

Decentralized Spectrum Learning for IoT Wireless
Networks Collision Mitigation

Christophe Moy
Univ Rennes

CNRS, IETR - UMR 6164
F-35000, Rennes, France,

christophe.moy@univ-rennes1.fr

Lilian Besson
CentraleSupélec

CNRS, IETR - UMR 6164
F-35576, Cesson-Sévigné, France
lilian.besson@centralesupelec.fr

Abstract—This paper describes the principles and
implementation results of reinforcement learning algorithms on
IoT devices for radio collision mitigation in ISM unlicensed
bands. Learning is here used to improve both the IoT network
capability to support a larger number of objects as well as the
autonomy of IoT devices. We first illustrate the efficiency of the
proposed approach in a proof-of-concept based on USRP
software radio platforms operating on real radio signals. It
shows how collisions with other RF signals present in the ISM
band are diminished for a given IoT device. Then we describe
the first implementation of learning algorithms on LoRa devices
operating in a real LoRaWAN network, that we named
IoTligent. The proposed solution adds neither processing
overhead so that it can be ran in the IoT devices, nor network
overhead so that no change is required to LoRaWAN. Real life
experiments have been done in a realistic LoRa network and
they show that IoTligent device battery life can be extended by
a factor 2 in the scenarios we faced during our experiment.

Keywords—Internet of Things, IoT, machine learning, radio
spectrum, collision mitigation, interference, LoRa, artificial
intelligence, LoRaWAN, cognitive radio.

I. INTRODUCTION

Future Internet of Things (IoT) networks are expected to
be used all around the world by thousands of devices with
various wireless standards and abilities. In wireless IoT
networks, and in particular in Low Power Wide Area
Networks (LPWAN) operating in the unlicensed bands, the
spectrum is shared by many end-devices without any
coordination, neither between devices, nor between LPWAN
networks themselves. This provokes collisions that could
dramatically limit the promises expected for IoT applications.
As a consequence, IoT wireless networks require to move
towards smarter decentralized frequency resource allocation
solutions. However, what will happen is hardly predictable at
the expected scale of IoT devices life, which should be up to
ten years. Due to both their extremely low cost and complexity
requirements, IoT devices require distributed computational
and energy efficient solutions that operate without any prior
information, and that can deal with uncertainty. The aim of this
article is to assess the potential benefit of reinforcement
learning (RL) and especially of the Multi-Armed Bandit
(MAB) framework, as a solution to the frequency allocation
challenges arising in IoT networks.

We propose to show in this paper the theoretical
foundation of this approach, and prove its viability at two
levels in order to make IoT devices mitigate collisions with
other Radio Frequency (RF) signals present in the ISM
(Industrial Scientific and Medical) unlicensed band. The first

step consists in a PoC (Proof-of-Concept) with a demonstrator
running on real radio signals in laboratory conditions.
Software Defined Radio (SDR) platforms are used here, and
as far as we know it is the first implementation on real radio
signals of learning running on the IoT devices side. The
second step constitutes the first implementation of learning
algorithms on devices deployed in a real LoRa network. The
proposed implementation runs in the 868 MHz band, but could
be used in any other ISM band, whatever the country. Any
other IoT LPWAN (Low Power Wide Area Network) standard
than LoRa could be targeted, as soon as channel assignation is
not imposed by a central node in the network. We named
IoTligent this decentralized (i.e., on device) and uncoordinated
(devices do not communicate with each other) learning
approach.

The rest of the article is organized as follows. The next
section exposes the issue we target in this work and the
corresponding hypotheses. Section II reminds the foundation
of learning algorithms used in our appraoch. Then Section III
details the IoT proof-of-concept design that has been done
with USRP platforms, named MALIN. Section IV explains
how this has been done in a real LoRa network using Pycom
devices. Implementation details are given in Section V and
finally Section VI gives results of experiments done in a real
deployed LoRa network in the city of Rennes, France.

I. ISSUE, HYPOTHESES AND DECENTRALIZATION PROS

A. Collisions vs autonomy

The possibility of suffering from collisions is the main
drawback of IoT in terms of battery autonomy at the first level,
but also of IoT viability itself in the ISM bands. Indeed
collisions may cause (many) retransmissions at the cost of an
increase of the RF contention, and may lead to a lower battery
lifetime. Even worse, this could derive to a total failure of the
IoT device, either because it cannot succeed in sending data to
the network, or because multiple repetitions could make it
consume all its energy.

B. Analysis of collisions

Radio collisions will be the weak point of LPWAN IoT
networks operating in the unlicensed bands, such as ISM
bands. Collisions may occur with:

 other IoT devices of the same network, as several networks
covering the same area are not coordinated. This can occur
between IoT devices uplink (UL) transmissions, and
between IoT UL and gateway downlink (DL)
transmissions towards IoT devices.

