) in G. This advertisement is a
bit string containing no more than O(log n + `h) bits, where

3In [13], crowded bin is listed as requiring O((k/α) log6 n) rounds, but
that result assumes single bit advertisements in each round—requiring devices
to spell out control information over many rounds of advertising. To normalize
with this paper, in which tags can contain logn bits, crowded bin’s time
complexity improves by a log factor. We note that [13] also explores slower
gossip solutions for more difficult network settings not considered here; e.g.,
changing network topologies and the absence of advertisements.



`h is the digest length of a standard hash function parame-
terized to obtain the desired collision resistance guarantees.
After broadcasting its advertisement, node u then receives the
advertisements broadcast by its neighbors in G for this round.

At this point, u decides to either send a connection invitation
to a neighbor, or passively receive these invitations. If u
decides to receive, and at least one connection invitation
arrives at u, then node u can select at most one such incoming
invitation to accept, forming a connection between u and the
node v that sent the accepted invitation. Once u and v are
connected, they can perform a bounded amount of reliable
interactive communication before the round ends, where the
magnitude of this bound is specified as a parameter of the
problem studied. Notice that the model does not guarantee to
deliver u all invitations sent to u by its neighbors. It instead
only guarantees that if at least one neighbor of u sends an
invitation, then u will receive a non-empty subset (selected
arbitrarily) of these invitations before it must make its choice
about acceptance.

If u instead chooses to send a connection invitation to a
neighbor v, there are two outcomes. If v accepts u’s invitation,
a connection is formed as described above. Otherwise, u’s
invitation is implicitly rejected.

B. The Gossip Problem

The gossip problem is parameterized with a token count
k > 0. It assumes k unique tokens are distributed to nodes at
the beginning of the execution. The problem is solved once all
nodes have received all k tokens. We treat the tokens as black
boxes objects that are large compared to the advertisements.
With this in mind, we assume the only ways for a node u to
learn token t are: (1) u starts with token t; or (2) a node v
that previously learned t sends the token to u during a round
in which v and u are connected.

We assume that at most a constant number of tokens can
be sent over a given connection. Notice that this restriction
enforces a trivial Ω(k) round lower bound for the problem.

C. Vertex Expansion

Some network topologies are more suitable for information
dissemination than others. In a clique, for example, a mes-
sage can spread quickly through epidemic replication, while
spreading a message from one endpoint of a line to another
is necessarily slow. With this in mind, the time complexity of
information dissemination algorithms are often expressed with
respect to graph connectivity metrics such as vertex expansion
or graph conductance. In this way, an algorithm’s performance
can be proved to improve along with available connectivity.

In this paper, as in previous studies of algorithms in the
mobile telephone model [1], [11]–[13], we express our results
with respect to vertex expansion (see [1] for an extended
discussion of why this metric is more appropriate than conduc-
tance in our setting). Here we define this metric and establish
a useful related property.

For fixed undirected connected graph G = (V,E), and a
given S ⊆ V , we define the boundary of S, indicated ∂S, as

follows: ∂S = {v ∈ V \S : N(v)∩S 6= ∅}: that is, ∂S is the
set of nodes not in S that are directly connected to S by an
edge in E. We define α(S) = |∂S|/|S|. We define the vertex
expansion α of a given graph G = (V,E) as follows:

α = min
S⊂V,0<|S|≤n/2

α(S).

Notice that despite the possibility of α(S) > 1 for some S, we
always have α ≤ 1. In more detail, this parameter ranges from
2/n for poorly connected graphs (e.g., a line) to values as large
as 1 for well-connected graphs (e.g., a clique). Larger values
indicate more potential for fast information dissemination.

The mobile telephone model requires the set of pairwise
connections in a given round to form a matching in the topol-
ogy graph G = (V,E). The induces a connection between
maximum matchings and the maximum amount of potential
communication in a given round. Here we adapt a useful
result from [1] that formalizes the relationship between vertex
expansion and these matchings as defined with respect to given
partition.

In more detail, for a given graph G = (V,E) and node
subset S ⊂ V , we define B(S) to be the bipartite graph
with bipartitions (S, V \ S), and the edge set ES = {(u, v) :
(u, v) ∈ E, u ∈ S, and v ∈ V \ S}. Recall that the
edge independence number of a graph H , denoted ν(H),
describes the size of a maximum matching on H . For a
given S, therefore, ν(B(S)) describes the maximum number
of concurrent connections that a network can support in the
mobile telephone model between nodes in S and nodes outside
of S. This property follows from the restriction in this model
that each node can participate in at most one connection per
round.

The following result notes that the vertex expansion does a
good job of approximating the size of the maximum matching
across any partition:

Lemma III.1 (from [1]). Fix a graph G = (V,E)
with |V | = n with vertex expansion α. Let γ =
minS⊂V,|S|≤n/2{ν(B(S))/|S|}. It follows that γ ≥ α/4.

D. The Random Spread Gossip Algorithm

We formalize our random spread gossip algorithm with
the pseudocode labeled Algorithm 1. Here we summarize its
behavior.

The basic idea of the algorithm is that in each round,
each node advertises a hash of their token set. Nodes then
attempt to connect only to neighbors that advertised a different
hash, indicating their token sets are different. When two nodes
connect, they can transfer a constant number of tokens in the
non-empty set difference of their respective token sets.

As detailed in the pseudocode, the random spread algorithm
implements the above strategy combined with some minor
additional structure that supports the analysis. In particular,
nodes partition rounds into phases of length dlogNe, where
N > 1 is an upper bound on the maximum degree ∆ in
the network topology. Instead of each node deciding whether



to send or receive connection invitations at the beginning of
each round, they make this decision at the beginning of each
phase, and then preserve this decision throughout the phase
(this is captured in the pseudocode with the status flag that
is randomly set every dlogNe rounds). Each receiver node also
advertises whether or not it has been involved in a connection
already during the current phase (as captured with the done
flag). A sender node will only consider neighbors that advertise
a different hash, are receivers in the current phase, and have
not yet been involved in a connection during the phase.

Algorithm 1 Random spread gossip (for node u).

Initialization:
N ← upper bound on maximum degree in topology
T ← initial tokens (if any) known by u
H is a hash function

For each round r:

if r mod dlogNe = 1 then
status← random bit (1=sender; 0=receiver)
done← 0

Advertise(〈status, done,H(T, r), u〉)
A← RecvAdvertisements()

A′ ← {v | 〈0, 0, h, v〉 ∈ A, h 6= H(T, r)}
if status = 1 and |A′| > 0 then

v ← node selected with uniform randomness from A′

(Attempt to connect with v. If successful, exchange a
token in set difference.)
else if status = 0 then

(If receive connection proposal(s): accept one, exchange
token in the set difference, set done← 1.)

E. Analysis of Random Spread Gossip
Our goal is to prove the following result about the perfor-

mance of random spread gossip:

Theorem III.2. With high probability, the random
spread gossip algorithm solves the gossip problem in
O((k/α) log2 n logN log ∆) rounds, when executed with
k > 0 initial tokens and degree bound N ≥ ∆, in a network
topology graph of size n, maximum degree ∆, and vertex
expansion α.

