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Abstract—This paper describes the principles and 
implementation results of reinforcement learning algorithms on 
IoT devices for radio collision mitigation in ISM unlicensed 
bands. Learning is here used to improve both the IoT network 
capability to support a larger number of objects as well as the 
autonomy of IoT devices. We first illustrate the efficiency of the 
proposed approach in a proof-of-concept based on USRP 
software radio platforms operating on real radio signals. It 
shows how collisions with other RF signals present in the ISM 
band are diminished for a given IoT device. Then we describe 
the first implementation of learning algorithms on LoRa devices 
operating in a real LoRaWAN network, that we named 
IoTligent. The proposed solution adds neither processing 
overhead so that it can be ran in the IoT devices, nor network 
overhead so that no change is required to LoRaWAN. Real life 
experiments have been done in a realistic LoRa network and 
they show that IoTligent device battery life can be extended by 
a factor 2 in the scenarios we faced during our experiment. 

Keywords—Internet of Things, IoT, machine learning, radio 
spectrum, collision mitigation, interference, LoRa, artificial 
intelligence, LoRaWAN, cognitive radio. 

I. INTRODUCTION 

Future Internet of Things (IoT) networks are expected to 
be used all around the world by thousands of devices with 
various wireless standards and abilities. In wireless IoT 
networks, and in particular in Low Power Wide Area 
Networks (LPWAN) operating in the unlicensed bands, the 
spectrum is shared by many end-devices without any 
coordination, neither between devices, nor between LPWAN 
networks themselves. This provokes collisions that could 
dramatically limit the promises expected for IoT applications. 
As a consequence, IoT wireless networks require to move 
towards smarter decentralized frequency resource allocation 
solutions. However, what will happen is hardly predictable at 
the expected scale of IoT devices life, which should be up to 
ten years. Due to both their extremely low cost and complexity 
requirements, IoT devices require distributed computational 
and energy efficient solutions that operate without any prior 
information, and that can deal with uncertainty. The aim of this 
article is to assess the potential benefit of reinforcement 
learning (RL) and especially of the Multi-Armed Bandit 
(MAB) framework, as a solution to the frequency allocation 
challenges arising in IoT networks. 

We propose to show in this paper the theoretical 
foundation of this approach, and prove its viability at two 
levels in order to make IoT devices mitigate collisions with 
other Radio Frequency (RF) signals present in the ISM 
(Industrial Scientific and Medical) unlicensed band. The first 

step consists in a PoC (Proof-of-Concept) with a demonstrator 
running on real radio signals in laboratory conditions. 
Software Defined Radio (SDR) platforms are used here, and 
as far as we know it is the first implementation on real radio 
signals of learning running on the IoT devices side. The 
second step constitutes the first implementation of learning 
algorithms on devices deployed in a real LoRa network. The 
proposed implementation runs in the 868 MHz band, but could 
be used in any other ISM band, whatever the country. Any 
other IoT LPWAN (Low Power Wide Area Network) standard 
than LoRa could be targeted, as soon as channel assignation is 
not imposed by a central node in the network. We named 
IoTligent this decentralized (i.e., on device) and uncoordinated 
(devices do not communicate with each other) learning 
approach. 

The rest of the article is organized as follows. The next 
section exposes the issue we target in this work and the 
corresponding hypotheses. Section II reminds the foundation 
of learning algorithms used in our appraoch. Then Section III 
details the IoT proof-of-concept design that has been done 
with USRP platforms, named MALIN. Section IV explains 
how this has been done in a real LoRa network using Pycom 
devices. Implementation details are given in Section V and 
finally Section VI gives results of experiments done in a real 
deployed LoRa network in the city of Rennes, France. 

I. ISSUE, HYPOTHESES AND DECENTRALIZATION PROS 

A. Collisions vs autonomy 

The possibility of suffering from collisions is the main 
drawback of IoT in terms of battery autonomy at the first level, 
but also of IoT viability itself in the ISM bands. Indeed 
collisions may cause (many) retransmissions at the cost of an 
increase of the RF contention, and may lead to a lower battery 
lifetime. Even worse, this could derive to a total failure of the 
IoT device, either because it cannot succeed in sending data to 
the network, or because multiple repetitions could make it 
consume all its energy. 

B. Analysis of collisions 

Radio collisions will be the weak point of LPWAN IoT 
networks operating in the unlicensed bands, such as ISM 
bands. Collisions may occur with: 

 other IoT devices of the same network, as several networks 
covering the same area are not coordinated. This can occur 
between IoT devices uplink (UL) transmissions, and 
between IoT UL and gateway downlink (DL) 
transmissions towards IoT devices. 