 Other IoT devices of surrounding networks others than the
network of our device, but using the same IoT standard.
This can occur both in UL and DL, as surrounding IoT
gateways of different networks are not coordinated. They
could use the same channels, or partly same and partly
different channels.

 Other IoT radio signals using other IoT radio standards.
Each IoT standard uses its own rules for channeling,
bandwidth, user repartition, etc.

 Other radio signals present in the ISM band which are not
IoT signals. By definition, they use completely different
rules than IoT. They are “jammers” from the IoT networks
point of view.

It is also important to note that each IoT standard indeed
uses its own rules for channeling, bandwidth, user repartition,
etc. Therefore, all this leads to an heratic use of spectrum that
cannot be planned, and has to be learnt « in vivo ». However,
unlicensed band does not mean un-ruled band (duty cycle,
power limit, etc), but they are more exposed to the non-respect
of these few rules as regulation is relaxed and thus, controls as
well.

C. A device-side solution for spectrum management

Our learning approach imposes no change on a normal IoT
protocol (as for instance LoRaWAN [1]): no extra
retransmission, no extra-power to be sent, no data to be added
in frames, etc. The only condition is that the proposed solution
should work with the acknowledged mode for IoT. The
underlying hypothesis is that "channels" (there are no official
channels in ISM bands) occupancy by surrounding radio
signals (IoT or not) is not equally balanced. In other words,
some ISM sub-bands are less occupied or jammed than others,
but it is not possible to predict it in time and space, so it has to
be learnt on the fly.

The considered learning algorithm is a kind of artificial
intelligence (AI) algorithm that is compatible with the IoT
device low complexity, as we explain below. It is indeed much
more efficient to implement radio collision mitigation
approaches on the device side, as devices may be quite far
away from gateways, and suffer from different radio and
jamming/co-existence conditions. But they are the place
where every Watt counts at transmission, and where
sensitivity should be the best at reception, as no extra-
processing can be afforded.

D. Advantages of the proposed solution

The proposed approach is based on reinforcement learning
algorithms such as those already studied [2] and experimented
on real radio signals for Cognitive Radio and especially
Opportunistic Spectrum Access (OSA) [5]. We assert that, as
for OSA, the IoT spectrum access issue can be modeled as a
Multi-Armed Bandit (MAB) problem. Reinforcement learning
is based on a feedback loop that gives a success measure of
experience. In the IoT context, we propose to use the
acknowledgement (ACK) sent by the gateway to the IoT
device as a binary reward. Every device aims at maximizing
its transmission success rate, or equivalently, at maximizing
its cumulated reward.

The main advantages of our solution are:

 this algorithm has mathematical proofs of convergence,
 proofs are verified in real radio conditions, thanks to the

good matching between the model and reality,

 learning converges effectively very fast in real
experiments, thus it is adequate for radio applications [3],

 implementation and execution both require very low
processing and memory overhead, so that it is possible to
add the proposed appraoch in IoT devices for a negligible
money cost, negligible complexity (processing, hardware,
memory) and no extra-energy consumption overhead,

 learning starts from scratch, so there is no need for any
prior knowledge at the beginning (and loose some time to
acquire this knowledge),

 using such learning algorithm will never give worse results
than a state-of-the-art random solution, even before
learning brings some advantage, for instance at the very
beginning of the learning process [6].

Hence we argue that the proposed approach can adapt to

any kind of radio context, and we also note that:
 the stationarity of the environment is a requirement for the

proofs of convergence, but if conditions change,
convergence is so fast that a simple solution consist in
reseting learning from time to time [6] (note that there also
exist adaptive versions),

 no coordination is required between devices, but benefits
decrease with the number of devices using the proposed
solution, when it represents a great majority of devices (see
solutions in [6][7]),

 as soon as a device is planned to receive an
acknowledgment, no overhead is added neither in terms of
protocol nor extra bits to be put into the LoRaWAN frames
in uplink or downlink.

II. REINFORCEMENT LEARNING

We model the IoT wireless spectrum issue as a Multi-
Armed Bandit (MAB) problem and we propose to use bandit
algorithms at the IoT device side to solve this issue.

A. System model

We consider the system model presented in Fig. 1, where
a set of object sends uplink packets to the network gateway.

Fig. 1. System model used for IoT, with intelligent IoT devices that are able

to dynamically set their transmission channel thanks to a learning
algorithm, in order to minimize collisions and interference from other
radio signals in the unlicensed ISM band, especially other IoT networks
which will be responsible of most of future traffic.

The communication between IoT devices and this gateway
is done through a simple pure ALOHA-based protocol, where
devices transmit uplink packets of fixed duration whenever
they want. The devices can transmit their packets in K 2

channels. In the case where the gateway receives an uplink in
one channel, it transmits an acknowledgement to the end-
device in the same channel, after a fixed delay. These
communications operate in unlicensed ISM bands, and
consequently, as stated in previous section, suffer in particular
from interferences generated by uncoordinated neighboring
networks. This interfering traffic is uncontrolled, and can be
unevenly distributed over the K different channels.