We begin by establishing some preliminary notations and
assumptions before continuing to the main proof argument.

a) Notation: For a fixed execution, let Q be the non-
empty set of k tokens that the algorithm must spread. For
each round r > 0 and node u ∈ V , let Tu(r) be the tokens (if
any) “known” by u at the start of round r (that is, the tokens
that u starts with as well as every token it received through a
connection in rounds 1 to r − 1).

For each t ∈ Q, and round r > 0, let St(r) = {v : t ∈
Tv(r)} be the nodes that know token t at the start of round r.

Let nt(r) = |St(r)| be the number of nodes that know token t
iat the beginning of this round, and let n∗t (r) = min{nt(r), n−
nt(r)}.

Finally, let t∗(r) = argmaxt∈Q{n∗t (r)} be a token t with the
maximum n∗t (r) value in this round (breaking ties arbitrarily).
According to Lemma III.1, which connects vertex expansion
to matchings, there is a matching between nodes in St∗(r)(r)
and V \St∗(r)(r) of size at least (α/4)·n∗t∗(r)(r). Token t∗(r),
in other words, has the largest guaranteed potential to spread
in round r among all tokens.4 Accordingly, in the analysis
that follows, we will focus on this token in each phase to help
lower bound the amount of spreading we hope to achieve.

b) Productive Connections and Hash Collisions: In the
following, we say a given pairwise connection between nodes
u and v in some round r is productive if Tu(r) 6= Tv(r).
That is, at least one of these two nodes learns a new token
during the connection. By the definition of our algorithm, if
u and v connect in round r, then it must be the case that
H(Tu(r), r) 6= H(Tv(r), r), where H is the hash function
used by the random spread gossip algorithm. This implies
Tu(r) 6= Tv(r)—indicating that every connection created by
our algorithm is productive.

On the other hand, it is possible for some u, v, and r that
even though Tu(r) 6= Tv(r), H(Tu(r), r) = H(Tv(r), r) due
to a hash collision. For the sake of clarity, in the analysis
that follows we assume that no hash collisions occur in the
analyzed execution. Given the execution length is polynomial
in the network size n, and there are at most n different
token sets hashed in each round, for standard parameters the
probability of a collision among this set would be extremely
small, supporting our assumption.

We emphasize, however, that even if a small number of
collisions do occur, their impact is minimal on the perfor-
mance of random spread gossip. The worst outcome of a
hash collision in a given round is that during that single
round a potentially productive connection is not observed to
be productive and therefore temporarily ignored. As will be
made clear in the analysis that follows, the impact of this
event is nominal. Indeed, even if we assumed that up to
a constant fraction of the hashes in every round generated
collisions—an extremely unlikely event for all but the weakest
hash function parameters—the algorithm’s worst case time
complexity would decrease by at most a constant factor.

c) Matching Phases: Recall that our algorithm partitions
rounds into phases of length dlogNe. For each phase i > 0,
let ri = dlogNe·(i−1)+1 be the first round of that phase. Fix
some arbitrary phase i and consider token t = t∗(ri), which, as
argued above, is the token with the largest guaranteed potential
to spread in round ri. Our goal in this part of the analysis
is to prove that with constant probability, our algorithm will
create enough productive connections during this phase to
well-approximate this potential. This alone is not enough to

4To be slightly more precise, (α/4) · n∗
t∗(r)(r) is a lower bound on the

size of the matching across the cut defined by t∗(r), so t∗(r) is the token
with the largest lower bound guarantee on the size of its matching.



prove our algorithm terminates efficiently, as in some phases, it
might be the case that no token has a large potential to spread.
The next part of our argument will tackle this challenge by
proving that over a sufficient number of phases the aggregate
amount of progress must be large.

We begin by establishing the notion of a productive sub-
graph:

Definition III.3. At the beginning of any round r > 0, we
define the productive subgraph of the network topology G =
(V,E) for r as: Gr = (V,Er), where Er = {{u, v} | {u, v} ∈
E, Tu(r) 6= Tv(r), u.status(r) 6= v.status(r)}, and for each
w ∈ V , w.status(r) indicates the value of the node w’s status
bit for the phase containing round r.

That is, the productive subgraph for round r is the subgraph
of G that contains only edges where the endpoints: (1) have
different token set; and (2) have different statuses (one is a
sender during this phase and one is a receiver). This subgraph
contains every possible connection for a given round of our
gossip algorithm (we ignore done flags because, as will soon
be made clear, we consider these graphs defined only for the
first round of phases, a point at which all done flags are reset
to 0). Accordingly, a maximum matching on this subgraph
upper bounds the maximum number of concurrent connections
possible in a round.

We begin by lower bounding the size of the maximum
matching in a productive subgraph at the beginning of a given
phase i using the token t = t∗(ri). Recall that n∗t (ri) is the
number of nodes that know token t at the beginning of r,
if less than half know the token, and otherwise indicates the
number of nodes that do not know t.

Lemma III.4. Fix some phase i. Let t = t∗(ri). Let Gri
be the productive subgraph for round ri, Mi be a maximum
matching on Gri , and mi = |Mi|. With constant probability
(defined over the status assignments): mi ≥ (α/16)n∗t (ri).

Proof. Fix some phase i. We define G′ri to be the potentially
productive subgraph for round ri, where potentially produc-
tive is defined the same as productive except we omit the
requirement that endpoints of edges in the graph have different
status values. Let M ′ be a maximum matching on G′ri and
m′ = |M ′|. We will reason about m′ as an intermediate step
toward bounding the size of the actual productive subgraph
for this round.

Let t = t∗(ri). Consider the cut between nodes that know
t, and nodes that do not, at the beginning of this phase. By
Lemma III.1, there is a matching across this cut of size at
least (α/4)n∗t (ri). By definition, for all edges across this cut,
their endpoints have different token sets at the beginning of
round ri, therefore they are all candidates to be included in
M ′, implying that m′ ≥ (α/4)n∗t (ri).

Our next step is to consider the random assignment of
sender and receiver status to nodes in M ′ at the beginning
of phase i. For an edge in M ′ to be included in a matching
on the productive subgraph Gri , it must be the case that one
endpoint chooses to be a receiver while the other chooses to

be a sender. We call such an edge good. For any particular
edge e ∈M ′, this occurs with probability 1/2.

For each such e ∈M ′, let Xe be the random indicator that
evaluates to 1 if e is good, and evaluates to 0 otherwise. Let
Y =

∑
e∈M ′ Xe be the number of good edges for this phase.

By our above probability calculation, we know:

E[Y ] = E

[∑
e∈M ′

Xe

]
=
∑
e∈M ′

E[Xe] = m′/2.

Because M ′ is a matching, these indicator variables are
independent. This allows us to concentrate on the mean. In
particular, we will apply the following multiplicative Chernoff
Bound, defined for µ = E[Y ] and any 0 ≤ δ ≤ 1:

Pr(Y ≤ (1− δ)µ) ≤ e−
δ2µ
2 ,

with δ = 1/2, to establish that the probability that Y ≤ m′/4
is upper bounded by:

e−
µ
8 = e−m

′/16 < .94.

