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Abstract

The lack of adequate training data is one of the major hurdles in WiFi-based activity recognition 

systems. In this paper, we propose Wi-Fringe, which is a WiFi CSI-based device-free human 

gesture recognition system that recognizes named gestures, i.e., activities and gestures that have 

a semantically meaningful name in English language, as opposed to arbitrary free-form gestures. 

Given a list of activities (only their names in English text), along with zero or more training 

examples (WiFi CSI values) per activity, Wi-Fringe is able to detect all activities at runtime. We 

show for the first time that by utilizing the state-of-the-art semantic representation of English 

words, which is learned from datasets like the Wikipedia (e.g., Google’s word-to-vector [1]) 

and verb attributes learned from how a word is defined (e.g, American Heritage Dictionary), we 

can enhance the capability of WiFi-based named gesture recognition systems that lack adequate 

training examples per class. We propose a novel cross-domain knowledge transfer algorithm 

between radio frequency (RF) and text to lessen the burden on developers and end-users from the 

tedious task of data collection for all possible activities. To evaluate Wi-Fringe, we collect data 

from four volunteers in a multi-person apartment and an office building for a total of 20 activities. 

We empirically quantify the trade-off between the accuracy and the number of unseen activities.

I. INTRODUCTION

The ubiquity of WiFi in indoor spaces and the availability of signal characteristics such as 

the channel state information (CSI) in commodity WiFi chipsets make WiFi an attractive 

technology for human activity monitoring. Alternate solutions that use wearables such as 

smartwatches and activity trackers are less effective due to their usage adherence issues, 

and systems that use cameras raise serious privacy concerns. WiFi sensing, on the other 

hand, is device-free, non-intrusive, and less privacy-invasive. Hence, we see an increase 

in WiFi-based sensing and inference systems whose feasibility has been demonstrated in 

applications such as home activity monitoring [2], sleep monitoring [3], controlling devices 

using gestures [4], [5], and tracking health vitals [6].
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WiFi-based activity recognition systems employ either template matching algorithms or 

machine learning classifiers such as traditional support vector machines [7] as well as 

advanced deep convolutional neural networks [8]. These algorithms require a decent number 

of training examples for each class of activity in order for the system to accurately classify 

them. Furthermore, the capability of these systems are fundamentally limited by the number 

of activity classes for which the system has been trained for. When these systems are 

presented with a completely new type of activity, there is no built-in mechanism to make an 

educated guess about the possible class label for that unseen example.

Figure 1 illustrates this scenario. When a system is trained to recognize only {walk, drink}, 

but is presented with an example of an unseen activity, e.g., run, it is likely to detect the 

activity as either walk (based on the closest match) or it will determine that it is an unknown 

category (based on a distance threshold). At present, existing systems have no inherent 

mechanism to infer that the activity could be run, as these systems have no prior knowledge 

of how an activity called run might be. These systems require user labeled samples of run 

and retrain the model to recognize it.

In this paper, we propose the first system, called the Wi-Fringe, which can infer activities 

from WiFi data without requiring prior training examples for all of its activity classes. The 

principle behind Wi-Fringe is popularly known as the zero-shot learning [9], [10], which is 

an active research topic in computer vision and acoustics [11]. These techniques, however, 

are not directly applicable to RF-based gesture recognition problems, since gestures require 

tracking sequential properties of the signal and external knowledge about the attributes that 

defines an activity.

To the best of our knowledge, we are the first to apply zero-shot learning in RF-based 

device-free activity recognition problem, where the core idea is to exploit information or 

learned knowledge from other sources such as textual descriptions, rules, and logic. For 

example, to teach the concept of run to a system that has already learned to recognize walk, 

instead of training it with many examples of run, we can add a rule into the system, e.g., 

“run is just like walk but it’s 3 to 5 times faster.” At runtime, the system will use this 

additional information to classify a run activity correctly.

In Wi-Fringe, to embed such rules between seen classes (i.e., explicitly trained) and unseen 
classes (i.e., not explicitly trained) in an RF sensing system, we exploit attributes and 

context-aware representation of English words as the additional source of knowledge. 