 

 

 

 Other IoT devices of surrounding networks others than the 
network of our device, but using the same IoT standard. 
This can occur both in UL and DL, as surrounding IoT 
gateways of different networks are not coordinated. They 
could use the same channels, or partly same and partly 
different channels. 

 Other IoT radio signals using other IoT radio standards. 
Each IoT standard uses its own rules for channeling, 
bandwidth, user repartition, etc. 

 Other radio signals present in the ISM band which are not 
IoT signals. By definition, they use completely different 
rules than IoT. They are “jammers” from the IoT networks 
point of view. 
 

It is also important to note that each IoT standard indeed 
uses its own rules for channeling, bandwidth, user repartition, 
etc. Therefore, all this leads to an heratic use of spectrum that 
cannot be planned, and has to be learnt « in vivo ». However, 
unlicensed band does not mean un-ruled band (duty cycle, 
power limit, etc), but they are more exposed to the non-respect 
of these few rules as regulation is relaxed and thus, controls as 
well. 

C. A device-side solution for spectrum management 

Our learning approach imposes no change on a normal IoT 
protocol (as for instance LoRaWAN [1]): no extra 
retransmission, no extra-power to be sent, no data to be added 
in frames, etc. The only condition is that the proposed solution 
should work with the acknowledged mode for IoT. The 
underlying hypothesis is that "channels" (there are no official 
channels in ISM bands) occupancy by surrounding radio 
signals (IoT or not) is not equally balanced. In other words, 
some ISM sub-bands are less occupied or jammed than others, 
but it is not possible to predict it in time and space, so it has to 
be learnt on the fly. 

The considered learning algorithm is a kind of artificial 
intelligence (AI) algorithm that is compatible with the IoT 
device low complexity, as we explain below. It is indeed much 
more efficient to implement radio collision mitigation 
approaches on the device side, as devices may be quite far 
away from gateways, and suffer from different radio and 
jamming/co-existence conditions. But they are the place 
where every Watt counts at transmission, and where 
sensitivity should be the best at reception, as no extra-
processing can be afforded. 

D. Advantages of the proposed solution 

The proposed approach is based on reinforcement learning 
algorithms such as those already studied [2] and experimented 
on real radio signals for Cognitive Radio and especially 
Opportunistic Spectrum Access (OSA) [5]. We assert that, as 
for OSA, the IoT spectrum access issue can be modeled as a 
Multi-Armed Bandit (MAB) problem. Reinforcement learning 
is based on a feedback loop that gives a success measure of 
experience. In the IoT context, we propose to use the 
acknowledgement (ACK) sent by the gateway to the IoT 
device as a binary reward. Every device aims at maximizing 
its transmission success rate, or equivalently, at maximizing 
its cumulated reward. 

The main advantages of our solution are: 

 this algorithm has mathematical proofs of convergence, 
 proofs are verified in real radio conditions, thanks to the 

good matching between the model and reality, 

 learning converges effectively very fast in real 
experiments, thus it is adequate for radio applications [3], 

 implementation and execution both require very low 
processing and memory overhead, so that it is possible to 
add the proposed appraoch in IoT devices for a negligible 
money cost, negligible complexity (processing, hardware, 
memory) and no extra-energy consumption overhead, 

 learning starts from scratch, so there is no need for any 
prior knowledge at the beginning (and loose some time to 
acquire this knowledge), 

 using such learning algorithm will never give worse results 
than a state-of-the-art random solution, even before 
learning brings some advantage, for instance at the very 
beginning of the learning process [6]. 
 
Hence we argue that the proposed approach can adapt to 

any kind of radio context, and we also note that: 
 the stationarity of the environment is a requirement for the 

proofs of convergence, but if conditions change, 
convergence is so fast that a simple solution consist in 
reseting learning from time to time [6] (note that there also 
exist adaptive versions), 

 no coordination is required between devices, but benefits 
decrease with the number of devices using the proposed 
solution, when it represents a great majority of devices (see 
solutions in [6][7]), 

 as soon as a device is planned to receive an 
acknowledgment, no overhead is added neither in terms of 
protocol nor extra bits to be put into the LoRaWAN frames 
in uplink or downlink. 

II. REINFORCEMENT LEARNING 

We model the IoT wireless spectrum issue as a Multi-
Armed Bandit (MAB) problem and we propose to use bandit 
algorithms at the IoT device side to solve this issue. 

