
MASTER: Long-Term Stable Routing and Scheduling in Low-Power
Wireless Networks

Downloaded from: https://research.chalmers.se, 2024-04-26 21:17 UTC

Citation for the original published paper (version of record):
Harms, O., Landsiedel, O. (2020). MASTER: Long-Term Stable Routing and Scheduling in
Low-Power Wireless Networks. 16TH ANNUAL INTERNATIONAL CONFERENCE ON
DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (DCOSS 2020): 86-94.
http://dx.doi.org/10.1109/DCOSS49796.2020.00025

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



MASTER: Long-Term Stable Routing and
Scheduling in Low-Power Wireless Networks

Oliver Harms1,2, Olaf Landsiedel1,2

1Kiel University, Germany
2Chalmers University of Technology, Sweden

{oha, ol}@informatik.uni-kiel.de

Abstract—Wireless Sensor-Actuator Networks (WSANs) are an
important driver for the Industrial Internet of Things (IIoT) as
they easily retrofit existing industrial infrastructure. Industrial
applications require these networks to provide stable commu-
nication with high reliability and guaranteed low latency. A
common way is using a central scheduler to plan transmissions
and routes so that all packets are delivered before a deadline.
However, existing centralized schedulers are only able to achieve
high reliability in the absence of interference. This limitation
lowers the feasibility of using centralized schedulers in most
environments susceptible to interference.

This paper addresses the challenge of stable, centrally sched-
uled communication in low-power wireless networks susceptible
to interference. We introduce MASTER, a centralized scheduler
and router, for IEEE 802.15.4 TSCH (Time-Slotted Channel
Hopping). MASTER uses Sliding Windows, a novel transmission
strategy, which builds on flow-based retransmissions instead of
link-based ones. We show in our experimental evaluation that
MASTER with Sliding Windows achieves routing and scheduling
stability for over 24 hours with end-to-end reliability of over
99.6%. Moreover, we show that MASTER outperforms Orchestra,
a state-of-the-art autonomous scheduler, in terms of latency by
a factor of 8 while achieving similar reliability under a slight
duty-cycle increase.

Index Terms—TSCH, Central Scheduling, Routing, Wireless
Sensor-Actuator Networks, (Industrial) Internet of Things

I. INTRODUCTION

For many applications in the Industrial Internet of Things
(IIoT), it is essential that network traffic meets deadlines. To
achieve this goal, commonly, a centralized scheduler collects
information about the network topology and the wireless
links. With this global knowledge, representing a major ad-
vantage over distributed solutions, the scheduler is able to
compute optimal routes and transmission schedules of end-
to-end communication (traffic flows). In IEEE 802.15.4, the
scheduler assigns communication slots in the time and fre-
quency domain to nodes, i.e., it employs Time-Slotted Channel
Hopping (TSCH) [1]. However, due to wireless link dynamics,
centralized schedulers have to account for the risk of packet
losses and, therefore, usually include multiple retransmission
slots for each link. These retransmission slots increase latency
and reduce the available bandwidth, thus, causing an increased
radio on-time.

Many recent centralized scheduling algorithms assume the
availability of interference-free channels or at least a static
amount of interference [2], [3]. These assumptions do not
hold in many of today’s environments where IEEE 802.15.4

M

Radio

TSCH

MASTER

Application

Ro
ut
in
g

M
A
C

PH
Y

Fig. 1: MASTER consists of an external centralized scheduler
(M) and a routing layer. The external scheduler performs
the global routing and scheduling and pushes the computed
schedule onto the network. In each node, MASTER’s routing
layer implements the schedule in TSCH and performs the
routing during runtime.

IIoT networks co-exist with an increasingly large number of
WiFi and Bluetooth networks. This coexistence results in large
amounts of interference and thereby limits the stability and
reliability of those centralized solutions.

In this paper, we introduce MASTER, a centralized sched-
uler designed for TSCH. It combines the traditional steps
of central scheduling and routing with a novel transmission
strategy which we call Sliding Windows. Our Sliding Windows
algorithm introduces the flexibility needed to accomplish long-
term schedule stability and communication reliability while
meeting the latency requirements of industrial applications.
As a result, MASTER enables long-term stable schedules
and thereby eliminates the need for frequent rescheduling, a
key drawback of today’s central schedulers. Furthermore, we
design MASTER as an open1 and easily extendable platform to
foster rapid experimentation with central scheduling policies.

Our evaluation shows that MASTER with Sliding Windows
outperforms slot-based retransmission strategies of central-
ized schedulers. Moreover, it outperforms the low-power au-
tonomous scheduler Orchestra [4] in terms of latency while
achieving similar reliability and consuming not significantly
more energy, making it particularly suitable for low-power
systems. Overall, this paper makes the following contributions:

1Available as open-source at: https://github.com/ds-kiel/master-scheduler

https://github.com/ds-kiel/master-scheduler


• We present MASTER, an open-source, centralized router
and scheduler for TSCH-based networks designed with
easy extendability in mind.

• We design Sliding Windows, a transmission strategy
for MASTER to increase the flexibility, stability, and
reliability of centrally scheduled communications.

• We propose flow-based queues as an extension to TSCH
to enable the use of central scheduling algorithms.

• We implement MASTER as part of Contiki-NG and
evaluate it in environments susceptible to interference. We
show the long-term stability of schedules computed by
MASTER in experiments of 24 hours. These experiments
result in highly reliable (>99.6%), low-latency (<4.5
slots) communications.

The remainder of this paper is organized as follows. Sec-
tion II gives the necessary background information on TSCH
as well as TSCH schedulers. Section III introduces the design
of MASTER, and Section IV presents our testbed evaluation.
Section V reviews related work, followed by the conclusion
in Section VI.

II. BACKGROUND

This section gives an overview of relevant concepts on (A)
Time-Slotted Channel Hopping (TSCH), (B) the ETX metric,
(C) scheduling, and (D) retransmissions.