Through a RF-domain to textdomain projection algorithm, we blur the difference between 

an activity’s RF signature and its corresponding English word/phrase by representing them 

in the same vector spaces, i.e., word embedding [12] and word attribute [13] spaces. The 

intuition behind Wi-Fringe is that the WiFi signature of an activity correlates with the 

corresponding verb’s semantic and attribute information. Like two similar activities perturb 

the WiFi signals similarly, when we describe these two activities in English sentences, we 

see a similar likeness between the sentences. We generalize this notion for an arbitrary 

number of activities represented in both RF and text domains, and find a projection between 

the two representations from the RF domain to the text domain. By learning this projection, 
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we gain the ability to find the corresponding English word from the RF representation of any 

arbitrary activity.

Projecting RF signals onto the space of textual representation is non-trivial and poses several 

challenges that are addressed in this paper. First, we propose context-aware RF features 

by explicitly learning the transition of states (i.e., micro-activities) in an activity. We show 

that such a representation is robust and yields better features for activity recognition in 

general. Second, we propose a neural network architecture to merge text- and RF-domain 

representations of activities so that WiFi CSI data are mapped to the attributes and 

distributional characteristics of English words. This results in the first cross-modal RF 
embedding work, and paves the way for device-free WiFi-based activity classification 

without requiring training data for all activities. Third, we propose a two-level classifier 

that is capable of classifying both seen and unseen activity types. This makes Wi-Fringe a 

generalized system for classifying a wide variety of human activities.

We develop Wi-Fringe using Intel Network Interface Card (NIC) 5300 [14] which captures 

the WiFi CSI data. To develop the machine learning models, we collect training and testing 

data from four volunteers in a multi-person apartment as well as in an office building for 20 

activity classes — which is, to the best of our knowledge, the largest collection of activities 

used in any WiFi-based device-free gesture recognition system till date. We empirically 

quantify the trade-off between the accuracy and the number of unseen activities, and show 

that Wi-Fringe achieves 61%−90% accuracy, as we vary the number of unseen classes from 

60% to 20%.

II. BACKGROUND

A. Channel State Information (CSI)

When wireless signals travel through the medium, they fade, they get reflected and scattered 

by obstacles on the way, and their power decays with the distance traveled. The Channel 
State Information (CSI) is a measure of all these phenomena of a wireless channel. 

We express the relationship between the transmitted signal X(f,t), the channel frequency 

response (CFR) H(f, t), and the received signal Y (f, t) as: Y (f, t) = H(f, t) · X(f, t) + N(f, 
t), where N(f, t) denotes the noise. The CSI comprises of the CFR values, i.e., {H(f, t)}. 

In WiFi, bits are transmitted simultaneously over 64 distinct frequencies or sub-carriers in 

parallel. The frequency response, H(f, t) of each sub-carrier is a complex number. For NTX 

transmitting antennas, NRX receiving antennas, and NS sub-carriers, we get a CSI matrix of 

complex numbers having the dimensions of NTX × NRX × Ns.

B. Word Embedding

The process of Word Embedding [12] maps words in a natural language to vectors of real 

numbers in a manner that words that are commonly used in the same textual context are 

positioned closely in the vector space. For example, consider the words: love and adore. 

Syntactically these two words are quite different, but they often appear in similar semantic 

contexts, i.e., with similar words. Hence, the word embedding process would map these two 
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words to two vectors whose distance is relatively closer than the embedding of two random 

words. We use Word2Vec [1] which is the most popular method to extract word embedding.

C. Attribute Embedding

While word embedding captures the co-occurrence information of words used in the same 

context, it does not describe the meaning of a word. Recently, natural language processing 

community has proposed an effective method to learn the attributes of English verbs from 

their dictionary definitions [13]. In this new method, verbs are expressed in terms of a set 

of attributes. Each verb is expressed as a vector of real numbers where each element of 

the vector corresponds to an attribute. Table I provides a simplified example. Three verbs: 

Drink, Sip, and Drool are expressed in terms of four attributes: Motion, Social, Object, 
Head, where the attributes correspond to the degree of motion, degree of social engagement, 

use of objects, and use of head, respectively. The process of attribute extraction is a 

supervised learning task where attributes are predicted from a word’s dictionary definition. 

We refer to [13] for further details on the attribute learning process.