It follows that Y is less than or equal to m′/4, which is
itself greater than or equal to (α/16)n∗t (ri) with a probability
upper bounded by a constant—as required.5

We now turn our attention to our gossip algorithm’s ability
to take advantage of the potential productive connections
captured by the productive subgraph defined at the beginning
of the phase. To do so, we first adapt a useful result on rumor
spreading from [1] to the behavior of our gossip algorithm.
Notice that it is the proof of the below adapted lemma that
requires the use of the done flag in our algorithm.

Lemma III.5 (adapted from Theorem 7.2 in [1]). Fix a phase
i. Let G′ be a subgraph of the productive subgraph Gri that
satisfies the following:

1) there is a matching of size m in G′;
2) the set L of nodes in G′ with sender status is of size m;

and
3) for each node u ∈ L, every neighbor of u in Gri is in

G′.
With constant probability (defined over the random neighbor
choices), during the first log ∆ rounds of phase i, at least
Ω
(

m
logn log ∆

)
neighbors of nodes in L in G′ participate in a

productive connection.

Proof Notes. The original version of this theorem from [1]
requires that G′ is a bipartite graph. This follows in our case
because it is a subset of a productive subgraph. All subsets of
productive subgraphs are bipartite as you can put the nodes
with sender status in one bipartition and nodes with receiver
status in the other (by definition the only edges in a productive
subgraph are between sender and receiver nodes).

5Clearly, the specific worst failure bound of 0.06 is loose (in the worst
case, where mi = 1, for example, we can directly calculate that Y = mi

with probability 1/2). We are not, however, attempting to optimize constants
in this analysis, so any constant bound is sufficient for our purposes.



Another difference is that our theorem studies our gossip
algorithm, while the theorem from [1] studies the PPUSH
rumor spreading process. The PPUSH process assumes a
single rumor spreading in the system. Some nodes know
the rumor (and are called informed) and some nodes do
not (and are called uninformed). In each round, each node
declares whether or not they are uninformed. Each informed
node randomly chooses an uninformed neighbor (if any such
neighbors exist) and tries to form a connection, changing the
receiver’s status to informed.

The original version of the theorem states that if you
execute PPUSH for log ∆ rounds, at least Ω( m

logn log ∆ ) nodes
that neighbor L are informed. If we consider senders to be
informed and receivers to be uninformed, our gossip algorithm
behaves the same as PPUSH in log ∆ rounds under consider-
ation. That is, the senders in L will randomly select a receiver
neighbor to attempt a connection.

Once a receiver in G′ participates in a connection in our
algorithm, it sets its done flag to 1 for the remainder of the
phase, preventing future attempts to connect to it during the
phase. This matches the behavior in PPUSH where once a
node becomes informed, informed neighbors stop trying to
connect to it. This congruence allows us to derive the same
Ω( m

logn log ∆ ) bound derived for PPUSH in [1].

We now combine Lemmas III.4 and III.5 to derive our main
result for this part of the analysis.

Lemma III.6. Fix some phase i. Let t = t∗(ri). With constant
probability, the number of productive connections in this phase
is in Ω

(
αn∗t (ri)

logn log ∆

)
.

Proof. Fix some phase i. By Lemma III.4, with some constant
probability p1, the productive subgraph Gri has a matching
Mi of size mi ≥ (α/16)n∗t (ri) once nodes randomly set their
status flags.

Now consider the subgraph graph G′ that consists of every
sender endpoint in Mi, and for each such sender u, every
receiver v that neighbors u, as well as the edge {u, v}. This
subgraph satisfies the conditions of Lemma III.5 for m = mi.
Applying this lemma, it follows that with some constant proba-
bility p2, during this phase, the random neighbor selections by
senders will generate at least Ω(mi/(log n log ∆)) productive
connections.

Combining these two results, we see that with constant
probability p = p1p2, we have at least Ω(

αn∗t (ri)
logn log ∆ ) productive

connections, as claimed by the lemma statement.

d) The Size Band Table: In the previous part of this
analysis, we proved that with constant probability the number
of productive connections in phase i is bounded with respect
to the number of nodes that know t∗(ri). In the worst case,
however, t∗(ri) might be quite small (e.g., at the beginning of
an execution where each token is known by only a constant
number of nodes, this value is constant). We must, therefore,
move beyond a worst-case application of Lemma III.6, and
amortize the progress over time to something more substantial.

To accomplish this goal, we introduce a data structure—a
tool used only in the context of our analysis—that we call a
size band table, which we denote as S. This table has one
column for each token t ∈ T , and 2 log (n/2) + 1 rows which
we number 1, 2, ..., 2 log n/2 + 1.

As we will elaborate below, each row is associated with a
range of values that we call a band. We call rows 1 through
log (n/2) growth bands, and rows log (n/2) + 1 through
2 log (n/2) + 1 shrink bands. Each cell in S contains a single
bit. We update these bit values after every round of our gossip
algorithm to reflect the extent to which each token has spread
in the system.

In more detail, for each round r ≥ 1, we use Sr to describe
the size band table at the beginning of round r. For each token
t ∈ T and row i, 1 ≤ 1 ≤ 2 log (n/2) + 1, we use Sr[t, i] to
refer to the bit value in row i of the column dedicated to token
t in the table for round r.

Finally, we define each of these bit values as follows. For
each round r ≥ 1, token t ∈ T , and growth band i (i.e., for
each i, 1 ≤ i ≤ log (n/2)), we define:

Sr[t, i] =


1 if at least 2i nodes know

token t at the beginning of round r,
0 else.

Symmetrically, for each round r ≥ 1, token t ∈ T , and
shrink band i (i.e., for each i, log (n/2)+1 ≤ i ≤ 2 log (n/2)+
1), we define:

Sr[t, i] =


1 if less than n

2i−log (n/2) nodes do not
know token t at the beginning of round r,

0 else.

A key property of the side band table is that as a given
token t spreads, the cells in its column with 1 bits grow from
the smaller rows toward the larger rows. That is, if row i is
1 at the beginning of a given round, all smaller rows for that
token are also 1 at the beginning of that round. Furthermore,
because nodes never lose knowledge of a token, once a cell
is set to 1, it remains 1.

When all rows for a given token t are set to 1, it follows that
all nodes know t. This follows because the definition of shrink
band i = 2 log (n/2) + 1 being set to 1 is that the number of
nodes that do not know t is strictly less than:

n

2i−log (n/2)
=

n

22 log (n/2)+1−log (n/2)

=
n

2log (n/2)+1

=
n

2log (n/2) · 21

= 1.

e) Amortized Analysis of Size Band Table Progress: As
the size band table increases the number of 1 bits, we say it
progresses toward a final state of all 1 bits. Here we perform
an amortized analysis of size band table progress.