A. Time-Slotted Channel Hopping

Time-Slotted Channel Hopping (TSCH) is one of the MAC-
layer protocols defined in the IEEE 802.15.4e standard [1].
TSCH uses dedicated time- and frequency-slots (TDMA and
FDMA) for accessing the wireless medium. These slots are
standardized to a length of 10 ms, and each slot uses one
out of maximally 16 channels. TSCH continuously cycles
through a hopping sequence of all active channels. Thus, it is
changing the channel every slot. Assigning different frequen-
cies to slots allows TSCH to increase the network’s resilience
to interference. Slots dedicated to control-information, so-
called Enhanced Beacon (EB) slots, provide broadcasts which
support both network formation and time synchronization,
both essential for maintaining a schedule of synchronized
transmissions as in TSCH.

Multiple TSCH slots are grouped into slotframes, and
multiple slotframes form a TSCH schedule, see Fig. 2. Each
node has a custom TSCH schedule determining its behavior
in each slot. Slots are either dedicated, shared, or empty: In a
dedicated slot, a node either transmits or receives. In shared
slots, nodes may broadcast or receive control information, such
as Enhanced Beacons. Such slots are not assigned to individual
nodes and have multiple nodes contending for transmissions.
To limit collisions, these slots employ the CSMA-CA back-off
algorithm. If a slot is neither dedicated nor shared, it is empty,
and the radio remains off to save energy.

B. Link quality metric

Link quality metrics, such as the expected transmission
count, ETX [5], represent the quality of a wireless link. ETX

A→ B
EB E → C C→ F B→ C C→ Dch

an
ne
lo
ffs
et

timeslot

0
1

0 2 3 41 5

2

15

Fig. 2: Sample TSCH schedule. Slot 0 is a shared slot for
sending and receiving Enhanced Beacons (EB) while slots 1-
4 are unicast slots with one transmission per channel at a time.
This simple schedule contains two multi-hop communication
flows, highlighted in green and orange. The channel offset is
added on top of the usual hopping sequence.

specifies the number of transmissions expected to transmit
a packet successfully over a wireless link. The ETX value
is the inverse of the packet reception rate (PRR) of a link
(ETX = 1/PRR).

C. Scheduling

In the context of wireless communications, scheduling is the
process of allocating resources for communications to meet all
requirements such as release-time and deadline. Scheduling is
an NP-hard problem, meaning, it is not optimally solvable
in polynomial time (cf. [2]). Therefore, different heuristics
and algorithms were developed to solve scheduling problems
sufficiently well for specific scenarios.

TSCH scheduling: TSCH does not specify how communi-
cations are scheduled. Therefore, scheduling TSCH commu-
nications can be performed in a centralized, distributed, or
autonomous manner. In the distributed case, subsets of the
network perform cooperative scheduling (cf. 6TiSCH MSF
[6]). The autonomous case, used by the well-known TSCH
scheduler Orchestra [4], performs an autonomous mapping
of links to resources. The centralized scheduling approach
provides us with global topology knowledge, and we can allo-
cate resources using established algorithms such as Dijkstra’s
Shortest Path First algorithm [7].

D. Retransmissions

As wireless communication links are unreliable, transmis-
sions are never guaranteed to be received. To increase the
reliability, schedulers commonly include retransmission slots
to retry a failed transmission. A common way of adding
retransmissions is the duplication of single slots. This slot-
based approach increases the reliability, by including multiple
tries per hop. In this paper, we introduce a new, flow-based
transmission strategy to increase both performance and flexi-
bility, see Section III-B.

III. DESIGN

In this section, we present the design of MASTER, our trans-
mission strategy Sliding Windows, and the system architecture
of MASTER.



D

C

FB

E

A

(a) Sample Topology with
two intersecting flows.

1 2 3 4

A TX

B RX TX

C TX

D RX TX RX TX

E RX

F RX

(b) Baseline sched-
ule without retrans-
missions.

1 2 3 4 5 6 7 8

A TX TX

B RX RX TX TX

C TX TX

D RX RX TX TX RX RX TX TX

E RX RX

F RX RX

(c) A slot-based schedule with
one transmission and one re-
transmission slot per hop.

1 2 3 4 5 6 7 8 9

A TX TX TX TX

B RX RXTX RXTX RXTX TX

C TX TX TX

D RX RXTX RXTX TX RX RXTX RXTX RXTX TX

E RX RX RX

F RX RX RX RX

(d) Sliding Windows schedule with one trans-
mission slot per hop and two (orange flow) or
three (green flow) retransmission slots to be shared
among the nodes of a flow.

Fig. 3: Example: One flow originates at node A to end at node F while the second one originates at node C and ends at node
E.

A. Centralized Routing and Scheduling with MASTER

A fundamental building block of MASTER is its centralized
scheduler. Its design is a three-step process to build a long-
term stable, low-latency, reliable communication schedule.
This process is a sequential top-down approach of (1) cen-
tralized routing, (2) applying a transmission strategy, and (3)
scheduling. The input to the process is (a) a set of traffic flows
specified by source, destination, periodicity, and deadline, as
well as (b) the network topology with long-term link reliability
statistics. The application commonly provides the set of flows,
and we derive the network topology from long-term link
measurements, see Section III-D5.

1) Centralized Routing: Routing is the first step in MAS-
TER and uses the previously specified flows and network
link-reliability as input. To perform the routing, MASTER
constructs a directed weighted graph using an ETX-based
metric (ETXn, n ∈ N, usually n = 2), corresponding to
the link reliability statistics. A higher ETX-power favors a
higher number of highly reliable links over a lower number of
links with lower reliability. Using this graph, we compute the
shortest end-to-end routes. As shortest path routing finds the
optimal path for each flow, the flow latency selected by the
routing process stays minimal. The result of our routing is an
extended set of flows that consists of a source, a destination,
and the intermediate hops. In MASTER, we use Dijkstra’s
algorithm for shortest-path routing, but our modular design
allows us to plug-in any routing algorithm and metric.