D. Zero-shot Learning

Recent branch of classification algorithms, known as Zero Shot Learning [15] do not require 

training data for all the classes to recognize them. Most Zero shot learning algorithms 

leverage knowledge from other domain such as text to classify in other domain such as 

images. The idea here is to project visual features and their corresponding labels in the same 

semantic space.

III. WI-FRINGE SYSTEM DESIGN

Wi-Fringe takes a short-duration WiFi CSI stream (e.g., 5–8 seconds) and a list of possible 

activity types (i.e., a list of tags) encoded as one hot encoding [16] as the input, and 

processes the CSI stream through a signal processing pipeline to classify it as one of those 

given activity types. The duration is chosen short following [17], [18] as it is long enough 

to detect human activity. Although, Wi-Fringe takes possible activity types as input from 

the user, the labels do not have any influence on the training phase. This list is only used 

in classification stage for limiting the search space for better accuracy. If we do not have 

these additional labels, then the search space becomes too large (i.e., as big as having 

all the words in our database for a language) in the classification stage. Therefore, the 

user provided labels for unseen class is important in getting better accuracy for unseen 

activities.. The design of Wi-Fringe is modular. Computationally expensive modules such 

as the onetime offline training of the classifiers are run on a server, while the end-to-end 

activity classification pipeline—from sensing to classification—is runnable on embedded 

systems such as smartphones and tablets1.

Figure 2 shows the signal processing pipeline of Wi-Fringe, which consists of three main 

steps: State-Aware Representation, Cross-Modal Projections, and Two-Stage Classifier. The 

State-Aware Representation step extracts local and contextual features from the CSI stream. 

1Recent developments [19] have shown how to extract CSI on smartphones. In this paper, we conduct experiments using an Intel NUC 
[20].
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These features are projected onto the word and attribute spaces to incorporate external 

knowledge from the text domain in the Cross-Modal Projections step. The two-stage 

classifier determines if the input belongs to a seen or an unseen class and then classifies 

it accordingly. There are two classes of activities that Wi-Fringe may encounter at runtime: 

seen and unseen classes. The seen class refers to those activity types for which Wi-Fringe 

has labeled CSI streams for training. The unseen class, on the other hand, refers to activity 

types for which Wi-Fringe does not have any training CSI stream. The next three sections 

describe the algorithmic details of these three components of Wi-Fringe.

IV. STATE-AWARE REPRESENTATION

A. The Need for State-Aware Representation

The goal of this step it to obtain a state-aware representation of WiFi CSI values 

corresponding to an activity which encodes both the local features as well as the contextual 
features of an activity. The local features refer to the frequency response of an activity at 

a particular time-step. In contrast, the contextual features learn the temporal relationship 

among the local features. Existing works [21], [2] do not consider both local and temporal 

sequential nature of an activity when converting raw CSI values to feature vectors. To 

overcome the limitations of existing activity modeling techniques, we propose state-aware 
feature representation of CSI streams that captures complex, non-linear dependencies 

between micro-actions that constitute an action—without requiring a strict Markovian 

assumption or a predefined, fixed set of states. To achieve this, we employ a Convolutional 
Neural Network (CNN) [22] and a Recurrent Neural Network (RNN) [22] in tandem to 

capture the local and the contextual (temporal) features, respectively.

B. Rationale Behind Deep Neural Networks

The CSI spectrogram exhibits rich, informative, and distinguishable patterns for different 

states within an activity. It contains local information, for which, a CNN is the most suitable 

choice [22]. CNNs contain a hierarchy of filters, where each filter’s job is to detect the 

presence of a particular pattern in a small region on the spectrogram. In Figure 3, we use 

rectangular boxes on the spectrogram which are recognized by the different convolutional 

filters of the CNN shown on the left. To model the sequential variation of states within an 

activity, we choose Long Short Term Memory (LSTM) as the recurrent component since 

LSTMs are better at learning longterm dependencies between states [22], which makes them 

suitable for capturing relationship between the past states with the recent states. To preserve 

contextual information from both the future and the past states, we use a bi-directional 

LSTM model.