A. System model 

We consider the system model presented in Fig. 1, where 
a set of object sends uplink packets to the network gateway.  

 
Fig. 1. System model used for IoT, with intelligent IoT devices that are able 

to dynamically set their transmission channel thanks to a learning 
algorithm, in order to minimize collisions and interference from other 
radio signals in the unlicensed ISM band, especially other IoT networks 
which will be responsible of most of future traffic. 

The communication between IoT devices and this gateway 
is done through a simple pure ALOHA-based protocol, where 
devices transmit uplink packets of fixed duration whenever 
they want. The devices can transmit their packets in K  2 



 

 

 

channels. In the case where the gateway receives an uplink in 
one channel, it transmits an acknowledgement to the end-
device in the same channel, after a fixed delay. These 
communications operate in unlicensed ISM bands, and 
consequently, as stated in previous section, suffer in particular 
from interferences generated by uncoordinated neighboring 
networks. This interfering traffic is uncontrolled, and can be 
unevenly distributed over the K different channels. 

We consider the network from the point of view of one IoT 
device. Every times the end-user has to communicate with the 
gateway (at each transmission t  1, t ∈ ℕ), it has to choose 
one channel , denoted as C(t) = k ∈ {1, . . . , K}. Then, the IoT 
device starts to wait in this channel C(t) for an 
acknowledgement sent by the gateway. Before sending 
another message (i.e., at time t + 1), the IoT device knows if it 
received or not this ACK message. For this reason, selecting 
the channel (or arm) k at time t yields a (random) feedback, 
called a reward, rk(t) ∈  {0, 1}, being 0 if no ACK was 
received before the next message, or 1 if ACK was 
successfully received. The goal of the IoT device is to 
minimize its packet loss ratio, or equivalently, it is to 
maximize its cumulative reward, as it is usually done in MAB 
problems [8][9][10] : 

𝑟 … ∶=  ∑ 𝑟 ( )(𝑡) (1) 

This problem is a special case of the so-called “stochastic” 
MAB, where the sequence of rewards drawn from a given arm 
k is assumed to be i.i.d., under some distribution νk, that has a 
mean µk. Several types of reward distributions have been 
considered in the literature, for example distributions that 
belong to a one-dimensional exponential family (e.g., 
Gaussian, Exponential, Poisson or Bernoulli distributions). 
Rewards are binary in our model, and so we consider only 
Bernoulli distributions, in which rk(t) ∼ Bern(µk), that is, rk(t) 
∈ {0, 1} and ℙ(rk(t) = 1) = µk ∈ [0, 1]. Contrary to many 
previous work done in the cognitive radio field (for instance in 
Opportunistic Spectrum Access [2]), the reward rk(t) does not 
come from a sensing phase before sending the t-th message, as 
it would do for any “listen-before-talk” model. Rewards come 
from receiving an acknowledgement from the gateway, 
between the t-th and t+1-th messages. The problem parameters 
µ1, ..., µK are of course unknown to the IoT device, so to 
maximize its cumulated reward, it must learn the distributions 
of the channels, in order to be able to progressively focus on 
the best arm (i.e., the arm with largest mean). This requires to 
tackle the so-called exploration-exploitation dilemma: a 
player (here, an IoT device) has to try all arms a sufficient 
number of times to get a robust estimate of their qualities, 
while not selecting the worst arms too many times. 

Before discussing the relevance of a MAB model for our 
IoT application, we present two bandit algorithms, UCB1 and 
Thompson Sampling, which are both known to be efficient for 
stationary i.i.d. rewards and are shown below to be useful in 
our IoT application. 

B. The UCB1 algorithm 

A first naive approach could be to use an empirical mean 
estimator of the rewards for each channel, and select the 
channel with the highest estimated mean at each time; but this 
“greedy” approach is known to fail dramatically [10]. Indeed, 
with this policy, the selection of arms is highly dependent on 
the first draws: if the first transmission in one channel fails and 
the first one on other channels succeed, the end-user will never 

use the first channel again, even it is the best one (i.e., the most 
available, in average). 