2) Transmission Strategies: After computing the route for
each flow, we employ a transmission strategy to ensure re-
liable communication over unreliable wireless links. Thus,
the transmission strategy adds retransmission slots to each
flow to handle failed transmissions due to link dynamics and
interference. The transmission strategy extends each flow by
a specific number of slots. In the case of highly reliable links
in an interference-free environment, we can employ a simple
transmission strategy of assigning only one slot per hop.
In practice, however, we add retransmission slots according
to the expected link reliability of each hop. We employ
either a slot-based transmission strategy (see Section II-D) or
our new approach of a flow-based transmission strategy (see
Section III-B below).

3) Scheduling: After applying one of the transmission
strategies, we pass the modified flows to the scheduler. The
scheduler builds a communication schedule for all flows
considering their periodicity.

For our application scenarios and to be comparable to
Orchestra, we employ a non-deadline-based scheduling al-
gorithm. It is especially suitable for best-effort, periodic,
deadline-free systems. The algorithm is Reverse Longest Path
First (R-LPF), our own flavor of the Shortest Path First (SPF)
scheduling algorithm. SPF is based on the process scheduling
algorithm Shortest Job First (SJF) [8]. Contrary to starting with
the shortest flow, our scheduler performs backward scheduling,
starting with the end of the longest flow. This modification of
the scheduling algorithm results, in our experience, in a lower
number of unused slots within a flow. A lower number of
unused slots corresponds with lower latency.

Fig. 3 shows a schedule for two flows generated using no
retransmissions, a slot-based retransmission strategy, as well
as the transmission strategy of Sliding Windows with a trans-
mission number based on Equation (3) and a scaling factor of
1. To generate the schedule of Fig. 3d, we assume the ETX-
value of each link to be between 1 and 2 (ETXlink ∈ ]1, 2[).

Any scheduling algorithm, including deadline-based ones,
can easily be implemented in MASTER. For the remainder of
this paper, we use R-LPF.

B. MASTER’s Flow-based transmission strategy

Our flow-based transmission strategy assigns a specific
number of retransmissions to a flow instead of using a per-hop
basis, as done traditionally, see Section II-D. The flow-based
retransmission slots allow the nodes of a flow to share these
slots and use them as needed along the path, see Fig. 3d. As
a result, we can increase the communication reliability while
potentially using minimally more slots in the final schedule
(see Node D in Fig. 3c and Fig. 3d).

With this, we divert from the traditional scheme of two
active nodes to one with multiple active nodes: Traditionally,
at a single time-slot, frequency, and within a localized area,
only one node transmits and another one receives. Instead, we
now have more than two nodes awake that either transmit
or receive. Our transmission strategy has the advantage of
being adaptable to network changes, e.g., due to interference.



Thus, during the journey of a packet, we can use the shared
transmission slots in whichever part of the flow interference
impacts communication. This adaptability is traditionally pos-
sible within distributed schedulers that can locally adapt to
link changes. With Sliding Windows, we now enable such
flexibility in centralized ones.

1) Window Size: The maximal number of transmission slots
(TXmax, later denoted as #transmissions) in a flow and
the hop-count of the flow determine the window size which is
calculated by

window size = 2 + TXmax − hops (1)

This window size is the number of nodes maximally active
in a slot of a flow. Moreover, it matches the maximum number
of active slots of a node for a given flow. According to this
relation, the window size is equal to the shared number of slots
of a node for transmission or reception (TXmax−hops) plus
its first and last slot allocated for reception and transmission,
respectively.

In MASTER, we have two flow-based transmission policies:
(1) fixed window size and (2) metric-based window size. For
the first policy, we use the same window size for all flows
independent of their length or link quality. For the second
one, our scheduler determines the window size and number of
transmissions depending on the flow’s or link’s ETX-values.
The metric-based window size allows us to account for both
the number of hops and the reliability of the individual links.

Using the link’s ETX values, we can calculate the total
number of transmissions of the flow with either

#transmissions = n ∗ d
∑

ETXlinke, n ∈ N (2)

or

#transmissions = n ∗
∑
dETXlinke, n ∈ N, (3)

including a scaling factor n. This scaling factor regulates the
conservativeness of the scheduler. If we choose a scaling factor
of 1 for Equation (3), the number of transmissions is equal
to the one using an ETX-based, slot-based retransmission
strategy (cf. Section II-D). Equation (2) uses the end-to-end
ETX-value of the flow, while Equation (3) uses the ETX-
values of the individual links.

Throughout the remainder of this paper, we use the follow-
ing naming scheme to refer back to these equations:

SW− < Equation number > [− < scaling factor n >]

SW denotes it as a Sliding Windows transmission strategy.
The naming scheme includes the scaling factor only if refer-
ring to a specific representation of the strategy. When referring
to the general strategy, it is not included.