C. Detailed Algorithmic Steps

Figure 4 shows the integrated neural network architecture that takes CSI spectrogram as the 

input and produces the stateaware vector representation through a sequence of processing 

steps.

• CSI Processing: For a given CSI stream, X that corresponds to an instance of an 

activity, we divide the CSI values into n equal segments {X1,X2,…,Xn}, which are the 

Islam and Nirjon Page 5

Int Conf Distrib Comput Sens Syst Workshops. Author manuscript; available in PMC 2021 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



states. Here, n is empirically determined, we used n = 5, that corresponds to one seconds 

of CSI data, in all our experiments. Smaller value of n leads to little segment of states 

which may not carry rich local information. While larger value of n makes longer states, thus 

less information about the transition between them which eventually leads to poor temporal 

information. For each segment Xi, we take the spectrogram [23] to obtain Si as follows: 

Si = STFT(Xi). Here, STFT(.) denotes Short-Time Fourier Transform [24], which estimates 

the short-term, time-localized frequency content of Xi. Recent works [17], [2] show high 

accuracy with frequency domain feature for supervised WiFi based activity recognition.

• CNN Processing: We use a three-layer CNN, Gθ, where θ are the parameters of 

the network, which takes Si as the input and produces a 1000 dimension vector, Li that 

represents the local features of the input spectrogram: Li = Gθ(Si).

• RNN Processing: For a total of n segments, we obtain n local feature maps Gθ(Si) 

from the CNN. Each state’s local feature is fed into a bi-directional LSTM (bi-LSTM) to 

model the contextual property of the states of an activity. The bi-LSTM network has two 

unidirectional LSTMs, i.e., a forward and a backward LSTM. For the forward LSTM, each 

hidden state Hi depends on the previous state Hi−1 and the input Si. On the other hand, for 

the backward LSTM, each hidden state Hi depends on the future state Hi+1 and the input Si.

• Representation: The final hidden representation of the bidirectional LSTM is the 

concatenation of H i and Hi.

V. CROSS-MODAL PROJECTIONS

In this section, we describe the cross-modal projection step of Wi-Fringe which brings 

external knowledge from the text domain to enable classification of unseen activities.

A. The Need for Cross-Modal Projections

The secret recipe behind Wi-Fringe’s ability to classify unseen activities is the cross modal 
projection. Through this step, we blur the difference between an activity’s CSI stream and 

its corresponding English word embedding and attributes, and make them (almost) equal 

in their feature representations. In other words, if an English word (say, run) has a known 

vector representation (e.g., obtained using Google’s Word-2Vec [1] on a large dataset like 

Wikipedia) and a vector of attributes of the word (e.g., movement of legs and motion of 
hands, which is obtained from [13]), the goal of the cross-modal projection is to generate the 

exact same vectors when Wi-Fringe is presented with a CSI stream of that word (i.e., CSI of 

running).

B. Rationale Behind Multiple Projections

The benefits of cross-modal projection from CSI to two latent spaces, i.e., word and activity­

attribute spaces, are as follows:

• Word Embedding Space: There are over 150 thousand English words for which 

researchers in the natural language processing field have created semantically aware vector 
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representations, called the Word Embedding. Such an embedding preserves the contextual 

relationship among words and puts two words that are similar in meaning or are often 

used in the same context closer in the representation space. By projecting the activity 

representation to the word embedding space, Wi-Fringe is able to generate meaningful and 

context-aware representation of any CSI stream, irrespective of whether or not it has seen 

CSI of the same class before.

• Activity-Attribute Space: Human activities and bodily gestures comprise of movements 

by different body parts, i.e., arms, legs, head, and torso. Activities also involve external 

objects, e.g., an eating activity may involve the use of spoons and knives. These attributes 
create nuances in different RFbased activity feature representations. Projecting CSI onto the 

activity-attribute space embeds this information into the projection, as CSI implicitly gets 

affected by moving different sorts of objects due to their reflections. Using this embedded 

contextual and attribute information from CSI, Wi-Fringe recognizes activities without any 

training examples.

Wi-Fringe uses both word embedding and activity-attribute spaces for cross-modal 

projections to combine the predictive power of both. Combining these two help each other in 

the final prediction step.