We consider the network from the point of view of one IoT
device. Every times the end-user has to communicate with the
gateway (at each transmission t 1, t ∈ ℕ), it has to choose
one channel , denoted as C(t) = k ∈ {1, . . . , K}. Then, the IoT
device starts to wait in this channel C(t) for an
acknowledgement sent by the gateway. Before sending
another message (i.e., at time t + 1), the IoT device knows if it
received or not this ACK message. For this reason, selecting
the channel (or arm) k at time t yields a (random) feedback,
called a reward, rk(t) ∈ {0, 1}, being 0 if no ACK was
received before the next message, or 1 if ACK was
successfully received. The goal of the IoT device is to
minimize its packet loss ratio, or equivalently, it is to
maximize its cumulative reward, as it is usually done in MAB
problems [8][9][10] :

𝑟 … ∶= ∑ 𝑟 ()(𝑡) (1)

This problem is a special case of the so-called “stochastic”
MAB, where the sequence of rewards drawn from a given arm
k is assumed to be i.i.d., under some distribution νk, that has a
mean µk. Several types of reward distributions have been
considered in the literature, for example distributions that
belong to a one-dimensional exponential family (e.g.,
Gaussian, Exponential, Poisson or Bernoulli distributions).
Rewards are binary in our model, and so we consider only
Bernoulli distributions, in which rk(t) ∼ Bern(µk), that is, rk(t)
∈ {0, 1} and ℙ(rk(t) = 1) = µk ∈ [0, 1]. Contrary to many
previous work done in the cognitive radio field (for instance in
Opportunistic Spectrum Access [2]), the reward rk(t) does not
come from a sensing phase before sending the t-th message, as
it would do for any “listen-before-talk” model. Rewards come
from receiving an acknowledgement from the gateway,
between the t-th and t+1-th messages. The problem parameters
µ1, ..., µK are of course unknown to the IoT device, so to
maximize its cumulated reward, it must learn the distributions
of the channels, in order to be able to progressively focus on
the best arm (i.e., the arm with largest mean). This requires to
tackle the so-called exploration-exploitation dilemma: a
player (here, an IoT device) has to try all arms a sufficient
number of times to get a robust estimate of their qualities,
while not selecting the worst arms too many times.

Before discussing the relevance of a MAB model for our
IoT application, we present two bandit algorithms, UCB1 and
Thompson Sampling, which are both known to be efficient for
stationary i.i.d. rewards and are shown below to be useful in
our IoT application.

B. The UCB1 algorithm

A first naive approach could be to use an empirical mean
estimator of the rewards for each channel, and select the
channel with the highest estimated mean at each time; but this
“greedy” approach is known to fail dramatically [10]. Indeed,
with this policy, the selection of arms is highly dependent on
the first draws: if the first transmission in one channel fails and
the first one on other channels succeed, the end-user will never

use the first channel again, even it is the best one (i.e., the most
available, in average).

Upper Confidence Bounds (UCB) algorithms instead use a
confidence interval on the unknown mean µk of each arm,
which can be viewed as adding a “bonus” exploration to the
empirical mean. They follow the “optimism-in-face-of-
uncertainty” principle: at each step, they play according to the
best model, as the statistically best possible arm (i.e., the
highest upper confidence bound) is selected. More formally,
for one IoT device, we denote by

𝑁 (𝑡) = ∑ 1(𝐶(𝜏) = 𝑘) (2)

the number of times channel k was selected up-to time t
1. The empirical mean estimator of channel k is defined as the
mean reward obtained by selecting it up to time t,

𝜇 (𝑡) = (1 𝑁 (𝑡)⁄) ∑ 𝑟 (𝜏)1(𝐶(𝜏) = 𝑘) (3)

For UCB1, the confidence term is

𝐴 (𝑡) = 𝛼 log(𝑡) 𝑁 (𝑡)⁄ (4)

And the upper confidence bound is the sum of the
confidence term and the empirical mean,

𝐵 (𝑡) = 𝜇 (𝑡) + 𝐴 (𝑡) (5)

which is used by the end-user to decide the channel for
communicating at time step t + 1:

𝐶(𝑡 + 1) = arg max 𝐵 (𝑡) (6)

UCB1 is called an index policy. The UCB1 algorithm uses
a parameter α > 0, originally α was set to 2 [11], but
empirically α = 1/2 is known to work better (uniformly across
problems), and α 1/2 is advised by the theory [11]. This
algorithm is simple to implement and to use in practice, even
on embedded micro-processors with limited computation and
memory capabilities. In our model, every IoT device
implements its own UCB1 algorithm, independently. For one
IoT device, the time t is the total number of sent messages from
the beginning, as rewards are only obtained after a
transmission.