Please note that for long flows, i.e., with many hops such
a strategy could lead to a large window, and thereby too
many nodes being awake at the same point in time. Too many
active nodes lead to inefficiencies, and we counterbalance it
by splitting a flow into sub-flows once it exceeds a limit
N . The flow-based strategy is then applied to each sub-flow

Algorithm 1 Sliding Windows transmission strategy
Input: flow, graphETX , strategy, scaling factor n
Output: flownew (modified version of flow)
1: costtotal = 0
2: for i = 0 to lengthflow − 1 do
3: senderhop ← flow[i]
4: receiverhop ← flow[i + 1]
5: if strategy = ”SW − 2” then
6: costtotal = costtotal + graphETX [senderhop][receiverhop]
7: else if strategy = ”SW − 3” then
8: costtotal = costtotal + dgraphETX [senderhop][receiverhop]e
9: end if

10: end for
11: if strategy = ”SW − 2” then
12: costtotal = dcosttotale
13: end if
14: #transmissions← n ∗ costtotal

15: window size← 2 + #transmissions− lengthflow

16: flownew ← list of #transmissions lists
17: for i = 0 to lengthflow − 1 do
18: if i = 0 then
19: slots← list [0 .. window size− 1]
20: else if i = (lengthflow − 1) then
21: slots← list [i− 1 .. i + window size− 2]
22: else
23: slots← list [i− 1 .. window size− 1]
24: end if
25: for slot in slots do
26: extend flownew[slot] by flow[i]
27: end for
28: end for
29: return flownew

individually. In MASTER, we use a threshold of N = 10. Thus,
for example, a flow of length 11 is split into two overlapping
sub-flows of length 6.

2) Algorithm: In Algorithm 1, we present the algorithm
for applying a flow-based transmission strategy. The algo-
rithm takes as input a flow consisting of multiple nodes, the
network’s ETX graph, the strategy (SW-2 or SW-3), and the
scaling factor. The algorithm starts calculating the flow’s total
ETX cost, as well as the flow’s number of transmissions
according to the given strategy (SW-2 or SW-3) and the
window size according to Equation (1). From line 17 onward,
the algorithm computes the active slots for each node of the
flow and inserts the nodes into the respective slots of the new
flow. For example, slot 6 of Fig. 3d would be represented in
the new flow as a list containing the elements A, B, D, F in
this order.

3) Flow-based transmissions vs. Flow Centric Policy
(FCP): Recently, a paper by Brummet et al. [9] introduced a
similar idea of moving from link-based to flow-based trans-
missions.

The main difference between Brummet’s proposed Flow
Centric Policy (FCP) and our Sliding Windows strategy are
the rules for determining the optimal number of flow trans-
missions. FCP only defines fixed numbers of retransmissions
with a maximum of up to 4 retransmissions for a flow. Sliding
Windows, on the other hand, allows choosing the number
of transmissions based on a metric, in our case, the ETX
metric. Moreover, Sliding Windows allows a different number
of transmissions for each flow in the same network due to its
use of the ETX metric. Because Sliding Windows is based
on link qualities, we argue that it offers better adaptability to
a network’s link characteristics during the scheduling process.



A

B

C D
E

F1

2 2
2

1
1

Fig. 4: Example of 2 flows sharing a common link between
nodes C and D.

C. Time Synchronization

Stable time synchronization is essential for TSCH networks.
It ensures that clocks do not drift apart, and nodes wake-up for
transmissions and reception within the guard times specified
by TSCH. MASTER achieves this by building a clock synchro-
nization tree from the root as part of the scheduling process.
Similar to the routing of the flows, a minimal spanning tree
with ETX as metric and with the coordinator of the TSCH
network as root is computed using Dijkstra’s algorithm. This
tree assigns each node a parent node for clock synchronization.

D. System Design

Next, we detail on the system architecture of MASTER. It
consists of both the external scheduler and the routing layer
on each node (see Fig. 1). Here we put a particular focus on
the integration with TSCH and Contiki-NG [10].

1) Central Logic of MASTER: The central logic of MAS-
TER consists of a centralized router and scheduler with all
the functionality described above. We implement MASTER in
Python to enable easy extendability and rapid experimentation
of new routing, transmission, and scheduling strategies.

2) Schedule Distribution: For schedule distribution, MAS-
TER can work together with most schedule distributors (e.g.,
plexi [11]), as scheduling and distributing the schedule are
orthogonal. Moreover, it can also directly upload schedules
via the serial port for rapid experimentation.

3) Per node routing layer: The routing layer of MASTER
has multiple functions: it performs neighbor discovery (Sec-
tion III-D5), implements the schedule, and adds a routing
header to the communication payload to be compliant with
the lower layers as well as relaying the packet to the next hop
(Section III-D6). We place it in the Contiki-NG network stack
above TSCH, see Fig. 1, and implement it in C.

4) Contiki-NG/TSCH Extensions: To match the require-
ments of MASTER and its scheduling algorithm, we extend
the elements of TSCH and its implementation in Contiki-NG:
(1) the packet buffer implementation and (2) the TSCH queues.

In the packet buffer, we add fields to store the flow identifier
and the time to live of a transmission. With these two fields,
the TSCH stack and MASTER can map incoming packets
to flows and thereby follow the global schedule on each
node. We extend the TSCH queue to enable a transmission
order differing from the reception order at a node, e.g., the
forwarding of a packet to a specific neighbor before forwarding
an earlier received packet to the same neighbor. To allow
this behavior, we add flow-based queues, in addition to the

neighbor-based queues of TSCH. We realize the flow-based
queues through the use of virtual neighbors.

Fig. 4 illustrates why neighbor-based queues as used by
Contiki-NG cannot be practicably used by MASTER. If packet
2 is received by node C first, but packet 1 has an earlier
deadline, packet 1 will be stuck behind packet 2 until the first
is transmitted to node D. With flow-based queues, packets 1
and 2 will be added to different queues at C. Therefore, they
are independent of each other and packet 1 can be forwarded
first.

This new queue design increases the schedulability of the
presented scheduler, which is crucial for deadline-dependent
systems. It also decreases the latency in networks that are not
deadline-critical by reducing congestion at bottlenecks of the
network. Moreover, it allows us to use scheduling algorithms
initially developed for process scheduling, a domain without
these congestion problems.

5) Neighbor Discovery and Bootstrapping: Before MAS-
TER can build any schedule, it requires information about all
links between the nodes in the network. Thus, to bootstrap
and collect topology information with MASTER, we deploy a
custom, topology agnostic schedule only designed for neighbor
discovery. In this schedule, we use one independent trans-
mission slot per node present in the network. This neighbor
discovery schedule is similar to the sender-based operation
mode of the autonomous scheduler Orchestra [4]. Each node
sends a numbered broadcast in its active slot and listens in all
other slots for broadcasts of other nodes in its surroundings.