Upper Confidence Bounds (UCB) algorithms instead use a 
confidence interval on the unknown mean µk of each arm, 
which can be viewed as adding a “bonus” exploration to the 
empirical mean. They follow the “optimism-in-face-of-
uncertainty” principle: at each step, they play according to the 
best model, as the statistically best possible arm (i.e., the 
highest upper confidence bound) is selected. More formally, 
for one IoT device, we denote by 

𝑁 (𝑡) =  ∑  1(𝐶(𝜏) = 𝑘) (2) 

the number of times channel k was selected up-to time t  
1. The empirical mean estimator of channel k is defined as the 
mean reward obtained by selecting it up to time t,  

𝜇 (𝑡) =  (1 𝑁 (𝑡)⁄ ) ∑ 𝑟 (𝜏)1(𝐶(𝜏) = 𝑘) (3) 

For UCB1, the confidence term is  

𝐴 (𝑡) = 𝛼 log(𝑡) 𝑁 (𝑡)⁄   (4) 

And the upper confidence bound is the sum of the 
confidence term and the empirical mean, 

𝐵 (𝑡) = 𝜇 (𝑡) + 𝐴 (𝑡) (5) 

which is used by the end-user to decide the channel for 
communicating at time step t + 1:  

𝐶(𝑡 + 1) = arg max 𝐵 (𝑡) (6) 

UCB1 is called an index policy. The UCB1 algorithm uses 
a parameter α > 0, originally α was set to 2 [11], but 
empirically α = 1/2 is known to work better (uniformly across 
problems), and α  1/2 is advised by the theory [11]. This 
algorithm is simple to implement and to use in practice, even 
on embedded micro-processors with limited computation and 
memory capabilities. In our model, every IoT device 
implements its own UCB1 algorithm, independently. For one 
IoT device, the time t is the total number of sent messages from 
the beginning, as rewards are only obtained after a 
transmission. 

C. The Thompson sampling algorithm 

Thompson Sampling (TS) [8] was introduced early on, in 
1933 as the very first bandit algorithm, in the context of 
clinical trials (in which each arm models the efficacy of one 
treatment across patients). Given a prior distribution on the 
mean of each arm, the algorithm selects the next arm to draw 
based on samples from the conjugated posterior distribution, 
which for Bernoulli rewards is a Beta distribution. 

A Beta prior Beta(ak(0) = 1, bk(0) = 1) (initially uniform) 
is assumed on µk ∈  [0, 1], and at time t the posterior is 
Beta(ak(t), bk(t)). After every channel selection, the posterior 
is updated to have ak(t) and bk(t) counting the number of 
successful and failed transmissions made on channel k. More 
precisely, if the ACK message is received, the update is 
ak(t + 1) = ak(t) + 1, and bk(t + 1) = bk(t), otherwise the update 
is ak(t + 1) = ak(t), and bk(t + 1) = bk(t) + 1. Then, the decision 
is done by sampling an index for each arm, at each time step t, 
from the arm posteriors: Xk(t) ∼ Beta(ak(t), bk(t)), and the 
chosen channel is simply the channel C(t + 1) with highest 
index Xk(t). For this reason, Thompson Sampling is called a 
randomized index policy. 



 

 

 

The TS algorithm, although being simple and easy to 
implement, is known to perform well for stochastic problems, 
for which it was proven to be asymptotically optimal [12][13]. 
It is known to be empirically efficient, and for these reasons it 
has been used successfully in various applications, including 
on problems from Cognitive Radio [14][15], and also in 
previous work on decentralized IoT-like networks [16]. 

D. Multi-player bandit issue 

We can prove that one single intelligent IoT can improve 
consequently its performance in LPWAN IoT networks using 
unlicensed band. But we have also shown that even if there are 
a lot of intelligent IoT devices, and the model of other 
surrounding IoT devices does not stay purely stochastic, 
learning still brings improvement [6]. Further theoretical 
developments on this direction are an interesting future work. 

III. IOT PROOF-OF-CONCEPT 

We first developped a proof-of-concept named MALIN, 
demonstrating the feasibility of using learning algorithms on 
the IoT device side, on real radio signals in lab conditions [4].  

A. PoC setup 

This PoC is based on 4 USRP platforms from Ettus 
Research and NI1. The development has been done using the 
GNU Radio2 software, and the source code of the PoC can be 
found on-line3 in order to reproduce our results. We have not 
implemented a real IoT standard in this PoC, in order to show 
that it can be applicable for any IoT standard. However, we 
took some characteristics rather corresponding to the LoRa 
context (not ultra-narrow band, reduced number of channels, 
frame duration around a few hundreds of milliseconds, etc.). 

One USRP platform is a traffic generator which emulates 
as much (random) IoT traffic as we want, to be able to tune 
each channel’s load independently, on demand. We typically 
choose channel loads from 0% to 20%, which is the scale 
supported in theory by a pure ALOHA channel access scheme. 