C. The Thompson sampling algorithm

Thompson Sampling (TS) [8] was introduced early on, in
1933 as the very first bandit algorithm, in the context of
clinical trials (in which each arm models the efficacy of one
treatment across patients). Given a prior distribution on the
mean of each arm, the algorithm selects the next arm to draw
based on samples from the conjugated posterior distribution,
which for Bernoulli rewards is a Beta distribution.

A Beta prior Beta(ak(0) = 1, bk(0) = 1) (initially uniform)
is assumed on µk ∈ [0, 1], and at time t the posterior is
Beta(ak(t), bk(t)). After every channel selection, the posterior
is updated to have ak(t) and bk(t) counting the number of
successful and failed transmissions made on channel k. More
precisely, if the ACK message is received, the update is
ak(t + 1) = ak(t) + 1, and bk(t + 1) = bk(t), otherwise the update
is ak(t + 1) = ak(t), and bk(t + 1) = bk(t) + 1. Then, the decision
is done by sampling an index for each arm, at each time step t,
from the arm posteriors: Xk(t) ∼ Beta(ak(t), bk(t)), and the
chosen channel is simply the channel C(t + 1) with highest
index Xk(t). For this reason, Thompson Sampling is called a
randomized index policy.

The TS algorithm, although being simple and easy to
implement, is known to perform well for stochastic problems,
for which it was proven to be asymptotically optimal [12][13].
It is known to be empirically efficient, and for these reasons it
has been used successfully in various applications, including
on problems from Cognitive Radio [14][15], and also in
previous work on decentralized IoT-like networks [16].

D. Multi-player bandit issue

We can prove that one single intelligent IoT can improve
consequently its performance in LPWAN IoT networks using
unlicensed band. But we have also shown that even if there are
a lot of intelligent IoT devices, and the model of other
surrounding IoT devices does not stay purely stochastic,
learning still brings improvement [6]. Further theoretical
developments on this direction are an interesting future work.

III. IOT PROOF-OF-CONCEPT

We first developped a proof-of-concept named MALIN,
demonstrating the feasibility of using learning algorithms on
the IoT device side, on real radio signals in lab conditions [4].

A. PoC setup

This PoC is based on 4 USRP platforms from Ettus
Research and NI1. The development has been done using the
GNU Radio2 software, and the source code of the PoC can be
found on-line3 in order to reproduce our results. We have not
implemented a real IoT standard in this PoC, in order to show
that it can be applicable for any IoT standard. However, we
took some characteristics rather corresponding to the LoRa
context (not ultra-narrow band, reduced number of channels,
frame duration around a few hundreds of milliseconds, etc.).

One USRP platform is a traffic generator which emulates
as much (random) IoT traffic as we want, to be able to tune
each channel’s load independently, on demand. We typically
choose channel loads from 0% to 20%, which is the scale
supported in theory by a pure ALOHA channel access scheme.

One or two USRP platforms are playing the role of IoT
devices that can run (or not) the proposed learning algorithms.
They transmit at their own initiative some very light
modulated information (using QPSK) so as to be identified by
the gateway and then wait during one second for the gateway
ACK. Both uplink transmissions and downlink receptions are
done on the same frequency channel. Whether the ACK is
received or not, the learning algorithm updates its knowledge
about the channel used during this iteration.

A fourth USRP platform is a gateway (GW) that is
continuously scanning the IoT traffic composed of the
artificial signals produced by the traffic generator and the IoT
platforms signals. The gateway has the ability to answer to the
IoT devices, while sending back to them an ACK message
containing their identifier, which is the symbols corresponding
to the QPSK complex conjugate of their identifier indeed.

In order to simplify the radio signal reception we use an
artificial carrier synchronization between all USRP platforms,
using an Ettus Octoclock1. However, a simple carrier recovery
method could be used. Consequently, we just have a phase
correction to implement at both gateway and IoT receiver
sides, from the radio point of view.

1 https://www.ettus.com/
2 https://www.gnuradio.org/

B. PoC results

The number of IoT channels is a parameter, and we have
set it to 4, 8 and 16 channels in our expermiments, but there is
no limitation. For the of clarity in the figures, we give
examples below with 4 channels that are separated by empty
channels, but they could be contiguous with no change neither
in the implementation nor in the results.

We can see on Fig. 2 a time-frequency waterfall view
captured by the gateway, where we can observe the RF traffic
in 4 channels. Time is vertical and going down and frequency
is on the x axis. The difference of colors is a difference of
received power, due to the distance of transmitters to the
gateway receiver antenna. The gateway transmitter antenna is
very close so signals transmitted by the gateway are red. The
traffic generator and IoT devices are a little bit further away,
so the gateway received weaker signals from them, one is blue
and the other green, which reveals a low difference.