C. Detailed Algorithmic Steps

The goal of cross-modal projection is to map state-aware representation of WiFi CSI streams 

(Section IV) to two latent spaces, i.e., the word embedding space and the activity-attribute 

space.

The projection operation is illustrated by Figure 5. The state-aware representation, i.e., the 

output of the LSTM from Figure 4, is fed to two neural networks having fully connected 

layers. The first network projects the state-aware representation onto the activity attribute 

space, and the second network projects the representation onto the word embedding space. 

We refer to the last layer of the neural networks that perform attribute space projection and 

word embedding projection as FA and FW, respectively.

• Projecting onto Activity-Attribute Space.—From the attribute database provided by 

[13], we obtain a set of binary attributes associated with each activity. Each activity, ai is 

represented as an m-dimension vector, di ∈ {1,0}m, where m is the total number of attributes 

used to define an activity. Each element di
(k) is a binary indicator of whether the kth attribute 

is true or false for that activity.

di
(k) =

1,  if attribute k is true for activity ai .
0,  otherwise 

(1)

To get the likelihood of a CSI stream being predicted as an activity ai, we project FA to the 

attribute space. We take the dot product of the attribute vector di and FA. The dot product 

demonstrates the similarity between the projection FA with attribute vector di. For a CSI 

stream from activity ai, our model’s target is to increase the similarity between di and FA. 

Islam and Nirjon Page 7

Int Conf Distrib Comput Sens Syst Workshops. Author manuscript; available in PMC 2021 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The similarity which denotes the likelihood of FA’s probability of belonging to activity ai in 

attribute space is calculated as a dot product: PA
i = di ⋅ FA.

• Projecting onto Word-Embedding Space.—For an activity, ai whose word 

embedding is wi, we want to project the CSI-based state-aware representation as close as 

possible to wi. Therefore, for a CSI stream of an activity ai, our target is to project FW to be 

close to wi in vector space This results in a higher value of dot product between FW and wi. 

Therefore, the similarity in word embedding space is defined as: PW
i = wi ⋅ FW .

• Projecting onto the Joint Space.—To obtain a joint projection on both the attribute 

and the word embedding space, we employ an ensemble approach to combine the two 

projections from the previous steps as follows: Pi = PA
i + PW

i . where, Pi carries the 

confidence of a CSI segment’s probability of belonging to class ai. For —a— number of 

activities, given FA and FW extracted using state-aware representation for a CSI segment 

X as described in Section IV, the probability of X ∈ ai is calculated using the following 

softmax operation:

p ai ∣ FA, FW = ePi

∑j = 1
a eP j (2)

VI. TWO STAGE CLASSIFIER

Wi-Fringe employs a two-stage classifier to infer the most likely activity type for an input 

CSI stream segment. The first-stage classifier determines whether the input CSI stream 

segment belongs to a seen or an unseen class. The second-stage classifier makes the final 

determination of the most probable activity type for the input CSI stream segment.

A. The Need for Two-Stage Classifier

Neural networks tend to memorize patterns in data from training. Thus, even for an unseen 

category, the network tries to project an input close to one of the seen classes in the 

state-aware representation space. While this serves our purpose of classifying an unseen 

activity, it affects the classification performance of a generalized system where the system 

may encounter examples from both seen and unseen classes. Since the unseen classes are 

projected too close to the seen classes, they will be classified as one of those seen classes.

To overcome the problem posed by neural network based state-aware representation in 

distinguishing seen vs. unseen categories, we employ a classifier which is based on the 

signal characteristics such as the time-frequency representation. To be more precise, while 

some activities such as run and walk have similarity in their attributes, they still have 

distinguishable signal characteristics that are embedded in WiFi CSI. Past works [17], [2] 

have proven the distinguishable power of traditional signal-level features such as Short Time 

Fourier Transform (STFT) and Discrete Wavelet Transform(DWT). We use STFT to detect 

if a sample is from a seen or an unseen category. STFT gives us the changes in frequency 

components of the signal along the time axis.
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B. Detailed Algorithmic Steps

The two steps of the algorithm are as follows:

• Seen vs. Unseen Detection.—We devise a simple thresholdbased decision algorithm 

to determine whether an input CSI stream segment belongs to an unseen class. We use 

Kmeans [25] clustering algorithm to cluster the STFT of the training samples of the seen 

category classes. This gives us K cluster centers, C1,C2,…,CK for K seen classes. For an 

input CSI stream segment, u, it belongs to an unseen class if the following condition is 

true: mins∈S||Cs−STFT(u)||> Ω. Here, S is the set of seen classes and Ω is an empirically 

determined threshold that maximizes the accuracy of seen vs. unseen class detection, and ||.|| 

is the Euclidean norm. When this condition is false, u belongs to a seen class.

