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Abstract—Accurate arrival-time predictions in public trans-
portation systems can improve the perceived quality-of-service
offered and increase usage of these systems. To date, predictions
were primarily based on periodic updates of mobility infor-
mation that however exhibit a tradeoff between deterministic
performance and system efficiency. To further improve on this
tradeoff, event-triggering is emerging as a promising operations
paradigm. This work describes an innovative design of a public
transportation tracking system within which arrival-time pre-
dictions are made utilizing an event-triggering framework. As
a first step towards this direction, behavior models are derived
through extensive analysis of real mobility data. Thereafter, an
event-triggering algorithm is developed to detect changes in the
model in an online fashion. The efficiency and applicability of the
proposed data-driven event-triggering paradigm is demonstrated
through a real-world transit scenario that compares event-
triggering updating techniques.

I. INTRODUCTION

It is well understood that the ever increasing mobility needs
of people and goods causes traffic congestion and accidents,
that translate into substantial social and economic impacts.
Further, service unpredictability in public transportation sys-
tems curbs the utilization of public transport, as shown in
[1]-[5]. Most often, unpredictability is caused by the lack
of information, unexpected delays, unanticipated events, and
traffic jams along the traveled routes. For these reasons, a
significant effort has concentrated on developing architectures
and techniques to improve the public transportation service
utilizing more accurate information systems.

To address this problem, electronics that provide access to
various useful sensors (including positioning, speed, etc.) are
employed. Commonly, GPS sensors are used to collect data
for both location and timing, while cellular connectivity is
predominantly used to transfer periodic updates to monitoring
stations. Moreover, tracking systems are implemented using
proprietary hardware or open-source platforms like Arduino
[6] and Android [7],[8]. Collected data is then used to monitor,
manage, and optimize various operations [9]-[12] and provide
real-time information and arrival time predictions to the users
[13]-[16].

Thus, emerging intelligent transportation systems (ITS)
capitalize on the massive growth of affordable sensors, the
rapid increase of the Internet infrastructure, and the ample
computing power of embedded devices, to improve situational
awareness, and ultimately offer decision support for the users
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of the transportation network. As previously mentioned, usu-
ally, these systems employ sensors that sample and record
data from the environment in a periodic manner to inform
a centralized management/monitoring host of the system’s
evolution. However, periodic triggering may result in excess
information communication and processing for those cases
where recurrent patterns exist in the system. In these cases,
clearly, an event triggering approach will be more effective and
more efficient, as it minimizes processing and communication
by taking action only when specific events occur. By analyzing
collected data, behavior models can emerge to provide real-
time information to commuters, through accurate mobility
estimates. To date, regression analysis, machine learning,
and Kalman filtering have been extensively used to analyze
mobility data [17]-[22]. These estimates are used as a baseline
to detect and trigger events when unanticipated patterns are
detected. Doing so, minimizes the communication to only
when deemed necessary. At the same time, processing at the
local hosts is limited to comparing the actual behavior to the
extracted mobility model.

This work examines the benefits of shifting from periodic
to event-based triggering in monitoring the mobility of public
transportation vehicles in road networks. Hereafter, events are
defined as changes to the predictable system behavior extracted
from analyzing recurrent mobility patterns. A novel event
triggering approach is proposed where data obtained from a
real-life public transportation bus fleet is first used to define
models of recurrent mobility patterns. These behavior models
are subsequently used to predict arrival-time estimates across
predefined routes and events are triggered whenever vehicles
deviate from one of the models. Both local and remote hosts
adapt to mobility changes by switching to the most accurate
mobility model that best represents the underlying mobility
settings. The accuracy of the arrival-time estimates and the
effectiveness and efficiency of the proposed model-adaptive
event triggering approach is examined through extensive sim-
ulations with real mobility data for a fleet of buses operating
in Nicosia, Cyprus.

The rest of the paper is structured as follows. The proposed
system architecture is described in Section II, while the
proposed data-driven event triggering paradigm and mobility
modeling are outlined in Section III. Section IV describes
the simulation set-up and the obtained performance results.
Finally, Section V offers some concluding remarks.

II. SYSTEM ARCHITECTURE

The proposed system architecture consists of a local host
onboard the vehicle and a remote host that synchronizes a



Fig. 1. Proposed system architecture.

number of terminals upon receiving mobility updates. The
local host can be, for example, an embedded device onboard
a bus while the remote host can be a web server (or a
cloud-based server) responsible for managing the bus fleet
and informing end-user terminals of arrival times, as depicted
in Fig.1. The local host tracks the actual vehicle mobility
and triggers events whenever a deviation is detected from the
nominal mobility model used. The remote host utilizes the
mobility model to estimate the vehicle mobility whenever there
is no communication. Upon the arrival of a triggered event
the remote host switches to the most appropriate model and
re-synchronizes the monitoring terminals to reflect the most
updated arrival time estimates.