Fig. 2. Spectrum waterfall on GRC received at gateway side in a 4 channels

example, during exeriments. Time is in y axis (going down) and
frequency in x axis. Blue short transmissions are those produced by the
traffic generator, green blocks are our IoT transmissions and red blocks
are the gateway transmissions itself.

In this experiment, we can see en Fig. 2 that channel 1 has
been configured to have a dense IoT traffic, which appears as
blue short transmissions (produced by the traffic generator).
Some others appear on channel 2, but we do not see any blue
short messages on channel 3 and 4. However, we see on these
channels longer messages of two kinds: green messages which
correspond to IoT devices transmissions. In order to rapidly
have results on the demo, we make them transmit every 5
seconds, for a message of duration of one second. Then when
an IoT device transmits a message, the gateway should answer
and sends an ACK to the IoT device within 1 second if the
gateway was able to demodulate the signal, if there is no
collision in the radio channel: these correspond to the red
blocks in Fig. 2. For instance, we can see in this screenshot
that the IoT device moved from channel 3 to channel 2, and at
each transmission of the IoT device, the gateway was able to
answer, successfully sending an ACK response.

Fig. 3 gives the perspective of the IoT device, at a different
moment for the same scenario. Then we observe that colors
have changed, as the received power is now device-centric.
The IoT device transmitter antenna is now very close, so
signals transmitted by the IoT device are red. The traffic
generator, the other IoT devices, and then the gateway all are
a little bit further away, so the IoT device received weaker

3 https://bitbucket.org/scee_ietr/malin-multi-armed-bandit-learning-for-iot-networks-
with-grc is released publicly under the open-source GPLv3 license.

signals from all of them, one is blue and the other green but
inversed. However, it is not so obvious, so it is better to
consider the message duration in the y axis indeed.

We can see on Fig. 3 that if we use the same scenario of
traffic as in Fig. 2, with a very dense traffic on channel 1, less
dense on channel 2, even less dense on channel 3, then
transmission appears on channel 4 but it is indeed just even
less dense. At that time of the experiment, our IoT device is
moving from channel 3, where maybe it faced some collisions
in the dowlink transmission of ACK, to channel 4, where
several successive transmissions and receptions seem to occur.

Fig. 3. Spectrum waterfall on GRC received at IoT device side in a 4

channels example, during exeriments. Time is in y axis (going down)
and frequency in x axis. Green short transmissions are those produced
by the traffic generator, red blocks are the IoT device transmissions,
and green blocks are gateway transmissions.

Fig. 4 is a screenshot taken at some moment during an
experiment, that gives the details of the learning algorithm
operation. We can see in top-left red data the number of times
each channel has been used. There is a clear desequilibrium
with channel 4 that has been much more (17 times) used than
channel 3 (8 times), itself more used than channel 2 (6 times)
and channel 1 (only once). This reveals the effect of the
learning algorithm. It has analyzed which channels are more
occupied and disturbed by other users of the band (emulated
here by the traffic generator). The top-right green and as a
consequence the bottom-right blue data explain such a choice.
Channel 4 has known 16 successes (over 17), so a rate of 94%.
Successes mean that the IoT device received on that channel
16 ACK from the GW after transmitting 17 times in this
channel. So just one “exchange” was lost, either in UL, or in
DL, due to a collision with some interferring signal in the
channel. We can see on the opposite that no success has been
obtained for channel 1, so it has a 0% rate. UCB data, in
bottom-left green part, are harder to follow, as UCB indexes
rapidly converge to very close values, but at each
transmission, the IoT device chooses channel with highest
UCB index, as in (6).

Fig. 4. Live results enabling to monitor the learning algorithm evolution at

the IoT device side in a 4 channels example. Top-left red: number of
trials on each channel, top-right green: number of successes on each
channel (ACK received by IoT device), bottom-left green: UCB index
B for each channel, bottom-rignt blue: success rate on each channel.

IV. IOTLIGENT: LEARNING FOR NON COORDINATED AND
DECENTRALIZED IOT DYNAMIC SPECTRUM ACCESS

The next and last step after modeling and exposing our
proof-of-concept consists in implementing our approach in
real conditions of operation, that is, in a real IoT network. As
far as the authors know, this is the first implementation of
decentralized artificial intelligence algorithms in IoT devices
to tackle the IoT spectrum contention mitigation problem and
we named it IoTligent [20]. It is necessary, first, to remind
quickly how a LoRaWAN network is constituted. We are
using here a real LoRa network in the European ISM band, at
868 MHz.

A. LoRaWAN architecture

The implementation of the learning algorithm we propose
is decentralized, it takes place only on the LoRa device side.
As stated earlier, no aspect of the LoRaWAN network is
impacted. We explain below a little bit more the LoRaWAN
network side configuration [1][19].