Please note that this schedule only serves for bootstrapping.
After deployment of the actual transmission schedule, the
task of probing neighbors becomes part of the normal TSCH
beaconing process. Nodes collect this information for any
potential later update of the schedule.

6) Header format: MASTER routes packets based on flows,
and as a result, we add a custom routing header. The routing
layer of MASTER adds a 7-byte routing header to each packet.
This header contains a flow identifier (1 byte), a sequence
number (2 bytes), the time-to-live (TTL) (2 bytes), and the
earliest TSCH transmission slot (2 bytes). The header is
necessary for nodes to know whether they are the receiver
of the packet or a forwarder. Moreover, the header specifies,
where to forward the packet to, and whether there is still time
left for forwarding. In practice, our header replaces the IPv6
header which we could use instead in a system using the full
IPv6 stack.

IV. EVALUATION

In this section, we evaluate the performance of MASTER
and compare it to the state-of-the-art. We begin by evalu-
ating our newly proposed flow-based scheduling policy and
compare it to state-of-the-art scheduling policies, including
a baseline strategy without retransmissions (cf. TASA [12])
and a slot-based transmission strategy (cf. AMUS [13]). Next,
we compare MASTER to Orchestra, the default autonomous
scheduler in Contiki-NG, which also builds on TSCH. Finally,



(a) 500 m2 testbed of 20 nodes at Kiel Uni-
versity. Source nodes: orange hexagons; Sink
nodes: green squares; Relay-only nodes: blue
circles; Numbers: corresponding flow

1 2 3 4 5 6 avg
Flow

0

20

40

60

80

100

PD
R 

[%
]

(b) Reliability of MASTER’s transmission
strategies: baseline, slot-based, SW-2-1 and
SW-3-1.

1 2 3 4 5 6 avg
Flow

0

2

4

6

8

10

La
te

nc
y 

[s
lo

ts
]

(c) Latency of MASTER’s transmission strate-
gies: baseline, slot-based, SW-2-1 and SW-3-
1.

0 2 4 6 8 10 12 14
Latency [slots]

0

20

40

60

80

100

PD
R 

[%
]

(d) Combined latency and reliability CDF of
MASTER’s transmission strategies.

0 25 50 75 100 125 150
Latency [slots]

0

20

40

60

80

100
PD

R 
[%

]

(e) Combined latency and reliability CDF of
MASTER’s transmission strategy SW-3-3 and
Orchestra at nighttime and daytime.

0

2

4

6

8

10

Du
ty

 C
yc

le
 [%

]

baseline
slot-based
SW-2-1
SW-2-2
SW-3-1
SW-3-2
SW-3-3
SW-3-3-D
Orchestra
Orchestra-D

(f) Duty cycle of MASTER and Orchestra.

Fig. 5: Evaluation of MASTER’s transmission strategies and comparison to Orchestra. SW-3 outperforms all other strategies
reliability-wise and outperforms Orchestra latency-wise. We display the legend of figures 5b - 5f in Fig. 5f.

we evaluate MASTER’s ability to compose long-term stable
schedules.

A. Evaluation Setup

1) Testbed: We run on a 20 node testbed deployed in offices
and student lab rooms, see Fig. 5a. It is located on the top
most floor of a university building with spanning an area of
500 m2. The testbed shares the wireless spectrum with WiFi
and Bluetooth communications outside of our control. Due
to this, the testbed is exposed to high levels of interference,
especially during work hours.

2) Metrics, Comparison, and Duration: We evaluate our
scheduler in terms of end-to-end reliability, end-to-end la-
tency, as well as network energy consumption. We measure
these metrics for different centralized scheduling approaches
with and without retransmissions. Moreover, we compare
our scheduler with the autonomous scheduler Orchestra [4].
These comparisons are based on 2-hour experiments for each
strategy, except for the long-term stability evaluation in Sec-
tion IV-E, which has a duration of 24-hours per experiment.

3) Implementation: We implement MASTER for Contiki-
NG [10]. We target the Zoul Firefly platform, featuring a
32 MHz 32-bit CC2538 Cortex-M3 CPU, 32 KB of RAM,
512 KB of flash, with an IEEE 802.15.4 compatible radio.

4) Channels: Due to the high levels of interference, we
use only the four channels (15, 20, 25, and 26), defined in the

standard four-channel TSCH hopping sequence. Furthermore,
Orchestra uses by default only these four channels as well.

5) Application Payload and Overhead: For all experiments,
we include a 64-byte randomly generated data payload, a
medium packet size supported by TSCH. In addition to
this data payload, MASTER adds its 7-byte routing header
independent of the specific scheduling policy. Orchestra, on
the other hand, uses the IPv6 headers and requires additional
network layer control traffic.

6) Notations: Throughout the evaluation, we use the fol-
lowing naming scheme: The baseline strategy without re-
transmissions we call baseline, and the slot-based retransmis-
sion strategy (as used by many state-of-art schedulers) with
dETXlinke transmissions per link we label slot-based. The
Sliding Windows strategies use the naming scheme we present
in Section III-B1. Experiments performed during daytime are
extended by the marker -D.