One or two USRP platforms are playing the role of IoT 
devices that can run (or not) the proposed learning algorithms. 
They transmit at their own initiative some very light 
modulated information (using QPSK) so as to be identified by 
the gateway and then wait during one second for the gateway 
ACK. Both uplink transmissions and downlink receptions are 
done on the same frequency channel. Whether the ACK is 
received or not, the learning algorithm updates its knowledge 
about the channel used during this iteration. 

A fourth USRP platform is a gateway (GW) that is 
continuously scanning the IoT traffic composed of the 
artificial signals produced by the traffic generator and the IoT 
platforms signals. The gateway has the ability to answer to the 
IoT devices, while sending back to them an ACK message 
containing their identifier, which is the symbols corresponding 
to the QPSK complex conjugate of their identifier indeed. 

In order to simplify the radio signal reception we use an 
artificial carrier synchronization between all USRP platforms, 
using an Ettus Octoclock1. However, a simple carrier recovery 
method could be used. Consequently, we just have a phase 
correction to implement at both gateway and IoT receiver 
sides, from the radio point of view. 

                                                           

1 https://www.ettus.com/  
2 https://www.gnuradio.org/  

B. PoC results 

The number of IoT channels is a parameter, and we have 
set it to 4, 8 and 16 channels in our expermiments, but there is 
no limitation. For the  of clarity in the figures, we give 
examples below with 4 channels that are separated by empty 
channels, but they could be contiguous with no change neither 
in the implementation nor in the results. 

We can see on Fig. 2 a time-frequency waterfall view 
captured by the gateway, where we can observe the RF traffic 
in 4 channels. Time is vertical and going down and frequency 
is on the x axis. The difference of colors is a difference of 
received power, due to the distance of transmitters to the 
gateway receiver antenna. The gateway transmitter antenna is 
very close so signals transmitted by the gateway are red. The 
traffic generator and IoT devices are a little bit further away, 
so the gateway received weaker signals from them, one is blue 
and the other green, which reveals a low difference.  

 

 
Fig. 2. Spectrum waterfall on GRC received at gateway side in a 4 channels 

example, during exeriments. Time is in y axis (going down) and 
frequency in x axis. Blue short transmissions are those produced by the 
traffic generator, green blocks are our IoT transmissions and red blocks 
are the gateway transmissions itself. 

In this experiment, we can see en Fig. 2 that channel 1 has 
been configured to have a dense IoT traffic, which appears as 
blue short transmissions (produced by the traffic generator). 
Some others appear on channel 2, but we do not see any blue 
short messages on channel 3 and 4. However, we see on these 
channels longer messages of two kinds: green messages which 
correspond to IoT devices transmissions. In order to rapidly 
have results on the demo, we make them transmit every 5 
seconds, for a message of duration of one second. Then when 
an IoT device transmits a message, the gateway should answer 
and sends an ACK to the IoT device within 1 second if the 
gateway was able to demodulate the signal, if there is no 
collision in the radio channel: these correspond to the red 
blocks in Fig. 2. For instance, we can see in this screenshot 
that the IoT device moved from channel 3 to channel 2, and at 
each transmission of the IoT device, the gateway was able to 
answer, successfully sending an ACK response. 

Fig. 3 gives the perspective of the IoT device, at a different 
moment for the same scenario. Then we observe that colors 
have changed, as the received power is now device-centric. 
The IoT device transmitter antenna is now very close, so 
signals transmitted by the IoT device are red. The traffic 
generator, the other IoT devices, and then the gateway all are 
a little bit further away, so the IoT device received weaker 

3  https://bitbucket.org/scee_ietr/malin-multi-armed-bandit-learning-for-iot-networks-
with-grc is released publicly under the open-source GPLv3 license. 



 

 

 

signals from all of them, one is blue and the other green but 
inversed. However, it is not so obvious, so it is better to 
consider the message duration in the y axis indeed. 

We can see on Fig. 3 that if we use the same scenario of 
traffic as in Fig. 2, with a very dense traffic on channel 1, less 
dense on channel 2, even less dense on channel 3, then 
transmission appears on channel 4 but it is indeed just even 
less dense. At that time of the experiment, our IoT device is 
moving from channel 3, where maybe it faced some collisions 
in the dowlink transmission of ACK, to channel 4, where 
several successive transmissions and receptions seem to occur. 

 

 
Fig. 3. Spectrum waterfall on GRC received at IoT device side in a 4 

channels example, during exeriments. Time is in y axis (going down) 
and frequency in x axis. Green short transmissions are those produced 
by the traffic generator, red blocks are the IoT device transmissions, 
and green blocks are gateway transmissions. 