A LoRaWAN network, as any other IoT network, can be
summarized by four main elements, as shown in Fig. 5:

 LoRa devices (our devices run the UCB algorithm here),
 LoRa gateway(s) receiving all LoRa radio signals in their

radio range,
 A Lora Network Server (LNS) that discriminates devices

subscribing to its network from others,
 An Application Server (AS) that receives the data sent by

devices and sends back ACK to them (mandatory here).

The IoT devices are associated to a given LoRaWAN
network with a “join phase”, at their very first communication
through a gateway of this network. The appairment is done at
the LoRa Network Server (LNS) side as explained below.
Finally, data extracted from radio signals, sent by the IoT
devices, are sent to the Application Server (AS) that manages
data (i.e. processes them, sends them to a storing place in the

cloud and/or an application). Then the role of the AS is to
initiate a sending of an ACK to the IoT device, through LNS
and a gateway, down to the IoT device.

Fig. 5. LoRaWAN network parts: IoT devices, gateways, LNS and AS [19].

B. Device side

As an IoT device, we use, as shown on Fig. 6, a Pycom
card [17] composed of an Expansion Board and a LoPy
module which can support LoRa wireless connectivity. The
Pycom card is programmed in the Python language. The
frequency channels used in the experiments are those
authorized in the country of experimentation, i.e., France.
Three channels are usually used in Europe for uplink (UL)
with a duty cycle of 1%: 868.1 MHz, 868.3 MHz, 868.5 MHz.
Our proposal IoTligent is completely agnostic to the number
of channels in the standard, so it can be used in any country.

Fig. 6. Pycom module composed of a LoPy4 and an Expansion Board [17].

Note that some amendment had to be done to the Pycom
firmware in order to enable programming channel
assignement in the Python program, in LORAWAN mode.

C. Network side

We have access to the LNS provided by the Acklio
Company. Acklio has several gateways in the city of Rennes,
where the experiments were made. LNS sends the received
messages to an AS which is a Linux server, running in the
cloud. AS is running a Python program that enables to display
data and metadata (i.e., frequency, time of reception, etc). This
programs also contains instructions to send an
acknowledgment to the device, using in DL the same
frequency used by the IoT device at UL.

V. IMPLEMENTATION OF IOTLIGENT IN A REAL LORA

NETWORK

A. Device side

Based on on-line examples found in [17] we use
LORAWAN mode with an Over-The-Air-Activation (OTAA)
using app_EUI and app_key keys:

lora = LoRa(mode=LoRa.LORAWAN,region=LoRa.EU868)

lora.join(activation=LoRa.OTAA, auth=(app_EUI,
app_key), timeout=0)

The transmit channel frequency is then chosen in a set of
N channels which is set here at N = 3. We use standard Europe
UL channels with the following frequency table (in MHz):

tabFreq =[868100000, 868300000, 868500000]

IoTligent device infinite while loop is started, running the
algorithm presented in the next section and [2], in order to
choose which frequency to be selected at each iteration before
executing a send operation. An ACK is then expected from the
network side in non blocking mode so that when ACK is not
received, device just updates its learning data and still goes on.

B. Network side – Lora Network Server

Devices should be declared to LNS with at least the
following information:

 devEUI : ID of the device obtained by executing a
« get_id.py » program from [17] on the Pycom device
itself,

 appEUI : which should correspond to app_eui chosen in
the pycom device,

 appKey: which should correspond to app_key chosen in
the pycom device,

 other parameters are let by default at SF=12 (spreading
factor), and bandwidth BW=125kHz.

The address of the AS is also specified in Connectors, as
well as the mode used to send data between LNS and AS (http
callback chosen here).

C. Network side – Application Server

The AS runs a Python program that receives data from the
LNS, as well as LoRa metadata with all parameters of
LoRaWAN transmission (frequency, SF, BW, time of arrival,
etc). This program also sends an acknowledgment message to
the device in DL. First, an acknowledgment attempt is sent by
default at the same frequency than the message transmitted by
device it answers to. Then we block any other retransmission.
This is exactly what is necessary for the learning of IoTligent:

 to use the same channel in both UL and DL,
 to avoid retransmission in order to save batteries of devices

on the one hand, and radio frequency overload on the
other hand.

VI. LEARNING ALGORITHM IN PYCOM DEVICE

The learning algorithms used in IoTligent are (any) bandit
algorithms, such as those first used for Cognitive Radio
dynamic spectrum access in [2], and implemented in the
SMPyBandits Python library [18]. We take here the example
of UCB1 algorithm, as presented above [5]. We have chosen
these algorithms for their ease of implementation. The only
data necessary to be stored for UCB1 algorithm are:

 an iteration index initialized at 0: itindex,
 a table of size N (the number of channels, 3 in this

implementation example, but it could be arbitrarily high)
for the number of times each channel has been chosen,
representing Nk of (2): Tk[].

 another table of size N for the empirical mean of success
of each channel, i.e., 𝜇 (𝑡) of (3): Xk[].