B. Baselines

We compare MASTER’s Sliding Windows policies to three
other scheduling policies. These are MASTER’s baseline strat-
egy without retransmissions, MASTER’s slot-based retransmis-
sion strategy, and the autonomous scheduler Orchestra [4]. The
design of the baseline strategy is based on the transmission
policy used in, e.g., TASA [12], and uses one distinct slot per
hop. The slot-based strategy is inspired by policies presented in



several recent publications, including AMUS [13]. Contrary to
most of these, our design performs all possible retransmissions
of a hop before proceeding to the next hop, which favors high
reliability over low latency contrary to AMUS’s approach.
Moreover, to be in line with our Sliding Windows strategies,
MASTER’s slot-based strategy uses an ETX-based number
of retransmissions per link (dETXlinke). Lastly, we use
Orchestra to compare our centralized routing and scheduling
solution to distributedly routed and autonomously scheduled
solutions to verify the adaptability of MASTER to dynamic
environments predestined for distributed policies.

C. Performance of MASTER’s transmission strategies

We first evaluate the performance of different transmission
strategies supported by our scheduler. We compare the Slid-
ing Windows transmission strategy with a baseline strategy
without retransmissions and with the traditional slot-based
retransmission strategy mentioned above. We run experiments
with six scheduled flows, a number of flows used at a recent
EWSN dependability competition [14]. The flows have a
length of 2 to 4 hops each. Each flow has a sole source and
destination node. Each source node generates a packet roughly
every second with a configured time to live of one second.
The length of the communication slotframes of 1 second
corresponds roughly with 101 slots.

Fig. 5b shows the reliability of transmission approaches
scheduled with MASTER. The transmission approaches in-
clude the baseline and slot-based strategy, as well as Sliding
Windows transmission strategies SW-2-1 and SW-3-1; see
Section III-B1 for notations. The latter of the two Sliding
Windows strategies has the same number of transmissions per
flow as the slot-based strategy.

All strategies with retransmissions clearly outperform the
baseline without retransmissions, which shows the presence
of interference in the used channels. The slot-based strategy
reaches an average reliability of 92.7% whereas the Sliding
Windows strategies reach average reliabilities of 89.3% and
98.9%, respectively. The SW-2-1 strategy has for all flows
lower reliability than the slot-based strategy, but the number
of scheduled slots per flow is only by one larger than the
baseline number of slots, see Table I. The SW-3-1 strategy
outperforms all other strategies while using no more slots per
flow than the slot-based strategy. Its least reliable flow achieves
a packet delivery rate (PDR) of 98.1% while the slot-based
strategy drops as low as 82.2%.

We can model this superiority of SW-3-1 over SW-2-1 and
over the other strategies mathematically using the probability
mass function of the binomial distribution [15]:

P (X = k) =

(
n

k

)
pk(1− p)n−k (4)

This probabilistic model also explains the lower reliability of
SW-2-1 compared to the slot-based strategy.

As an example, we consider a flow of three hops (n = 3),
e.g., the green flow in Fig. 3a, with the same ETX value for
each link of 1.2 (p = 5

6 ). Thus, the number of transmissions

TABLE I: Summary of the results plotted in Fig. 5c: Maximum
latency (slots) for each flow and for flow 4 maximum number
slots active in parentheses.

Flow Baseline Slot-Based SW-2-1 SW-3-1
1 2 4 3 4
2 3 6 4 6
3 3 6 4 6
4 5 (3) 10 (6) 7 (4) 12 (6)
5 4 8 5 8
6 4 8 5 8

for SW-2-1 and SW-3-1 are 4 and 6 slots, respectively. The
expected PDRs for SW-2-1 and SW-3-1 are P (X = 3) +
P (X = 4) ≈ 0.868 and P (X = 3) + P (X = 4) + P (X =
5) + P (X = 6) ≈ 0.991, respectively. Likewise, the expected
PDR for the baseline, is P (X = 3) ≈ 0.579. The slot-based
strategy can be seen as 3 independent, subsequent chains of
two binomial trials each (n = 2, k ≥ 1). This results in an
expected PDR of (P (X = 1) + P (X = 2))3 = 0.919. These
mathematical results confirm the trend we see in Fig. 5b.

Latency-wise, both Sliding Windows strategies perform
much better than the slot-based strategy. Moreover, their
latency is minimally higher than the latency of a strategy
without retransmissions (see Fig. 5c), which, in turn, has a high
packet loss rate. It appears that SW-3-1 has a lower latency
for flow 4 than the baseline. Contrary to all other flows, flow
4’s schedule contains more slots than active slots throughout
all strategies. Due to the flow-based approach of SW-3-1
and a large enough number of continuous active slots at the
beginning of the schedule, most packets were received within
a few slots, leading to a latency lower than the baseline’s one.
Table I shows that the maximal number of active slots is still
smaller for the baseline strategy.

Fig. 5d visualizes the latency and reliability of a wider range
of transmission strategies. Solid lines represent the baseline,
the slot-based, the SW-2-2, and the SW-3-3 strategies. For the
Sliding Windows strategies SW-2-1 and SW-3-1, the figure
uses dashed lines, and for the SW-3-2 strategy, it uses a
dotted line. The figure shows that the slot-based strategy is
the worst latency-wise. The SW-3 Sliding Windows strategies
are superior to the other Sliding Windows strategies (SW-
2). The superior strategies with a scaling factor of 2 and
3, both perform well. The strategy with the higher scaling
factor reaches the maximal possible reliability. Therefore, we
use the Sliding Windows strategy SW-3-3 for the following
comparison to Orchestra.

The duty-cycle evaluation in Fig. 5f shows a higher radio
on-time for a higher number of scheduled slots. SW-3-3 has a
radio on-time of up to 11.95% for a node with a lot of traffic.