• Classification.—If the CSI segment is recognized as from a seen category, only the 

labels from seen category are considered and the class label is obtained by applying the 

following equation:

argmax
ai

p ai ∣ FA, FW (3)

On the other hand, if the CSI segment is recognized as from an unseen category, we exclude 

all the labels from the seen category and only the labels from the unseen category are 

considered and the class label is obtained by applying Equation 3. Note that, the number of 

unseen category labels are dependent on the developers and the users who collect data for 

activity recognition model.

VII. EXPERIMENTAL RESULTS

A. Empirical Dataset

Our data collection setup is depicted in Figure 6. Based on our study of named activities 

from [26], we collect 20 most common named activities for our empirical evaluation. 

Our dataset contains activities collected from four volunteers in two different rooms with 

different orientations and furniture. Our dataset is diverse and it stresses out the algorithmic 

components of Wi-Fringe. In Table II, we provide the list of the 20 activities clustered 

with major attributes. On average, each class have 100 samples where the samples have on 

average 500 CSI values (5 seconds in duration).

B. Accuracy of Unseen Class Detection

In this experiment, we report the accuracy of Wi-Fringe for unseen classes. As state-of-the­

art systems are not capable of recognizing activities without prior training examples, we are 

unable to compare them with our solution. Hence, we report Wi-Fringe’s performance in 

this section by varying the number of unseen classes and compare it with two variants of 

our algorithm: (1) projecting State-Aware Representation (SAR) onto only word embedding 

(W2Vec) space, and (2) projecting State-Aware Representation (SAR) on only activity­

attribute space. This comparison shows the performance boost due to joint space projection.

Islam and Nirjon Page 9

Int Conf Distrib Comput Sens Syst Workshops. Author manuscript; available in PMC 2021 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In Figure 7(a) we report the accuracy of Wi-Fringe in recognizing the unseen classes of 

activities when 2–6 types of activities are from unseen classes. We evaluate with different 

combinations of seen and unseen activities and present the mean accuracy and variance in 

the plot. In Figure 7(a), we see that for two unseen classes, we achieve a classification 

accuracy of around 90%. With only word embedding and attribute space projection, the 

accuracy is 87% and 88%, respectively. For three unseen activities, we get an accuracy 

near 83% with Wi-Fringe. With only word embedding projection the accuracy is around 

80%, but with attribute space projection the accuracy drops to 60%. This is due to the 

similarity of activities in attribute space, which results in very similar attribute vectors. 

Therefore, projecting only on attribute space makes the classification harder. As the number 

of unseen classes increase to 4, 5, and 6, the accuracy becomes to 73%, 67% and and 62%, 

respectively. In all the cases, joint space projection boosts the performance in comparison 

with single space projection. As the number of unseen classes increase, the problem 

becomes harder since the model has to differentiate between more classes without training 

data. We report up to six unseen classes in the plot, however, for seven unseen classes, 

our accuracy is around 53%. With random selection, the accuracy for seven unseen class is 

14.28%, so Wi-Fringe is still better by almost 40%.

C. Accuracy of Seen Class Detection

In this experiment, we evaluate Wi-Fringe’s seen class detection performance by keeping 

all the classes in seen category. We compare Wi-Fringe with other baseline classification 

algorithms. Following [8], [27], we compare Wi-Fringe with a CNN classifier optimized 

for our dataset with five convolutional layers along with batch normalization and dropout 

layers. We also report the performance of state-aware representation (SAR) integrated with 

a softmax layer. In addition, we also show the performance of projecting state-aware 

representation only to word embedding space and attribute space. We use five-fold cross­

validation by randomly selecting training and testing examples each time. We also report the 

classification performance of a shallow classifier with a traditional handcrafted feature (i.e., 

STFT).