 From the learning algorithm point of view, a success
occurs when an IoT device receives an ACK from the IoT
network (as explained above), which means that the currently
used frequency channel suffered no collision both in UL and
DL. Otherwise, a failure occurred. The update of the selected
channel empirical mean Xk is reconstructed easily from the
number of activations and previous Xk stored value. So it is not
necessary to store in memory the results of all past iterations,
but just only a summary of it (its mean).

 Then after an initialization phase where each channel is
selected alternatively once, UCB1 algorithm really starts [2] .
It consists for each iteration in choosing the frequency channel
with greatest index Bk as defined in (5), with bias Ak of (4), that
is computed for each channel like this in a for loop on i index,
and with alpha the UCB1 parameter α that sets the exploration
vs. exploitation trade-off [2]:

Ak[i] = math.sqrt(alpha*math.log(it)/Tk[i])

IoTligent channel selection is then on the greatest Bk [2]:

for i in range(N):
 Bk[i] = Xk[i] + Ak[i]
 if Bk[i] > bestChannel:
 bestChannel = Bk[i] ; freq = tabFreq[i]

VII. RESULTS FOR THE IOTLIGENT DEMONSTRATION

Experiments have been done on a real LoRa network
currently deployed with 3 channels. More channels are
expected to be used in the future, but it will not induce any
implementation difference (only 2 extra numbers to be saved
by added channel). We present results obtained on a IoTligent
device, for 129 transmissions done every 2 hours, so a period
of 11 days. Fig. 7 shows the evolution of the Tk index through
time, the number of time each channel has been selected by
the learning algorithm. In the figures, the black curve is for
channel 0 (at 868.1 MHz), the blue curve is for channel 1
(868.3 MHz) and the red curve is for channel 2 (868.5 MHz).

Fig. 7. Evolution of the Tk index through time (as learning happens).

Fig. 8 gives the empirical mean Xk experienced by the
device on each of the 3 channels. Each peak corresponds to a
successful LoRa bi-directional exchange between the device
and AS: from device uplink transmission to ACK reception
(downlink) by the device.

Fig. 8. Evolution of the Xk empirical mean through time. Black curve:
channel 0 ;blue curve: channel 1 ; red curve: channel 2.

We can see that channel 1 gives the best results, before
channel 2, but channel 0 always failed in sending back an ACK
to the device. Each peak in Fig. 8 reveals a successful case
where ACK has been received by IoTligent device. Fig. 8
gives the end results after 11 days. We can see that channel 0
has been tried 29 times with Sk[0] = 0 success (i.e., no ACK
received by the device). So the learning algorithm made the
device use 61 times channel 1 with Sk[1] = 7 successful bi-
directional exchanges, and 39 times channel 2 with Sk[2] = 2
successes. This corresponds to 7 (respectively 2) peaks of
Xk[1] (respectively Xk[2]) on Fig. 2.

TABLE I. RESULTS AT THE END OF THE EXPERIMENT

Tk[0] = 29 Tk[1] = 61 Tk[2] = 39

Xk[0] = 0.0 Xk[1] = 0.115 Xk[2] = 0.051

Sk[0] = 0 Sk[1] = 7 Sk[2] = 2

The empirical mean gives the vision the device obtained
from the channels, i.e., a mean probability of 11.5% of
successful bi-directional connection for channel 1 and 5% for
channel 2, whereas channel 0 never worked from the device
point of view. With a normal device, i.e., a non IoTligent
device, a random access is done, trying once over 3 times on
each channel, for a global average successful rate of 5.5%.

It is important to note that here the learning algorithm is
mostly in its exploration phase, but is learning very fast. Only
during the last 2 days of the experimen, channel 1 has already
been used 4 times more than channel 0 and 2.5 times more
than channel 2, which means that learning is already effective.
As proven for UCB algorithms [2][3], channel 1 will be more
and more selected so that the global success rate will converge
to the percentage of success of the best channel, which is
11.5% in this experiment (this estimate can be considered as a
good evaluation as it is based on 61 trials). In other words, this
means that a mean of 15 successes can be expected in the long
term over the same period of 11 days with IoTligent. On the
contrary, normal devices will never improve and stay in the
current average, i.e. in average 7 successful transmission on
the same period duration.

In order to have the same rate of successful transmissions,
normal IoT devices should consequently transmit twice more
often, which has two negatives impacts. The first impact is that
normal IoT devices autonomy will be twice less than IoTligent
devices. The second but not the least impact is that devices
will occupy twice more times radio channels, hence
contributing to increase even more the risks of radio collisions
and thus the IoT bands congestion.