More specifically, during normal operation, the local host
records mobility traces, via GPS readings. The received data
is compared to the expected behavior and if the actual mobility
closely follows the nominal model, then no further processing
or communication is required. If on the other hand, there is
any delay during the traversal of the current segment of the
route then an event is triggered. Upon a triggered event, the
local hosts selects the most representative mobility model from
a predefined list to be used and the necessary information is
sent to the remote host for re-synchronization. The predicted
arrival times are also adjusted accordingly to adhere to the
new state of the system.

III. MOBILITY MODELING

In this section a data-driven method is proposed to extract
mobility models of recurrent behavior patterns. For the use
case considered, a bus route consists of a set of bus stops
B = {1, . . . , B} along a predetermined path. A trip is a
sequence of traces collected along consecutive bus stops b ∈ B
that can be logged with GPS samples. Since GPS traces
have inherent accuracy uncertainties (as discussed in [23]),
we assume that buses reach particular bus stops when found
within a certain range from those bus stops. To achieve this, a
circular region centered around each bus stop is defined with
radii R = {r1, . . . , rB}. These circular regions are used to
compensate for the measurement uncertainties and are utilized
to ascertain whether a measurement falls within the area of a
particular bus stop. The radius of each circular region is chosen
to ensure that the entire bus route is covered by consecutive

regions. This is achieved by setting rb = max{db,b−1

2 ,
db,b+1

2 },
i.e., the entire geographical space between adjacent bus stops
is covered by these circular regions.

Sequences of samples that fall within consecutive bus stop
regions signify repeated trips from which statistical mobility
models can be extracted. Specifically, to calculate the travel
time between two arbitrary bus stops, the time duration be-
tween the GPS traces, recorded for each trip, that are closest
to the designated bus stop locations are used. Given these
travel times, a mobility model of a particular route can then be
obtained as follows. Let tln be a random variable signifying
the travel time observed for the nth trip between a pair of
bus stops {b, b + i} ∈ B, with l denoting the path segment
l = (b 7→ b + i), l ∈ L, and L is the set containing all path
segments. Given these measurements, the first sample moment
θlN after N sample measurements is given as follows:

θlN =
1

N

N∑
n=1

tln, ∀ l ∈ L (1)

It is important here to also note that higher order moments
(i.e., θklN = 1

N

∑N
n=1 [tln]

k for the kth moment) improve the
knowledge with regards to the actual probability distribution
of tln.

In addition, sample moments can be updated recursively
with each new sample. The updating for an arbitrary moment
can be expressed as follows:

θkl(N+1) =
1

N + 1

N+1∑
n=1

[
tl(n+1)

]k
=

1

N + 1

(
N∑

n=1

[tln]
k
+
[
tl(N+1)

]k)

=
NθklN +

[
tl(N+1)

]k
N + 1

(2)

where, as shown in eq. (2), the updating simply requires
the total number of samples already fed into the calculation,
N , and the latest moment value, θlN . Each moment can be
updated dynamically with only these two elements. In this
way, the behavior (i.e., the mobility model) can be charac-
terized by the first K = 1, . . . , k moments for each leg of
the path instead of the raw sample data, greatly reducing the
processing and storage/memory load of the computing units.
Of course, better accuracy can be achieved by introducing
higher-order moments. In addition, the central moments can be
computed from the raw moments using the binomial transform
ϑklN =

∑k
i=0

(
k
i

)
(−1)k−iθklN (θ1lN )k−i.

Evidently, the distribution of travel times between bus stops
is improved with an increasing number of observations made
over time. This distribution can be used to set bounds on
the travel times anticipated on the route and in turn trigger
interrupts when deviations are observed. As expected, loose
bounds can reduce the frequency of triggered deviation events,
resulting however to lower tracking accuracy, whereas tight
bounds will result in an unnecessarily high number of triggered
events.

For simplicity, in this work the mean travel time τij , {i, j} ∈



33.36 33.37 33.38 33.39 33.4 33.41 33.42

35.14

35.145

35.15

35.155

35.16

35.165

35.17

35.175

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

 

 

1
2 3 4

5

6

7

8

9
10

111213
14

1516171819 20
21

222324
25
26

27 28 2930
31

32
3334

35
36

37
3839

40
41 42

Route 150

Designated Bus Stops

Fig. 2. Service route 150 with designated bus stops in the forward service
direction (i.e., Direction 1).

B in segment (i 7→ j) is used to model the mobility along a
route, and an arbitrary threshold α is used as a travel time
bound τij ± α, to trigger deviation events. Clearly, additional
models can be derived from the travel time distribution with
additional corresponding thresholds. For instance, the 5th and
95th percentiles can be used to represent the left and right tail
of the travel time distribution and can be used to model the
behavior of the vehicle under light and heavy road utilization
conditions. In the latter case, a mean and bound τp5

ij ± αp5

and τp95

ij ± αp95 for both the 5th and 95th percentiles can be
used in addition to the true mean value of the distribution as
additional switching models.