In Figure 7(b), we find that Wi-Fringe achieves a mean accuracy of 82%. On the other 

hand, state-aware representation (SAR) along with softmax layer is able to achieve around 

80% mean accuracy. The performance boost of Wi-Fringe is due to the fact that from joint 

space projection, our model is able to classify activities by integrating knowledge from both 

word embedding and attribute domain. Projecting state-aware representation onto only word 

embedding and attribute space yields accuracy of 78% and 76%, respectively. With CNN, 

we have an accuracy of 74%. The SAR with softmax layer has better performance than only 

using word embedding and attribute, as softmax layers are designed for learning decision 

boundary effectively. However, the softmax layer is not suitable for zero shot learning as it 

doesnot borrow knowledge from external domain and has no mechanism to classify samples 

without labeled examples. With an SVM, we see the accuracy is around 62%. Therefore, it 

is evident that Wi-Fringe is able to achieve better accuracy than other classifiers in seen class 

detection.
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D. Accuracy of Seen vs Unseen Class Detection

In this section, we present the accuracy of our threshold based Seen vs. Unseen detection’s 

performance. The accuracy is threshold dependent. In Figure 7(c), we plot the accuracy for 

Ω ∈ [4.0−5.25]. We observe that setting a high threshold fails to detect many class as unseen 
and the accuracy drops for the unseen classes. With high threshold, the unseen class samples 

have to be very far apart from any cluster center of the seen class clusters. On the other hand, 

setting the threshold too small leads to poor results for seen classes as it determines majority 

CSI stream sample as unseen. Hence, there is a tradeoff between the seen and unseen class 

detection accuracy. The optimum threshold is 4.75, for which, the classification accuracy of 

the seen and unseen classes are around 80%.

E. End to End Evaluation

To quantify Wi-Fringe’s end-to-end performance, we report its classification accuracy for an 

application scenario. We monitor a user’s home activity for ten different classes: {push, pull, 

run, sit, rub, walk, stand, eat, scratch, drink}. We consider three different training scenarios. 

First, we consider that the user provides 8 out of 10 activity classes’ examples to Wi-Fringe 

during training, Second, we consider the case where 5 out of 10 activity classes’ examples 

are given to Wi-Fringe during training. The last and the hardest test case is a scenario 

where Wi-Fringe has only 2 activity classes’ samples during training, i.e., 8 out 10 classes 

are unseen. In Figure 8, we report the performance of Wi-Fringe along with two baseline 

algorithms: a convolutional neural network (CNN) and a random forest classifier for all 

three aforementioned scenarios. For each scenario, we consider three cases where we vary 

the ratio between samples from seen and unseen classes in the test dataset in the following 

ways: a) # seen
# unseen = 25%, b) # seen

# unseen = 50% and c) # seen
# unseen = 75% Here, # denotes number of 

samples.

In Scenario 1 (Figure 8(a)), where only 2 classes are in the unseen category, Wi-Fringe 

shows an accuracy around 80% for all the cases, whereas the baseline algorithms’ accuracy 

drops below 20% when most of the samples are coming from the unseen category. Note 

that the unseen classes are chosen by keeping one of their closest neighbours in the word 

embedding and attribute space in the seen category.

In scenario 2 (Figure 8(b)), Wi-Fringe achieves an accuracy of 84% for case 3 with majority 

of the samples in test cases coming from the seen classes. However, when the ratio of seen 

classes in the test data gets decreased in case 1, the accuracy drops to 73%. Yet, Wi-Fringe’s 

performance is better than both baselines by a margin of greater than 40%.

In scenario 3 (Figure 8(c)), where only two classes are in the seen category, the accuracy for 

the case where 75% of test samples are from seen classes reaches up to 72% for Wi-Fringe. 