D. MASTER vs. Orchestra

We now evaluate the performance of MASTER in com-
parison to Orchestra, the default, autonomous scheduler of
TSCH in Contiki-NG. We use Orchestra as is, with a receiver-
based schedule of length 7 in non-storing mode. We schedule
the same six flows used before. As transmission strategy for
MASTER, we use the one with the highest reliability of those



70

80

90

100
PD

R 
[%

]

23 2 5 8 11 14 17 20
Time of day [hours]

0

1

2

3

4

5

La
te

nc
y 

[s
lo

ts
]

SW-3-1 SW-3-2 SW-3-3

Fig. 6: Reliability and latency evaluation of Sliding Windows
according to Equation (3) for all 3 scaling factors. Each value
corresponds with the hour, that started at the given time. Note,
that the y-axis of the PDR plot does not begin at zero.

presented above (SW-3-3). To provide detailed information
on the performance, we present runs of both MASTER and
Orchestra during nighttime as well as during office hours in
the daytime. Fig. 5e shows the latency and reliability of the
four experiments. MASTER’s latency is drastically shorter than
the latency of Orchestra with a mean latency of 3.9 and 4.2
slots compared to 25.9 and 40.9 slots during nighttime and
daytime, respectively, while reaching similar reliability. The
four rightmost columns in Fig. 5f show the duty cycle for
the experiments included in this section of the evaluation.
Orchestra has on average a two percentage points lower duty
cycle than MASTER (3.52% vs. 5.55%) and the maximum
duty cycle of a node of four percentage points lower (7.73%
vs 11.95%). As each node in Orchestra is only able to use
every seventh slot, the possible duty cycle is automatically
lower than the one for MASTER. However, this lower duty
cycle results in much higher latency, as presented above.

E. Long-term stability of MASTER

In the last part of our evaluation, we investigate MASTER’s
long-term stability. In Fig. 6, we present the reliability and
latency of the SW-3 Sliding Windows strategies for 24 hours
(Day 1, 21:00 - Day 2, 21:00) during workdays. During the
night and the early morning, both SW-3-2 and SW-3-3 reach
a PDR of above 99.99% and an average latency of around
3.5 slots. Between 14:00 and 15:00, the reliability drops for
all strategies to 95%, 93.2%, and 80.3%, respectively, under a
slight latency increase. During this time, a group of students
entered the lab, leading to a drastic increase in WiFi and
BLE traffic and thereby an interference level increase. Another
reliability drop, mainly for SW-3-1, is visible at the end of the
working day. Over the whole period of 24 hours, the average
reliability of SW-3-1, SW-3-2, and SW-3-3 is 99.6%, 99.2%,
and 92.5%, respectively. The high average reliability, as well

as the reliability recovery after times of high interference,
validates MASTER’s long-term stability.

V. RELATED WORK

We first discuss centralized schedulers and algorithms, fol-
lowed by a discussion of autonomous scheduling solutions.

After the introduction of TSCH, TASA [12] was one of
the first central scheduling algorithms proposed. It is traffic
aware, yet like other papers focusing on scheduling algorithms
like C-LLF [2], it assumes the availability of interference-
free channels and, therefore, does not include retransmissions.
Saifullah et al. [2] and Gunatilaka et al. [3] focus in their
work on the highest possible schedulability for a large amount
of communications meeting deadlines but not much on the
network reliability. AMUS [13] is one of the protocols for
TSCH that includes slot-based retransmissions. It schedules
additional resources for vulnerable links and allocates backup
slots in empty cells of the scheduler. Rugamba et al. [16]
build another centralized scheduler based on a path collision-
aware least-laxity first scheduling algorithm by Darbandi et
al. [17]. Moreover, Rugamba et al. describe a method of
distributing a centrally computed schedule. The first approach
of moving from slot-based retransmissions to flow-based ones
is the flow-centric policy (FCP) [9]. The authors present a
dynamic approach of retransmissions not fixed to specific
links. This approach is similar to the transmission strategy
of Sliding Windows presented in this paper. We discuss the
differences between the two in Section III-B3.

Besides the advances regarding scheduling, Wu et al. [18]
present advances in the field of centralized routing in combi-
nation with central scheduling. The authors present a conflict
aware real-time routing approach, that is aware of scheduling
decisions and the possible conflicts of routed paths. Li et
al. [19] take a different, asymmetric approach in routing by
applying different routing strategies for different communica-
tions in one network.

Related to these central scheduling and routing approaches,
are systems focusing on network softwarization. plexi [11] is a
framework exposing TSCH network resources through a web
interface and allowing the rescheduling of communications.
Similarly, Baddeley et al. [20] and Galluccio et al. [21]
present SDN solutions for Wireless Sensor Networks for
network monitoring and reconfiguration. These SDN solutions
are conceptually in line with central schedulers calculating
schedules externally. Moreover, a combination of our work
with SDN solutions is imaginable.

Next to the centralized approaches, a significant focus of
recent work is on autonomous scheduling, a concept intro-
duced by Orchestra [4]. Orchestra, as well as Alice [22] and
DiGS [23] are autonomous solutions for TSCH, as they do
not require neither any central infrastructure nor the exchange
of data to build a schedule and achieve high reliabilities of
99.999%. However, autonomous schedulers are not able to
achieve this reliability with latency guarantees necessary for
many industrial applications as they have no knowledge on
the underlying topology.



VI. CONCLUSION

This paper introduces MASTER, a central scheduling solu-
tion for TSCH networks. MASTER introduces a novel Sliding
Windows transmission strategy and achieves high reliability
independent of knowing the optimal amount of retransmissions
per link. Instead, it schedules a number of retransmissions for
a flow that can be used at all links of a flow where necessary.
The key idea is enabling centralized schedulers to adapt
to interference changes without the need for rescheduling
while keeping the lowest possible latency. Thus, eliminating a
significant overhead of traditional central schedulers.

We implement MASTER in Contiki-NG and evaluate it
extensively on a testbed in an environment susceptible to in-
terference. We demonstrate MASTER’s practicality and ability
to keep stability for over 24 hours and achieve latencies much
smaller than Orchestra while achieving similar reliability.

As part of future work, we plan to investigate the challenges
of neighbor data collection and schedule distribution to provide
a comprehensive central scheduling solution. Moreover, we are
planning to evaluate the use of centralized schedulers in harsh
wireless environments, such as the ones used in the EWSN
dependability competitions [14].