Fig. 4 is a screenshot taken at some moment during an 
experiment, that gives the details of the learning algorithm 
operation. We can see in top-left red data the number of times 
each channel has been used. There is a clear desequilibrium 
with channel 4 that has been much more (17 times) used than 
channel 3 (8 times), itself more used than channel 2 (6 times) 
and channel 1 (only once). This reveals the effect of the 
learning algorithm. It has analyzed which channels are more 
occupied and disturbed by other users of the band (emulated 
here by the traffic generator). The top-right green and as a 
consequence the bottom-right blue data explain such a choice. 
Channel 4 has known 16 successes (over 17), so a rate of 94%. 
Successes mean that the IoT device received on that channel 
16 ACK from the GW after transmitting 17 times in this 
channel. So just one “exchange” was lost, either in UL, or in 
DL, due to a collision with some interferring signal in the 
channel. We can see on the opposite that no success has been 
obtained for channel 1, so it has a 0% rate. UCB data, in 
bottom-left green part, are harder to follow, as UCB indexes 
rapidly converge to very close values, but at each 
transmission, the IoT device chooses channel with highest 
UCB index, as in (6). 

 
Fig. 4. Live results enabling to monitor the learning algorithm evolution at 

the IoT device side in a 4 channels example. Top-left red: number of 
trials on each channel, top-right green: number of successes on each 
channel (ACK received by IoT device), bottom-left green: UCB index 
B for each channel, bottom-rignt blue: success rate on each channel. 

IV. IOTLIGENT: LEARNING FOR NON COORDINATED AND 
DECENTRALIZED IOT DYNAMIC SPECTRUM ACCESS 

The next and last step after modeling and exposing our 
proof-of-concept consists in implementing our approach in 
real conditions of operation, that is, in a real IoT network. As 
far as the authors know, this is the first implementation of 
decentralized artificial intelligence algorithms in IoT devices 
to tackle the IoT spectrum contention mitigation problem and 
we named it IoTligent [20]. It is necessary, first, to remind 
quickly how a LoRaWAN network is constituted. We are 
using here a real LoRa network in the European ISM band, at 
868 MHz. 

A. LoRaWAN architecture 

The implementation of the learning algorithm we propose 
is decentralized, it takes place only on the LoRa device side. 
As stated earlier, no aspect of the LoRaWAN network is 
impacted. We explain below a little bit more the LoRaWAN 
network side configuration [1][19]. 

A LoRaWAN network, as any other IoT network, can be 
summarized by four main elements, as shown in Fig. 5: 

 LoRa devices (our devices run the UCB algorithm here), 
 LoRa gateway(s) receiving all LoRa radio signals in their 

radio range, 
 A Lora Network Server (LNS) that discriminates devices 

subscribing to its network from others, 
 An Application Server (AS) that receives the data sent by 

devices and sends back ACK to them (mandatory here). 
 

The IoT devices are associated to a given LoRaWAN 
network with a “join phase”, at their very first communication 
through a gateway of this network. The appairment is done at 
the LoRa Network Server (LNS) side as explained below. 
Finally, data extracted from radio signals, sent by the IoT 
devices, are sent to the Application Server (AS) that manages 
data (i.e. processes them, sends them to a storing place in the 



 

 

 

cloud and/or an application). Then the role of the AS is to 
initiate a sending of an ACK to the IoT device, through LNS 
and a gateway, down to the IoT device. 

 
Fig. 5. LoRaWAN network parts: IoT devices, gateways, LNS and AS [19]. 

B. Device side 

As an IoT device, we use, as shown on Fig. 6, a Pycom 
card [17] composed of an Expansion Board and a LoPy 
module which can support LoRa wireless connectivity. The 
Pycom card is programmed in the Python language. The 
frequency channels used in the experiments are those 
authorized in the country of experimentation, i.e., France. 
Three channels are usually used in Europe for uplink (UL) 
with a duty cycle of 1%: 868.1 MHz, 868.3 MHz, 868.5 MHz. 
Our proposal IoTligent is completely agnostic to the number 
of channels in the standard, so it can be used in any country. 

 
Fig. 6. Pycom module composed of a LoPy4 and an Expansion Board [17]. 

Note that some amendment had to be done to the Pycom 
firmware in order to enable programming channel 
assignement in the Python program, in LORAWAN mode. 