9 0  0  0  0  0        < 1
8 0  0  0  0  1        < 2
7 0  0  0  0  1        < 4
6 0  0  0  0  1        < 8
5 0  0  1  0  1        < 16

4 0  0  1  0  1    				≥	16
3 0  0  1  0  1       ≥	8
2 1  0  1  0  1    				≥ 4
1        1  0  1  1  1    				≥ 2

row # band size

shrink
growth

bound on # nodes 
that do not know 
rumor (if 1 in 
cell)

bound on # 
nodes that do
know rumor (if 
1 in cell)
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Fig. 1. An example size band table for token set T = {t1, t2, t3, t4, t5}
and network size n = 32. There is one column for each token. The largest
row containing a 1 for a given token bounds the token spread. Token t1, for
example, has spread to at least 4 out of the 32 nodes, while token t5 is known
to all but 1 node (indicating that it has spread to at least 31). In this example
table, token t3, which is spread to somewhere between 16 to 24 nodes, has
the biggest potential to spread in the current round

To do so, we introduce some notation. For each phase i, and
token t ∈ T , let bt(i) be the largest row number that contains
a 1 in t’s column in Sri . We call this the current band for
token t in phase i.

Let a(i) = |bt∗(ri)(i)− log (n/2)| define the distance from
the current band of token t∗(ri) to the center row number
log (n/2). By the definition of t∗(ri), no token has a current
band closer to log (n/2) than t∗(ri) at the start of phase i. We
say that phase i is associated with the current band for t∗(ri).

Finally, for a given phase i, with t = t∗(ri), we say this
phase is successful if the number of productive connections
during the phase is at least as large as the lower bound
specified by Lemma III.6; i.e., there are at least γαn∗t (ri)

logn log ∆
productive connections. where γ > 0 is the constant hidden
in the asymptotic bound in the lemma statement.

Our first goal in this part of the analysis, is to bound the
number of successful phases that can be associated with each
band. To do so, we differentiate between two different types
of successful phases, and then bound each separately.

Definition III.7. Fix some phase i that is associated with some
band j at distance a(i) from the center of the size band table.
We say phase i is an upgrade phase if there exists a subset
of the productive connections during phase i that push some
token t’s current band to a position j′ with | log (n/2)− j′| <
a(i). If a phase is not an upgrade phase, and at least one
node is missing at least one token, we call it a fill phase.

Stated less formally, we call a phase an upgrade phase if
it pushes some token’s count closer to the center of the size
band table—row log (n/2)—than the band associated with the
phase. Our definition is somewhat subtle in that it must handle
the case where during a phase a token count does grow to be
closer to the center of the size band table, but then its count
continues to grow until it pushes more than distance a(i) above

the center. We still want to count this as an upgrade phase
(hence the terminology about there existing some subset of
the connections that push the count closer).

Our goal is to bound the number of successful phases
possible before all tokens are spread. We begin with bound
on upgrade phases (which hold whether or not the phase is
successful). Our subsequent bound on fill phases, however,
considers only successful phases.

Lemma III.8. There can be at most k(2 log (n/2) + 1)
upgrade phases.

Proof. Fix some band j. Consider an upgrade phase i that is
associated with j. By the definition of an upgrade phase, there
is some token t with a current band at the start of i that is
distance at least a(i) from the center of table, but that has its
count grow closer to the center during the phase.

We note that it must be the case that t’s current band at
the start of phase i is a growth band. This holds because if
t’s current band is a shrink band then additional spreading of
token t can only increase its distance from the center of the
size band table.

If j is a growth band, then it follows that t’s current band
starts phase i no larger than j and ends phase i larger, because
current bands for a token never decrease. Moving forward,
therefore, token t can never again be the cause of a phase
associated with band j to be categorized as an upgrade phase.

On the other hand, if j is a shrink band, we know that after
phase i, token t’s distance will remain closer to the center of
the table than j until t’s current band becomes a shrink band.
Once again, therefore, moving forward token t can never again
cause a phase associated with band j to be categorized as an
upgrade.

The lemma statement follows as there are 2 log (n/2) + 1
bands, and for each band, each of the k tokens can transform
that band into an upgrade phase at most once.

We now bound the number of successful fill phases. To
do so, we note that the number of fill phases associated
with a given band is bounded by the worst case number of
connections needed before some token’s count must advance
past that band. For bands associated with large ranges this
worst case number is large. As shown in the following lemma,
however, the number of connections in phases associated with
large bands grows proportionally large as well. This balancing
of growth required and growth obtained is at the core of our
amortized analysis.

Lemma III.9. There can be at most O((k/α) log2 n log ∆)
successful fill phases.

Proof. Consider a group of successful fill phases associated
with some band j at distance aj from the center of the
size band table. Because these are fill phases, the productive
connections generated during these phases can never push
some token’s count (perhaps temporarily) closer than distance
aj from the center of the table (any phase in which this occurs
becomes, by definition, an upgrade phase).



One way to analyze the distribution of the productive
connections during these phases is to consider a generalization
of the size band table in which we record in each cell [t, i]
the total number of productive connections that spread token
t while its count falls into the band associated with row i. (Of
course, many connections for a given token might occur in a
given round, in which we case, we process them one by one
in an arbitrary order while updating the cell counts.)

If we apply this analysis only for the fill phases fixed above,
then we know that the counts in all cells of distance less than
aj from the center of the table remain at 0. By the definition of
the size band table, for a given token t, the maximum number
of connections we can add to cells of distance at least aj from
the center is loosely upper bounded by 2 · 2log (n/2)−aj (the
extra factor of two captures both growth and shrink band cells
at least distance aj). Therefore, the total number of productive
connections we can process into cells at distance at least aj
is at most 2k2log (n/2)−aj .

By the definition, each phase i that is a successful fill
phase associated with j generates at least γαn∗t (ri)

logn log ∆ productive
connections, where t = t∗(ri). By the definition of t∗(ri), t’s
current band is distance aj from the center. Therefore, n∗t (ri)
is within a factor of 2 of 2log (n/2)−aj . By absorbing that
constant factor into the constant γ (to produce a new constant
γ′), it follows that this phase generates at least

z =
γ′α2log (n/2)−aj

log n log ∆

new productive connections. Combined with our above upper
bound on the total possible productive connections for suc-
cessful fill phases associated with j, it follows that the total
number of successful fill phases associated with j as less than:

z−12k2log (n/2)−aj =

(
log n log ∆

γ′α2log (n/2)−aj

)
2k2log (n/2)−aj

= Θ((k/α) log n log ∆).

We multiply this bound over 2 log (n/2) + 1 possible bands
to derive O((k/α) log2 n log ∆) total possible successful fill
phases, providing the bound claimed by the lemma statement.

f) Pulling Together the Pieces: We are now ready to
combine the above lemmas to prove our main theorem.

Proof (of Theorem III.2). Combining Lemmas III.8 and III.9,
it follows that there can be at most ` = k(2 log (n/2) + 1) +
O((k/α) log2 n log ∆) = O((k/α) log2 n log ∆) successful
upgrade and fill phases before all k tokens are spread.

By Lemma III.6, if the token spreading is not yet complete,
then the probability that the current phase is successful is
lower bounded by some constant probability p > 0. The actual
probability might depend on the execution history up until
the current phase, but the lower bound of p always holds,
regardless of this history. We can tame these dependencies
with a stochastic dominance argument.