REFERENCES

[1] “IEEE Standard for Local and metropolitan area networks–Part
15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)
Amendment 1: MAC sublayer,” IEEE, Tech. Rep. [Online]. Available:
http://ieeexplore.ieee.org/document/6185525/

[2] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “Real-Time Scheduling for
WirelessHART Networks,” in IEEE RTSS, 2010, pp. 150–159.

[3] D. Gunatilaka and C. Lu, “Conservative Channel Reuse in Real-Time
Industrial Wireless Sensor-Actuator Networks,” in IEEE ICDCS, 2018,
pp. 344–353.

[4] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust Mesh Networks Through Autonomously Scheduled TSCH,” in
ACMSenSys, 2015, pp. 337–350.

[5] D. S. J. De Couto, “High-Throughput Routing for Multi-Hop
Wireless Networks,” PhD thesis, MIT, 2004. [Online]. Available:
https://pdos.lcs.mit.edu/papers/grid:decouto-phd/thesis.pdf

[6] T. Chang, M. Vucinic, X. Vilajosana, S. Duquennoy, and D. Dujovne,
“6TiSCH Minimal Scheduling Function (MSF),” Internet draft,
Tech. Rep., Mar. 2020. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-6tisch-msf-14

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Section 24.3:
Dijkstra’s algorithm,” in Introduction to Algorithms, 2nd ed. MIT Press
and McGraw-Hill, 2001, pp. 595–601.

[8] A. S. Tanenbaum and H. Bos, “Section 2.4.2: Scheduling in Batch
Systems - Shortest Job First,” in Modern Operating Systems, 4th ed.
Pearson Education, Inc., 2015, pp. 157–158.

[9] R. Brummet, D. Gunatilaka, D. Vyas, O. Chipara, and C. Lu, “A
Flexible Retransmission Policy for Industrial Wireless Sensor Actuator
Networks,” in IEEE ICII, 2018, pp. 79–88.

[10] “Contiki-NG: The OS for Next Generation IoT Devices.” [Online].
Available: http://www.contiki-ng.org/

[11] G. Exarchakos, I. Oztelcan, D. Sarakiotis, and A. Liotta, “plexi: Adaptive
re-scheduling web-service of time synchronized low-power wireless
networks,” Journal of Network and Computer Applications, vol. 81, pp.
62–73, Mar. 2017.

[12] M. Palattella, N. Accettura, M. Dohler, L. Grieco, and G. Boggia,
“Traffic-Aware Time-Critical Scheduling in Heavily Duty-Cycled IEEE
802.15.4e for an Industrial IoT,” in IEEE PIMRC, 2012, pp. 327–332.

[13] Y. Jin, P. Kulkarni, J. Wilcox, and M. Sooriyabandara, “A centralized
scheduling algorithm for IEEE 802.15.4e TSCH based industrial low
power wireless networks,” in IEEE WCNC, 2016, pp. 1–6.

[14] C. A. Boano and M. Schuß, “EWSN 2019 Dependability
Competition Logistics Information, rev. 1,” Jan. 2018. [On-
line]. Available: https://iti-testbed.tugraz.at/fileupload/static/fileupload/
EWSN2019 DC Logistics 1.pdf

[15] L. Råde and B. Westergren, Mathematics Handbook for Science and
Engineering. Lund: Studentlitteratur AB, 2004.

[16] J. P. G. Rugamba, D. L. Mai, and M. K. Kim, “Implementation of
a Centralized Scheduling Algorithm for IEEE 802.15.4e TSCH,” in
Intelligent Computing Methodologies, D.-S. Huang, Z.-K. Huang, and
A. Hussain, Eds. Springer Int. Pub., 2019, vol. 11645, pp. 118–129.

[17] A. Darbandi and M. K. Kim, “Path Collision-aware Real-time Link
Scheduling for TSCH Wireless Networks,” KSII Transactions on Internet
& Information Systems, vol. 13, no. 9, 2019.

[18] C. Wu, D. Gunatilaka, M. Sha, and C. Lu, “Real-Time Wireless Routing
for Industrial Internet of Things,” in IEEE/ACM IoTDI, 2018, pp. 261–
266.

[19] B. Li, Y. Ma, T. Westenbroek, C. Wu, H. Gonzalez, and C. Lu, “Wireless
Routing and Control: A Cyber-Physical Case Study,” in ACM/IEEE
ICCPS, 2016, pp. 1–10.

[20] M. Baddeley, R. Nejabati, G. Oikonomou, M. Sooriyabandara, and
D. Simeonidou, “Evolving SDN for Low-Power IoT Networks,” in IEEE
NetSoft, 2018, pp. 71–79.

[21] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solution for
WIreless SEnsor networks,” in IEEE INFOCOM, 2015, pp. 513–521.

[22] S. Kim, H.-S. Kim, and C. Kim, “ALICE: autonomous link-based cell
scheduling for TSCH,” in IEEE/ACM IPSN, 2019, pp. 121–132.

[23] J. Shi, M. Sha, and Z. Yang, “DiGS: Distributed Graph Routing and
Scheduling for Industrial Wireless Sensor-Actuator Networks,” in IEEE
ICDCS, 2018, pp. 354–364.

http://ieeexplore.ieee.org/document/6185525/
https://pdos.lcs.mit.edu/papers/grid:decouto-phd/thesis.pdf
https://tools.ietf.org/html/draft-ietf-6tisch-msf-14
https://tools.ietf.org/html/draft-ietf-6tisch-msf-14
http://www.contiki-ng.org/
https://iti-testbed.tugraz.at/fileupload/static/fileupload/EWSN2019_DC_Logistics_1.pdf
https://iti-testbed.tugraz.at/fileupload/static/fileupload/EWSN2019_DC_Logistics_1.pdf