C. Network side 

We have access to the LNS provided by the Acklio 
Company. Acklio has several gateways in the city of Rennes, 
where the experiments were made. LNS sends the received 
messages to an AS which is a Linux server, running in the 
cloud. AS is running a Python program that enables to display 
data and metadata (i.e., frequency, time of reception, etc). This 
programs also contains instructions to send an 
acknowledgment to the device, using in DL the same 
frequency used by the IoT device at UL. 

V. IMPLEMENTATION OF IOTLIGENT IN A REAL LORA 

NETWORK 

A. Device side 

Based on on-line examples found in [17] we use 
LORAWAN mode with an Over-The-Air-Activation (OTAA) 
using app_EUI and app_key keys: 

lora = LoRa(mode=LoRa.LORAWAN,region=LoRa.EU868) 

lora.join(activation=LoRa.OTAA, auth=(app_EUI, 
app_key), timeout=0) 

The transmit channel frequency is then chosen in a set of 
N channels which is set here at N = 3. We use standard Europe 
UL channels with the following frequency table (in MHz): 

tabFreq =[868100000, 868300000, 868500000] 

IoTligent device infinite while loop is started, running the 
algorithm presented in the next section and [2], in order to 
choose which frequency to be selected at each iteration before 
executing a send operation. An ACK is then expected from the 
network side in non blocking mode so that when ACK is not 
received, device just updates its learning data and still goes on. 

B. Network side – Lora Network Server 

Devices should be declared to LNS with at least the 
following information: 

 devEUI : ID of the device obtained by executing a 
« get_id.py » program from [17] on the Pycom device 
itself, 

 appEUI : which should correspond to app_eui chosen in 
the pycom device, 

 appKey: which should correspond to app_key chosen in 
the pycom device, 

 other parameters are let by default at SF=12 (spreading 
factor), and bandwidth BW=125kHz. 

 

The address of the AS is also specified in Connectors, as 
well as the mode used to send data between LNS and AS (http 
callback chosen here). 

C. Network side – Application Server 

The AS runs a Python program that receives data from the 
LNS, as well as LoRa metadata with all parameters of 
LoRaWAN transmission (frequency, SF, BW, time of arrival, 
etc). This program also sends an acknowledgment message to 
the device in DL. First, an acknowledgment attempt is sent by 
default at the same frequency than the message transmitted by 
device it answers to. Then we block any other retransmission. 
This is exactly what is necessary for the learning of IoTligent: 

 to use the same channel in both UL and DL, 
 to avoid retransmission in order to save batteries of devices 

on the one hand, and radio frequency overload on the 
other hand. 

VI. LEARNING ALGORITHM IN PYCOM DEVICE 

The learning algorithms used in IoTligent are (any) bandit 
algorithms, such as those first used for Cognitive Radio 
dynamic spectrum access in [2], and implemented in the 
SMPyBandits Python library [18]. We take here the example 
of UCB1 algorithm, as presented above [5]. We have chosen 
these algorithms for their ease of implementation. The only 
data necessary to be stored for UCB1 algorithm are: 



 

 

 

 an iteration index initialized at 0: itindex, 
 a table of size N (the number of channels, 3 in this 

implementation example, but it could be arbitrarily high) 
for the number of times each channel has been chosen, 
representing Nk of (2): Tk[]. 

 another table of size N for the empirical mean of success 
of each channel, i.e., 𝜇 (𝑡) of (3): Xk[]. 

 

 From the learning algorithm point of view, a success 
occurs when an IoT device receives an ACK from the IoT 
network (as explained above), which means that the currently 
used frequency channel suffered no collision both in UL and 
DL. Otherwise, a failure occurred. The update of the selected 
channel empirical mean Xk is reconstructed easily from the 
number of activations and previous Xk stored value. So it is not 
necessary to store in memory the results of all past iterations, 
but just only a summary of it (its mean). 

 Then after an initialization phase where each channel is 
selected alternatively once, UCB1 algorithm really starts [2] . 
It consists for each iteration in choosing the frequency channel 
with greatest index Bk as defined in (5), with bias Ak of (4), that 
is computed for each channel like this in a for loop on i index, 
and with alpha the UCB1 parameter α that sets the exploration 
vs. exploitation trade-off [2]: 
 

Ak[i] = math.sqrt(alpha*math.log(it)/Tk[i]) 

IoTligent channel selection is then on the greatest Bk [2]: 

for i in range(N): 
  Bk[i] = Xk[i] + Ak[i] 
  if Bk[i] > bestChannel: 
     bestChannel = Bk[i] ; freq = tabFreq[i] 

VII. RESULTS FOR THE IOTLIGENT DEMONSTRATION 

Experiments have been done on a real LoRa network 
currently deployed with 3 channels. More channels are 
expected to be used in the future, but it will not induce any 
implementation difference (only 2 extra numbers to be saved 
by added channel). We present results obtained on a IoTligent 
device, for 129 transmissions done every 2 hours, so a period 
of 11 days. Fig. 7 shows the evolution of the Tk index through 
time, the number of time each channel has been selected by 
the learning algorithm. In the figures, the black curve is for 
channel 0 (at 868.1 MHz), the blue curve is for channel 1 
(868.3 MHz) and the red curve is for channel 2 (868.5 MHz). 