In more detail, for each phase i before the tokens are
spread, we define a trivial random variable X̂i that is 1
with independent probability p, and otherwise 0. Let Xi, by
contrast, be the random indicator variable that is 1 if phase i
is successful, and otherwise 0. For each phase i that occurs
after the tokens are spread, X̂i = Xi = 1 by default.

Note that for each i, Xi stochastically dominates X̂i. It
follows that if ŶT =

∑T
i=1 X̂i is greater than some x with

some probability p̂, then YT =
∑T
i=1Xi is greater than x

with probability at least p̂.
With this established, consider the first T = (c/p)` phases,

for some constant c ≥ 2. Note that for this value of T ,
E[ŶT ] = c`. Because ŶT is the sum of independent random
variables, we concentrate around this expectation. In particular,
we once again apply the following form of a Chernoff Bound:

Pr(Y ≤ (1− δ)µ) ≤ e−
δ2µ
2 ,

for Y = ŶT , δ = 1/2, and µ = c`, to derive that the probabil-
ity that ŶT ≤ (c/2)` ≥ `, is upper bounded by e−

c`
8 . The same

bound therefore holds for the probability that YT ≤ (c/2)`.
Notice that this error bound is polynomially small in n with
an exponent that grows with constant c. It follows, therefore,
that with high probability in n, that token spreading succeeds
in the first T = (c/p)` = O((k/α) log2 n log ∆) phases.

To achieve the final round complexity bound claimed by the
theorem statement, we multiply this upper bound on phases
by the length of logN rounds per phase.

IV. RANDOM GOSSIP IN THE ASYNCHRONOUS MOBILE
TELEPHONE MODEL

The mobile telephone model captures the basic dynamics
of the peer-to-peer libraries included in standard smartphone
operating systems. This abstraction, however, makes simpli-
fying assumptions—namely, the assumption of synchronized
rounds. In this section we analyze the performance of simple
random gossip processes in a more realistic version of the
model that eliminates the synchronous round assumption. In
particular, we first define the asynchronous mobile telephone
model (aMTM), which describes an event-driven peer-to-peer
abstraction in which an adversarial scheduler controls the
timing of key events in the execution.

An algorithm specified in the aMTM should be directly im-
plementable on real hardware without the need to synchronize
or simulate rounds. This significantly closes the gap between
theory and practice. With this in mind, after defining the
aMTM, we specify and analyze a basic random gossip process
strategy. In this more realistic asynchronous model, different
processes can be running at vasty different and changing
speeds, invalidating the clean round-based analysis from the
previous section. We will show, however, that even in this more
difficult setting, random gossip processes can still be analyzed
and shown to spread tokens with speed that increases with
available connectivity.



A. The Asynchronous Mobile Telephone Model
Since the pattern of communication in the asynchronous

setting can be complex, our first goal in creating our new
abstraction is to impose a simple but flexible structure for how
processes communicate with each other. To this end, we intro-
duce a meta-algorithm that is run by each process individually,
independent of all others processes in the network. This allows
us to analyze the running time of a particular instance of an
algorithm and, from there, the performance of the algorithm
across all concurrent network instances.

We will require two primary properties from our algorithmic
structure. First, for our protocols to be truly asynchronous,
they will not be able to follow a static procedural flow.
Namely, after perfoming some action, an algorithm in this
model may have to wait an indeterminate amount of time
before performing another action or even being notified of
the results of the first action. While we can parameterize an
upper bound for this delay in the model for the sake of our
analysis, it is unrealistic for an instance of the algorithm to
be aware of this parameter. Second, we would like to abstract
away the details of the asynchronous communication from the
specfics of the algorithm, allowing us to keep our algorithm
descriptions as simple as possible.

Algorithm 2 The Asynchronous MTM Interface
1:
2: Initialization:
3:
4: neighbors← [:]
5: state← idle
6: receiver ← null
7: INITIALIZE()
8:
9: while true do

10:
11: tag ← GETTAG()
12: update(tag)
13:
14: neighbors← blockForNeighborUpdates()
15:
16: receiver ← SELECT(neighbors)
17: if receiver 6= null then
18: state← blockForConnection(receiver)
19:
20: if state = connected then
21: COMMUNICATE(receiver)
22: state← idle

We accomplish both of these goals by implementing a
structure that resembles a looped synchronous algorithm but
regulates its execution through access to data members that
are updated asynchronously. Formalized in Algorithm 2, the
protocol initializes three fields:
• neighbors: A key-value store of references to neigh-

boring processes whose advertisements have been re-
ceived along with their advertisement tags. This set is

maintained asynchronously by the model and updated
whenever a new advertisement is received. Whenever a
new advertisement is received, it replaces the last known
advertisement for the corresponding neighboring process.

• state: An enumerated type field chosen from the set
{idle, connected}. Also modified asynchronously by
the model, this field signifies the current progress in any
connections the process is involved in.

• receiver: A nullable reference to a single neighbor for
communication purposes after a connection is formed.

While these fields accomplish our first goal of enabling our
algorithms to execute asynchronously, we satisfy our second
goal of abstracting communication details from the implement-
ing algorithm by exposing an interface of four functions:
• INITIALIZE(): Initialization of algorithm-specific data.
• GETTAG(): Return the advertisement tag for this process

which is then broadcast to all neighboring processes.
• SELECT(neighbors): Return a neighbor (or null for no

neighbor) to connect to from among those discovered.
• COMMUNICATE(receiver): Perform a bounded amount

of communication with selected neighbor receiver.
The execution of an iteration of the algorithm loop begins
by getting the process’ advertisement tag and broadcasting it
to all neighboring processes. The model then blocks until a
reference to a neighboring process is added to the neighbors
set. Once the neighbors set contains at least one neighbor,
the implementing algorithm selects one neighbor from the
set and returns it. If the selected neighbor isn’t null, the
protocol then attempts to connect with the selected neighbor,
and blocks for another indeterminate duration of time for
the connection attempt to succeed (state ← connected) or
fail (state ← idle). If the connection succeeds, the two
connected processes communicate before proceeding to the
next iteration.

We assume that each step of the protocol
executes instantly with the exception of the model
functions blockForNeighborUpdates() and
blockForConnection() and the algorithm function
COMMUNICATE(receiver). These functions implicitly block
the protocol’s execution. The model functions block the
execution until the neighbors and state fields are available
to be referenced by the algorithm, respectively, while
COMMUNICATE(receiver) stalls until the connected nodes
communicate. In order for this abstraction to be useful to our
analysis, however, we need to parameterize the maximum
duration of these blocking events. We therefore define the
corresponding model parameters δupdate, δconnect, δcomm,
and δold which are not known in advance and can change
between executions:
• δupdate: If a process u calls update(tag) at time δ, u

will be added to the neighbors set of all neighboring
processes by time δ + δupdate at the latest. This is the
maximum time for step 14 of the protocol.

• δold: Conversly, if a process u calls update(tag) at time
δ, no neighboring process will add u to their neighbors



set after time δold where δold > δupdate.
• δconnect: If a process u calls connect(v) at time δ,

by time δ + δconnect at the latest, either the connection
attempt will have failed or u and v will have succesfully
connected. This is the maximum time for step 18 of the
protocol.