However, for case 1, the accuracy drops to 36% where 75% of the test samples are from the 

unseen categories. This drop is due to the fact that most of the classes are now in unseen 

category and Wi-Fringe has very few classes to learn the mapping function from RF to text 

domain. For this case, baselines achieve a maximum accuracy of only 24%. Therefore, it is 

evident that Wi-Fringe’s performance is better than traditional classification algorithms in all 

the cases.
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VIII. RELATED WORK

WiFi based sensing have opened the doorway for device-free activity monitoring in the 

last couple of years. Researchers [4], [28] have used wifi signal characteristics such as 

signal strength (RSSI) for activity recognition. With the availability of CSI from network 

interface cards, multiple works [21], [29] have emerged which exploit CSI information 

for gesture and activity recognition. [30], [18], [31] use deep learning based models to 

recognize activities from CSI. All of these works rely on provided training examples to 

classify a particular class of activity. Wi-Fringe deals with classification of activity from 

WiFi CSI data without any training examples. This is significantly different from current 

state of the arts. The earlier practices of zero shot learning [9], [32] for image classification 

problem infer the labels of unseen classes using a two step algorithm. First, the attributes 

of the sample is inferred and then the class label is predicted from an attribute database. 

Recent works [33], [34] have explored the mapping between image features and semantic 

space. Although these papers propose zero shot learning method for images, none of 

them addresses the problem for RF domain and activity recognition. [13], [35] do activity 

recognition using zero shot learning for RGBD data. However, our work is the first paper 

to propose a zero shot learning method for WiFi based activity classification where we 

overcome the challenges for cross-modal learning between text and RF domain.

IX. CONCLUSION

In this paper, we present the first WiFi-based device-free activity recognition system that 

does not require training examples for all activities. We propose a novel way to embed 

contextual information from the text domain to the RF domain by projecting RF data 

onto the word embedding and attribute space. We use this cross-modal RF embedding and 

propose a general classifier to recognize both seen and unseen activities. We collect WiFi 

data for 20 different activities from four volunteers and show that Wi-Fringe is capable of 

inferring activities from WiFi without training examples with 62%−90% accuracy for 2–6 

unseen classes.Wi-Fringe is able to detect an unseen activity with high accuracy if there is 

a seen class with similar class label property. We assume that in a large dataset, the chances 

that there is no semantically similar training example to an unseen class is relatively low.
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Fig. 1: 
Unlike existing systems, Wi-Fringe recognizes run in the testing phase, even though it did 

not see any training example of run in the training phase.
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Fig. 2: 
Wi-Fringe signal processing pipeline.
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Fig. 3: 
CNNs learn local patterns that characterize each state, whereas RNNs (LSTMs) learn 

sequence of states.
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Fig. 4: 
Network architecture for state-aware representation.
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Fig. 5: 
SAR is projected into both Word-embedding and Attribute space which are aggregated for a 

joint projection.
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Fig. 6: 
(a) Intel Nuc with Antennas. (b) Experimental Setup.
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Fig. 7: 
(a) Wi-Fringe’s accuracy for unseen activity classification. (b) Wi-Fringe’s accuracy is 

higher than baseline algorithms in seen class detection. (c) The accuracy of seen and unseen 
class detection depends on the threshold Ω’s value.
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Fig. 8: 
a) When 8 out of 10 classes are in seen category, Wi-Fringe has almost 80% accuracy for 

all cases. b) For 5 out of 10 classes in seen category Wi-Fringe outperforms all baseline 

algorithms for different cases. c) When 2 out of 10 classes are in seen class, for .25 fraction 

of test samples coming from seen category Wi-Fringe’s performance drops below 40% 

which is still 1.5 times better than baselines.
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TABLE I:

Word definitions and attributes.

Word Representation

Drink Dictionary: “To take into the mouth and swallow a liquid.”

Attributes: (Motion, Social, Object, Head, …) = (low, solitary, true, true, …)

Sip Dictionary: “To drink in small quantities.”

Attributes: (Motion, Social, Object, Head, …) = (low, social, true, true, …)

Drool Dictionary: “To let run from the mouth.”

Attributes: (Motion, Social, Object, Head, …) = (none, solitary, false, true, …)
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TABLE II:

Twenty categories of activities.

Category Activities

Freehand Gestures Point, Raise, Rub, Scratch, Shake, Toss, Circle, Arc.

Object-Human Interactions Drink, Eat, Push, Pull.

Upper/Lower-Body Gestures Sit, Stand, Bow, Duck, Kick.

Mobility Jump, Walk, Run.
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