 

Fig. 7. Evolution of the Tk index through time (as learning happens). 

Fig. 8 gives the empirical mean Xk experienced by the 
device on each of the 3 channels. Each peak corresponds to a 
successful LoRa bi-directional exchange between the device 
and AS: from device uplink transmission to ACK reception 
(downlink) by the device. 

 

Fig. 8. Evolution of the Xk empirical mean through time. Black curve: 
channel 0 ;blue curve: channel 1 ; red curve: channel 2. 

We can see that channel 1 gives the best results, before 
channel 2, but channel 0 always failed in sending back an ACK 
to the device. Each peak in Fig. 8 reveals a successful case 
where ACK has been received by IoTligent device. Fig. 8 
gives the end results after 11 days. We can see that channel 0 
has been tried 29 times with Sk[0] = 0 success (i.e., no ACK 
received by the device). So the learning algorithm made the 
device use 61 times channel 1 with Sk[1] = 7 successful bi-
directional exchanges, and 39 times channel 2 with Sk[2] = 2 
successes. This corresponds to 7 (respectively 2) peaks of 
Xk[1] (respectively Xk[2]) on Fig. 2.  

TABLE I.  RESULTS AT THE END OF THE EXPERIMENT 

Tk[0] = 29 Tk[1] = 61 Tk[2] =  39 

Xk[0] = 0.0 Xk[1] = 0.115 Xk[2] = 0.051 

Sk[0] = 0 Sk[1] = 7 Sk[2] = 2 

The empirical mean gives the vision the device obtained 
from the channels, i.e., a mean probability of 11.5% of 
successful bi-directional connection for channel 1 and 5% for 
channel 2, whereas channel 0 never worked from the device 
point of view. With a normal device, i.e., a non IoTligent 
device, a random access is done, trying once over 3 times on 
each channel, for a global average successful rate of 5.5%.  

It is important to note that here the learning algorithm is 
mostly in its exploration phase, but is learning very fast. Only 
during the last 2 days of the experimen, channel 1 has already 
been used 4 times more than channel 0 and 2.5 times more 
than channel 2, which means that learning is already effective. 
As proven for UCB algorithms [2][3], channel 1 will be more 
and more selected so that the global success rate will converge 
to the percentage of success of the best channel, which is 
11.5% in this experiment (this estimate can be considered as a 
good evaluation as it is based on 61 trials). In other words, this 
means that a mean of 15 successes can be expected in the long 
term over the same period of 11 days with IoTligent. On the 
contrary, normal devices will never improve and stay in the 
current average, i.e. in average 7 successful transmission on 
the same period duration. 

In order to have the same rate of successful transmissions, 
normal IoT devices should consequently transmit twice more 
often, which has two negatives impacts. The first impact is that 
normal IoT devices autonomy will be twice less than IoTligent 
devices. The second  but not the least impact is that devices 
will occupy twice more times radio channels, hence 
contributing to increase even more the risks of radio collisions 
and thus the IoT bands congestion.  



 

 

 

VIII. CONCLUSION AND PERSPECTIVES 

We describe in this paper the solution we propose to 
mitigate radio collisions in IoT unlicensed bands. Our solution 
is based on learning algorithms to be implemented on the IoT 
device side, at a very low cost of implementation and no 
protocol overhead. We prove the efficiency of the method on 
a proof-of-concept demonstration based on USRP platforms in 
laboratory conditions (named MALIN), then we present the 
implementation of learning algorithms on devices deployed in 
a real IoT network. Implementation on LoRa devices in a real 
LoRaWAN network is demonstrated and is named IoTligent. 
As far as we know, we propose the first implementation of a 
decentralized spectrum learning scheme for IoT wireless 
networks. Even if the current IoT networks are (yet) not 
densely populated by devices, medium and even short term 
forecasts predict a high number of devices to overcrowd ISM 
unlicensed bands. The IoTligent approach is then a solution to 
extend IoT devices battery life, which is a key performance 
indicator in any IoT eco-system. 
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