• δcomm: As stated in the model description, once a con-
nection is formed, the connected processes may engage in
a bounded amount of communication, δcomm defines the
maximum time required for this communication to occur.
This is the maximum time for step 21 of the protocol.

Notice that the specified model only defines how to attempt
outgoing connections. While this abstraction is similar to the
mobile telephone model in that it restricts a process to one
such connection attempt at a time, it will deviate slightly
by allowing a single incoming connection attempt as well.
This allowance will ease our analysis of algorithms in this
setting as it frees a process to accept an incoming connection
attempt regardless of its current state. For now, we will assume
the process of accepting incoming connection attempts is
simply to accept the first connection attempt received and call
COMMUNICATE(sender) where sender is the source of the
incoming connection.

B. The Asynchronous Random Spread Gossip Algorithm

We now instantiate our algorithm as a particular instance
of the asynchronous mobile telephone model protocol by
implementing the four functions specified by the interface.
First we initialize the token set of the process to contain any
tokens it knows. We also instantiate the hash function used
for creating the advertisement tags:

function INITIALIZE
tokens← initial tokens (if any) known by u
H ← a hash function

Next we define the tag function to simply return the hash of
the token set that the process knows:

function GETTAG
return H(tokens)

To select a neighbor from those that a process has discovered,
the algorithm will first create a filtered set of neighbors to
only include those that would be productive to connect to
(those neighbors with different token hashes). Then, following
the random gossip strategy, it will select one such neighbor
uniformly at random. If no productive neighbor exists then
the algorithm doesn’t select any neighbor and remains idle.
Lastly, note that when a productive neighbor is selected,
the algorithm clears its set of known neighbors. As we
will see in Lemma IV.3, refreshing the set of known nearby
processes minimizes the effect of faulty nodes on performance.

function SELECT(neighbors)

productiveNeighbors← ∅

for neighbor in neighbors do
if neighbor.value 6= GETTAG() then

productiveNeighbors.add(neighbor.key)

if productiveNeighbors 6= ∅ then
neighbors← [:] // remove stale advertisements
// chosen uniformly at random
return receiver ∈ productiveNeighbors

else
return null

Finally, if two processes form a succesful connection, they
exchange a single token in the symmetric set difference
between their two token sets:

function COMMUNICATE(receiver)
t← some t ∈ (T ∆ receiver.T )
(exchange token t)

C. Asynchronous Random Spread Gossip Analysis

In this section we analyze the above algorithm. We begin
with a proof of convergence, showing that in the worst case
the asynchronous random spread gossip algorithm spreads all
tokens to all nodes in the network in time O(nkδmax). We
then take advantage of the vertex expansion α to demonstrate
how it increases the rate at which a single token is spread.

1) Proof of Convergence: We begin our analysis by show-
ing that the asynchronous random spread algorithm spreads
all k tokens to the entire network in time at most O(nkδmax).
Firstly, for our analysis of the asynchronous setting, we will
have to redefine our notion of the productive subgraph.

Definition IV.1. At time δ, define Gδ to be the productive
subgraph of the network G = (V,E) at this time such
that Gδ = (V,Eδ) where Eδ = {(u, v) : H(u.tokens) 6=
H(v.tokens) at time δ}.

Notice, as in the previous section, we assume the very low
probability event of hash collisions do not occur. That is:
H(u.tokens) = H(v.tokens) ⇐⇒ u.tokens = v.tokens.
With this in mind, we establish our first bound (remember in
the following that δupdate, δconnect, and δcomm are the relevant
maximum time bounds—unknown to the algorithm—for key
model behavior).

Lemma IV.2. The asynchronous random gossip algorithm
takes time O(nkδmax) to spread all tokens where n is the
number of nodes in the network, k is the number of tokens
to spread, and δmax = O(δupdate + δconnect + δcomm) is the
maximum amount of time between iterations of the algorithm
loop.

Proof. Fix some time δ. Our goal is to show that within the
interval δ to δ + δmax, at least one node learns a new token.
Because this can only occur at most nk times before all nodes



know all tokens, if we can show the above we have established
the lemma.

Fix some time δ. Let Gδ be the productive subgraph (see
the above definition) at the beginning of this interval. If not
all tokens have spread, clearly there exists a node u such that
the deg(u) > 0 in Gδ .

By the guarantees of the model, by time δ′ ≤ δ+ δupdate+
δconnect + δcomm , u will have heard advertisements from all
neighbors in Gδ , and then subsequently looped back to the
top of its main connect loop.

For each neighbor v in Gδ , either u adds v to its set, or
at some point after δ, v and u’s token sets changed such that
u.tokens = v.tokens, preventing u from adding v. In this
case, however, at least one new token was learned by some
node and we are done. If this is not the case, then u now has
a non-empty productiveNeighbors set.

Going forward, let v be the node u randomly chooses
from this set. If the connection fails, this indicates that v is
involved in another connection with some other node v′. If the
connection is successful, then u and v will exchange a token.
Either way, a new token is learned by some node in {u, v, v′}
in at most another δconnect time.

The total amount of time for some node to learn something
new is in O(δupdate + δconnect + δcomm), as needed.

Lemma IV.3. Let t be the maximum number of faulty nodes in
the network, the asynchronous random gossip algorithm takes
time O(δmax(nk + t)) to spread all tokens.

Proof. Again, consider the productive subgraph Gδ at a par-
ticular time δ for a node u when its neighbors set is empty. If
no nodes leave the subgraph then u is guaranteed to learn of all
these neighbors and add them to its neighbors set. However,
now allow some node v in u’s neighbors set to experience
a failure between times δ − δold and δ + δmax (if the failure
happens before δ−δold then by the guarantee of the aMTM, u
will not have received v’s update). Upon entering an iteration
of the outer loop, u may attempt to connect with v since v’s
advertisement is still fresh. In this event, which is clearly the
worst case, the connection fails and time at most δmax was
spent since this is the maximum amount of time the outer loop
can possibly take.

This failure can happen in each new iteration of the outer
loop for at most time δold, at which point the advertisement
ceases to update u’s neighbor set. Therefore, a single failed
node can cause a delay of time at most δold + 2δmax. Since
there are t faulty nodes, this introduces a total slowdown
of t(δold + 2δmax). Therefore, the time for this algorithm
to spread all k tokens is O(nkδmax) + t(δold + δmax).
Furthermore, if we assume δold = O(δupdate) = O(δmax),
O(nkδmax + t2δmax) = O(δmax(nk + t)).

Lemma IV.4. Let b be the maximum fraction of neighbors
for a node u that can be byzantine, the asynchronous random
gossip algorithm takes time O(nkδmax/(1−b)) in expectation
to spread all tokens.

Proof. If the productive subgraph stays connected, the worst
event that can occur during the interval of length δmax is that
an honest node chooses a byzantine neighbor to connect to.
This happens with probability at most b and therefore a node
engages in a productive, honest connection with probability at
least 1− b. Consider the series m of intervals of time at most
δmax and label them with the indicator variables X1, . . . , Xm

such that:

Xi =


0 if the node in interval i connects to a

byzantine node
1 otherwise

nk = E
[ i=m∑
i=1

Xi

]
=

i=m∑
i=1

E[Xi]

=

i=m∑
i=1

1− b = m(1− b)

Therefore, achieving nk successes in expectation, would take
m = nk

1−b intervals. Since each interval takes at most δmax
time, the algorithm takes time O(nkδmax/(1− b)).