VIII. CONCLUSION AND PERSPECTIVES

We describe in this paper the solution we propose to
mitigate radio collisions in IoT unlicensed bands. Our solution
is based on learning algorithms to be implemented on the IoT
device side, at a very low cost of implementation and no
protocol overhead. We prove the efficiency of the method on
a proof-of-concept demonstration based on USRP platforms in
laboratory conditions (named MALIN), then we present the
implementation of learning algorithms on devices deployed in
a real IoT network. Implementation on LoRa devices in a real
LoRaWAN network is demonstrated and is named IoTligent.
As far as we know, we propose the first implementation of a
decentralized spectrum learning scheme for IoT wireless
networks. Even if the current IoT networks are (yet) not
densely populated by devices, medium and even short term
forecasts predict a high number of devices to overcrowd ISM
unlicensed bands. The IoTligent approach is then a solution to
extend IoT devices battery life, which is a key performance
indicator in any IoT eco-system.

ACKNOWLEDGMENT

The authors would like to thank Rémi Bonnefoi for the
MALIN implementation [4], as well as Laurent Toutain, from
IMT Atlantique and the Acklio Company, and Yalla Diop for
their technical support on LoRa network and Pycom
programming.

REFERENCES
[1] N. Sornin, M. Luis, T. Eirich and A. L. Beylot “LoRaWAN

specification”, technical report, LoRa Alliance, Inc., January 2015.

[2] W. Jouini, D. Ernst, C. Moy and J. Palicot, “Upper Confidence Bound
Based Decision Making Strategies and Dynamic Spectrum Access,”
IEEE ICC, International Conference on Communications, Cape Town,
South Africa, May, 2010.

[3] C. Moy, “Reinforcement Learning Real Experiments for Opportunistic
Spectrum Access”, Karlsruhe Workshop on Software Radio, Karlsruhe,
Germany, March 2014.

[4] L. Besson, R. Bonnefoi, C. Moy, “MALIN: Multi-Armed bandit
Learning for Iot Networks with GRC: A TestBed Implementation and
Demonstration that Learning Helps”, ICT 2018, France, June 2018.

[5] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem”, Machine Learning, volume 47, number 2-
3, May 2002.

[6] R. Bonnefoi, L. Besson, C. Moy, E. Kaufman and J. Palicot, “Multi-
Armed Bandit Learning in IoT Networks: Learning helps even in non-
stationary settings”, CROWNCOM 2017, Lisbon, September 2017.

[7] A. Anandkumar, N. Michael, A. K. Tang, and A. Swami, “Distributed
algorithms for learning and cognitive medium access with logarithmic
regret”, IEEE J. Sel. Areas Commun., v. 29, no. 4, Apr. 2011.

[8] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, 1933.

[9] H. Robbins, “Some aspects of the sequential design of experiments,”
Bulletin of the American Mathematical Society, vol. 58, no. 5, pp. 527–
535, 1952.

[10] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in Applied Mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[11] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of Stochastic and
Non-Stochastic Multi-Armed Bandit Problems,” Foundations and
Trends® in Machine Learning, vol. 5, no. 1, pp. 1–122, 2012.

[12] S. Agrawal and N. Goyal, “Analysis of Thompson sampling for the
Multi-Armed Bandit problem”, in JMLR, Conference On Learning
Theory, 2012.

[13] E. Kaufmann, N. Korda, and R. Munos, “Thompson Sampling: an
Asymptotically Optimal Finite-Time Analysis”, pp. 199–213. Springer,
Berlin Heidelberg, 2012.

[14] V. Toldov, L. Clavier, V. Loscrí and N. Mitton, “A Thompson
Sampling approach to channel exploration-exploitation problem in
multihop cognitive radio networks”, in PIMRC, 2016.

[15] A. Maskooki, V. Toldov, L. Clavier, V. Loscrí, and N. Mitton,
“Competition: Channel Exploration/Exploitation Based on a
Thompson Sampling Approach in a Radio Cognitive Environment”,
EWSN, 2016.

[16] C. Moy, J. Palicot, and S. J. Darak, “Proof-of-Concept System for
Opportunistic Spectrum Access in Multi-user Decentralized
Networks”, EAI Endorsed Transactions on Cognitive
Communications, volume 2, 2016.

[17] Pycom documentation: https://GitHub.com/PyCom/PyCom-libraries

[18] L. Besson, “SMPyBandits: an Open-Source Research Framework for
Single and Multi-Players Multi-Arms Bandits (MAB) Algorithms in
Python”: https://GitHub.com/SMPyBandits/SMPyBandits
https://SMPyBandits.GitHub.io/

[19] LoRaWAN™ v1.1 Specification, 2017, LoRa Alliance Inc,
https://LoRa-alliance.org/sites/default/files/2018-
04/lorawantm_specification_-v1.1.pdf

[20] C. Moy, “IoTligent: First World-Wide Implementation of
Decentralized Spectrum Learning for IoT Wireless Networks”, URSI
AP-RASC, New Delhi, India, 9-14 March 2019.