IV. EXPERIMENTAL SETUP AND ANALYSIS

To test the proposed framework, real traces collected from
buses operating by the Transportation Organization of Nicosia
District (OSEL) are considered. Approximately 50, 000 traces
are collected from 3 buses serving route 150. Route 150
consists of 85 bus stops, where bus stops 1 − 42 are serving
the forward direction (Direction 1) and bus stops 43− 85 are
serving the opposite direction (Direction 2). Naturally, separate
models are used for each direction. The bus stops (Direction
1) of Route 150 are illustrated in Fig. 2. The coverage radii
for each bus stop are then calculated for Direction 1 and 2
separately.

A. Fault-tolerance to Measurement Errors

As noted above, localization errors are inherent in GPS
measurements, with errors ranging from a few meters to a
few tens of meters. Such errors can falsely indicate the arrival
time at particular bus stops. This is due to the fact that, at
crossroads, the coverage of adjacent bus stops can overlap
(e.g., bus stop 20 in Fig. 2) causing the triggering of erroneous
events as seen in Figure 3(a). To address the aforementioned
challenge, a hysteresis function is introduced so that a sudden
switch in the indicated bus-stop index (denoting the vehicle
position) does not result in an immediate triggering of an

(erroneous) event. This hysteresis function employs a window
of measurements to compute the likelihood of change in
position. Figures 3(b), 3(c), and 3(d) illustrate the bus stop
index assigned to the received measurements for different
measurement windows when a maximum likelihood estimator
is used.

As shown in these plots, it is evident that the best threshold
for the hysteresis window is of length 3. An additional test
was also performed to ascertain whether the hysteresis window
of length 3 significantly impacts true-positive event triggers.
Figure 4 depicts the number of events per trip, per day of
the week, triggered when no hysteresis is employed and when
a hysteresis window of length 3, 4 and 5 is used. With a
window of length 4 and 5, the results are similar, while with
a window of length 3, the aggregated number of changes
matches those of the actual schedule and thus all erroneous
events are suppressed.

B. Performance Evaluation

For the results presented, four separate behavior models
are used for the arrival time prediction, namely the mean
travel time, and the 80th, 95th, and 99th percentiles of traveling
times. In the performance evaluation that follows, results were
produced for the case where only a single model is considered
(the mean travel time model) and for the case where all four
models are considered for mobility tracking.

In the performance evaluation, 70% of the traces were used
for building the models and the rest were used for testing.
For all the results depicted hereafter, a hysteresis window
of length 3 is employed as detailed in Section IV-A, so as
to suppress erroneous triggering events. Overall, the depicted
results include 322 round-trip traces.

Two scenarios are simulated in this work. In the first
scenario, the mean travel model is utilized for predicting the
travel times, and delay events are triggered when the actual
travel time to the next bus stop deviates by 120 seconds from
the predicted one. Additionally, any deviation events are only
used to update the travel times of both the remote host and
the terminals without any model switching taking place.

In contrast, the second scenario involves interchanging
among the four behavior models. In this case, travel time
deviations between predicted and actual arrival times result
in switching to the model that best matches the travel time
reported in the received interrupt. The state flow diagram
corresponding to the model switching process is shown in
Figure 5. When a state transition occurs, a deviation event is
triggered and the remote host is informed about the transition.
The remote host, in turn, uses the same state flow diagram
to switch its current model and to send the appropriate travel
time estimates to the terminals.

Figure 6 displays the histograms of events at each bus
stop per trip for the two scenarios considered. As indicated
in the figures, the average number of deviation events is
approximately 0.35 per trip, while 0.06 erroneous switching
events per trip are observed. The second scenario yields 0.29
deviation events per trip and 0.05 erroneous switching events,
resulting in a 17.62% decrease in deviation events and in a
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Fig. 3. (a) Number of events near each bus stop during normal assignment. (b) Number of events near each bus stop during assignment utilizing a 3-sample
hysteresis. (c) Number of events near each bus stop during assignment utilizing a 4-sample hysteresis. (d) Number of events near each bus stop during
assignment utilizing a 5-sample hysteresis.

1 2 3 4 5 6 7

Day of Week

0

50

100

150

200

250

300

350

400

N
u

m
b

e
r 

o
f 

E
v

e
n

ts

Hysteresis 5

Hysteresis 4

Hysteresis 3

Actual

Fig. 4. Direction changes per day of the week.

6.29% decrease in the number of erroneous switching events.
These improvements are due to the model-adaptive capabilities
considered in the second scenario, demonstrating the validity
and effectiveness of the proposed framework.

Fig. 5. Behavior model transitions during normal mode operation.

V. CONCLUSIONS

In this work, a data-driven event triggering technique has
been developed for accurate mobility tracking that minimizes
communication overhead between remote hosts and termi-
nal nodes, as well as the information processing and stor-
age/memory requirements at the local hosts, compared to the
case of periodic triggering. The proposed technique effectively
addresses the trade-off between tracking efficiency and com-
munication/processing overhead, thus minimizing the system’s
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Fig. 6. Performance evaluation for a) Scenario 1, and b) Scenario 2.

operating cost, while providing accurate vehicle tracking. The
proposed technique has been evaluated using real GPS traces
collected from a fleet of buses serving a particular bus route,
demonstrating an improvement in the system’s performance
when utilizing the multi-model approach compared to the use
of single-model event-triggering techniques.
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