2) Analysis of Spreading a Single Token: We now analyze
the spread of a single token in the network to demonstrate that
the performance of the algorithm still improves with the vertex
expansion of the network α in an asynchronous setting. Our
goal in this subsection is to prove the following time bound
to spread a single token:

Theorem IV.5. The asynchronous random spread gossip algo-
rithm takes time at most O(δmax

√
n/α log2 (nα)), where n is

the number of nodes in the network, α is the vertex expansion,
and δmax is the maximum time required for an iteration of the
asynchronous mobile telephone model loop.

Unlike with our analysis of the synchronous algorithm, we
cannot directly leverage a productive subgraph that remains
stable through synchronized rounds. We must instead identify
cores of useful edges amidst the unpredictable churn and argue
that over a sufficiently long interval they deliver a sufficiently
large number of new tokens.

We accomplish this by fixing the productive subgraph at
Gδ and observe an interval of length 2δmax. During this
interval, we want to show that for every edge (u, v) ∈ Eδ
such that u is informed and v is uninformed, either v becomes
otherwise informed or u returns v from SELECT(neighbors)
with good probability during this interval. Namely, this prob-
ability is lower-bounded by the probability u would return v
if neighbors included all of u’s neighbors from Gδ itself.

Lemma IV.6. For a fixed time δ and fixed edge (u, v) ∈ Eδ
such that u knows the token and v does not, if v does not
otherwise learn the token in this interval, node u returns v
from SELECT(neighbors) uniformly at random from a set of



at most deg(u) nodes where deg(u) is the degree of u in
the productive subgraph and the resulting connection attempt
concludes no later than time δ + 2δmax.

Proof. Fix the productive subgraph at this time, Gδ and fix
an informed node u and uninformed node v. Since u is an
informed node, all of its edges in the productive subgraph are
incident to uninformed nodes. Since nodes never forget the
token, the number of uninformed nodes can only decrease.
Now consider an execution of SELECT(neighbors) before
time δ+δmax in which v is added to u.productiveNeighbors.
Since by assumption v does not otherwise learn the to-
ken in this interval, it must be the case that v advertised
its uninformed status in this interval and been included in
u.neighbors and subsequently u.productiveNeighbors so
we know this occurs at least once in the interval δ + δmax
(the extra time δconnect + δcomm is to allow an additional
iteration of u’s loop before SELECT is called). Furthermore,
we know that since the number of uninformed neighbors
can’t increase from that in the productive subgraph Gδ , there
can be at most deg(u) neighbors in u.productiveNeighbors.
Since u returns a particular neighbor from this set with
uniform randomness, the probability that u returns v is at least
1/deg(u). Furthermore, regardless whether or not the resulting
connection attempt is a success or a failure, it finishes in at
most δconnect + δcomm additional time for a total maximum
time of δupdate + 2(δconnect + δcomm) < 2δmax.

Now that we have quantified the amount of time necessary
for a node to successfully connect, we need an estimate for
how many connections we can expect to be succesful. Similar
to our previous analysis, this is dependent on the amount of
competition between connection attempts sent to a single node.
We begin with a useful graph theory definition.

Definition IV.7. For a graph G = (V,E), we define the degree
weight of a node be the sum of the weights of all incoming
edges, where the weight of each edge (u, v) is 1/deg(u).
Formally:

w(v) =
∑

∀u∈V,(u,v)∈E

w(u, v) =
∑

∀u∈V,(u,v)∈E

1/deg(u)

We now prove a useful result about one-round random
matchings in a bipartite graph that leverages our degree weight
definition in its proof.

Lemma IV.8. For a bipartite graph G=(X, Y, E) with edge
independence V(B(X)) = |X| = m. Assume each node
u ∈ X selects a neighbor with uniform randomness with
probability 1/deg(u). With at least constant probability, at
least

√
m/ logm distinct nodes from Y are selected.

Proof. Partition the nodes of Y into a “core” set of nodes Z
with constant degree weight, and a “non-core” set of nodes
Y \ Z with less than constant weight.

We first consider the case where |Z| ≥
√
m. Here it is

sufficient to show that nodes with at least constant weight are

selected with constant probability. For a node v ∈ Z such that
(u, v) ∈ E, the probability that u does not select v is at most
1− 1/deg(u) = 1−w(u, v). Therefore the probability that v
is selected by some node is:

Pr[v is selected] ≥ 1−Πu,(u,v)∈E(1− w(u, v))

≥ 1−Πu,(u,v)∈Ee
−w(u,v)

≥ 1− e−
∑
u,(u,v)∈E w(u,v)

≥ 1− e−w(v)

Since by our assumption w(v) is a constant, v is selected
with at least constant probability. If we denote this probability
p, we can express the probability that v is not selected as
1 − p. Therefore, the expected number of nodes in the core
set that are not selected is at most (1 − p)

√
m. Let W be

the number of core nodes that are not selected, we can apply
Markov’s inequality to demonstrate that the probability we
exceed this expectation by more than a constant fraction is at
most constant:

Pr[W ≥ 2(1− p)
√
m] ≤ 1

2

Therefore, with at least a constant probability, O(
√
m) nodes

are selected from the core set.
Now consider the case where |Z| <

√
m. Observe that for

a node u ∈ X that neighbors a node in Y \ Z, the sum of
the edge weights for edges (u, v) such that v ∈ Y \ Z is at
least 1/

√
m. This is because u can select at most

√
m − 1

other nodes that are not in Y \ Z. Therefore, for each node
in X that neighbors a node in Y \ Z, the node in X chooses
a node in Y \ Z with probability at least 1/

√
m. Since there

must be m − |Z| such nodes in X that neighbor nodes in
Y \Z, in expectation at least O(m/

√
m) = O(

√
m) nodes in

X select a node in Y \ Z.

Next, conditioned on the event that
√
m nodes from X

select non-core nodes, we need to show that not too many
of the nodes in Y \ Z are chosen multiple times. Namely,
we would like to show that the probability that any node is
selected by more than c logm nodes (for some sufficiently
large constant c) from X that choose a non-core node is small.
Fix a node v ∈ Y and define the indicator variable Ij as
follows:

Xj =

{
1 the jth node in X selects v
0 otherwise

Since the size of the maximum matching is size m and there
are m nodes in Y , we know that v has at most constant
degree weight and therefore, in expectation, is selected by
at most a constant number of nodes from X . Denote this
constant expectation µ and apply the following Chernoff
bound to the sequence I1, . . . , Im with expectation µ to upper
bound the probability that the total number of such nodes
I =

∑m
j=1 Ij exceeds c logm. For a sufficiently large constant



c and constant µ we find that this probability is polynomially-
small in m:

Pr[I ≥ (1 + ε)µ] ≤ e−
εµ
3

Pr[I ≥ µc logm] ≤ e−
µ(c logm−1)

3 =
eµ/3

mecµ/3
≤ 1

m
Therefore, if we apply the union bound over the at most m−√
m ≤ m nodes in Y \Z we can upper bound the probability

that any such node is selected by at least c log n nodes in X:∑
i∈[m]

eµ/3

mecµ/3
= m

eµ/3

mecµ/3
< constant

Therefore, with at least constant probability no node is selected
by at least c log n nodes from X that choose non-core nodes.
Therefore, given that

√
m nodes select non-core nodes, with

at least a constant probability at least O(
√
m/ logm) nodes

are selected.

The above lemmas allow us to quantify the number of
successful connections made in an interval of length δupdate+
2δmax with respect to Gδ for some time δ, but we need to
relate this result back to the productive subgraph as a whole.

Lemma IV.9. Fix the productive subgraph Gδ with a maxi-
mum matching of size m. With high probability,

√
m/ logm

successful connections will occur by time δ+δupdate+2δmax.

Proof. For a fixed Gδ , if we consider an edge (u, v) ∈ Eδ
consisting of an informed node u and uninformed node v such
that v is not otherwise informed in this interval, we know
from Lemma IV.6 that u adds v to u.productiveNeighbors
some time before δ + δupdate + δmax. Since u returns v
from SELECT(neighbors) with probability at least 1/deg(u),
inclusion of v in u.produtveNeighbors represents a selection
weight of at least 1/deg(u) for the edge (u, v). Since the
selection weight for this edge never decreases, the edge
weight for (u, v) accumulated in this interval (and therefore its
selection probability) must be at least 1/deg(u) (the weight the
edge would have in the productive subgraph itself). Therefore,
the collection of these edge weights observed over this interval
represents a bipartite graph with maximum matching of size m
where each edge is selected with probability at least 1/deg(u).
Therefore, according to Lemma IV.8, with at least constant
probability,

√
m/ logm nodes are selected over this interval.

Furthermore, each connection attempt takes at most δmax time
which concludes our Lemma as long as Lemma IV.6 holds.

However, since Lemma IV.6 assumes that for each of these
productive edges (u, v), v is not otherwise informed, we must
consider this case as well. However, since (u, v) ∈ Eδ and
v can only have been informed through a prior successful
connection during this interval, it should be clear that this
event does not reduce the number of successful connections
that take place during this interval and so the Lemma is still
satisfied.

To continue our analysis with respect to the vertex ex-
pansion, we now relate the expected number of productive
connections at fixed points in time to the α.

Lemma IV.10. Let S(δ) be the subset of informed nodes
such that n(δ) = |S(δ)| and n∗δ = min(|S(δ)|, |V \ S(δ)|).
Furthermore, abbreviate δupdate + 2δmax to δinterval. With
high probability, if n(δ) ≤ n/2, it takes at most time
2δinterval log (n(δ)α)

√
n(δ)/α to at least double the number

of informed nodes. Explicitly, with high probability:

n(δ + 2δinterval log (n(δ)α)
√
n(δ)/α) ≥ 2n(δ)

Proof. Consider a sequence of fixed times δ0, . . . , δt that are
time δinterval apart. Lemma IV.9 estimates the number of
succesful connections with respect to the size of the maximum
matching while Lemma III.1 which relates the size of the
maximum matching size m to the vertex expansion such that
m ≥ n(δ)α for 0 < n(δ) ≤ n/2. Therefore, with high prob-
ability, the number of nodes that become informed between
δi−1 and δi is n(δi−1) + (1/2)

√
n(δi−1)α/ log (n(δi−1)α).

Therefore, the number of nodes that are informed by time δt
is:

n(δt) = n(δ0) + (1/2)
√
n(δ0)α/ log (n(δ0)α) + . . .

. . .+ (1/2)
√
n(δt−1)α/ log (n(δt−1)α)

Since clearly n(δj) ≥ n(δi) for any j ≥ i, we can simplify
the above:

n(δt) ≥ n(δ0) + (t/2)
√
n(δ0)α/ log (n(δ0)α)

Lastly, if we set n(δt) = 2n(δ0) we can solve for t:

2n(δ0) ≥ n(δ0) + (t/2)
√
n(δ0)α/ log (n(δ0)α)

n(δ0) ≥ (t/2)
√
n(δ0)α/ log (n(δ0)α)

2 log (n(δ0)α)
√
n(δ0)/α ≥ t

Since there are most 2 log (n(δ0)α)
√
n(δ0)/α steps

of length δinterval, the total time to double the
number of informed nodes from n(δ0) is at most
2δinterval log (n(δ0)α)

√
n(δ0)/α.

We now use the length of this interval to analyze the time
required to spread the token to half of the nodes in the network.

Lemma IV.11. It takes time at most O(δmax
√
n/α log2 (nα))

to spread the token to n/2 nodes in the network.

Proof. By Lemma IV.10, we can see that if there
n(δ) informed nodes for a given time δ, after time
2δinterval log (n(δ)α)

√
n(δ)/α, with high probability we at

least double the number of informed nodes. Therefore, to find
the number t of intervals required, it suffices to solve for T
such that:

2T−1 = n/2

Which yields T = log n. Therefore, since each interval
takes time at most O(δinterval

√
n/α log (nα)) =

O(δmax
√
n/α log (nα)), the total time required is

O(δmax
√
n/α log2 (nα)).

We now have all the necessary components to prove our
main theorem about the time required to spread the token to
all nodes in the network.



Proof (of Theorem IV.5). When n(δ) > n/2, our goal is to
reduce the number of uninformed nodes by half. However, we
can no longer relate the size of the maximum matching to the
number of informed nodes since we are instead limited by the
uninformed nodes since |V \ Sδ| < |Sδ|. Therefore, for fixed
times δ0, . . . , δt which are δinterval apart, we can express the
number of uniformed nodes at time δt, n∗(δt), as:

n∗(δt) = n∗(δ0)− (1/2)
√
n∗(δ0)α/ log (n∗(δ0)α)− . . .

. . .− (1/2)
√
n∗(δt−1)α/ log (n∗(δt−1)α)

Setting n∗(δt) = n∗(δ0)/2 and solving for t yields:

n∗(δ0)/2 = n∗(δ0)− (1/2)
√
n∗(δ0)α log (n∗(δ0)α)− . . .

. . .− (1/2)
√
n∗(δt−1)α/ log (n∗(δt−1)α)

≥ (t/2)
√
n∗(δt−1)α/ log (n∗(δt−1)α)

Which shows that t ≤ 2
√
n(δt−1)/α log (n(δt−1)/α),

similar to Lemma IV.10. We can apply a proof symmetric
to that of Lemma IV.11 to relate this time to the time
to spread the token to all the remaining n/2 nodes. Ob-
serve that again we need T = log n intervals of length
2δmax

√
n∗(δ)/α log (n∗(δ)α) since we are halving the num-

ber of uniformed nodes each time. Therefore, the total time
once again is O(δmax

√
n/α log2 (nα)) to spread the token to

all remaining nodes. Therefore, the total running time of the
algorithm is O(δmax

√
n/α log2 (nα)).
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