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Abstract—The Internet of Things (IoT) is being deployed at
large scale in a wide range of long-life applications. Exam-
ples range from Industry 4.0 to smart lighting systems. These
applications have diverse requirements of non-volatile storage.
However, the flash memory that is used in today’s IoT devices
offers limited write endurance and must therefore be carefully
managed if applications are to deliver on their promises of multi-
year lifetimes. Managing the health of flash memory is difficult
for application developers, as it requires in-depth hardware
and software knowledge, which often needs to the problem
being neglected. While various techniques have been proposed
to preserve the health of flash memory, prior work tends to
focus on a single hardware platform and data type. Further-
more, prior work does not provide lifetime guarantees. This
paper tackles this problem by proposing MicroVault, a simple
and unified interface for reliable non-volatile data storage on
resource-constrained IoT devices. MicroVault enforces developer-
specified lifetime guarantees through a range of lifetime extension
techniques, which are adaptively applied based upon the needs of
the application. Evaluation shows that MicroVault dramatically
extends the lifetime of flash memory while minimising overhead.

Index Terms—Embedded Software, Data Storage, Memory
Management, Reliability, Internet of Things

I. INTRODUCTION

Contemporary IoT devices are used in a wide and growing
range of application domains. With the rise of Industry 4.0,
smart buildings and smart cities, the IoT is becoming a vital
part of infrastructure such as public spaces, electricity grids,
hospitals and fleets of vehicles [1]. In contrast to Wireless
Sensor Networks (WSN) or early IoT applications, contempo-
rary IoT applications place increasing demands on non-volatile
storage. The vast majority of contemporary IoT devices are
based on off-the-shelf Micro Controller Units (MCUs) that are
optimised for low power and low cost. These devices may be
deployed in mains or battery powered systems. In the latter
case, two decades of IoT and WSN research have enabling
multi-year battery lifetimes [2]. This naturally leads us to focus
on other challenges that may limit the lifetime of IoT devices,
such as flash memory endurance.

Contemporary IoT devices offer non-volatile memory based
on flash technology. Unlike volatile memory such as RAM, the
physical properties of flash memory limit its write endurance.

State of the art IoT devices deliver flash endurance of 10,000
to 100,000 cycles. This poses a problem for long-lived IoT
applications that require reliable non-volatile storage through-
out their lifetime. Furthermore, attackers can take advantage of
this limitation to launch cyber-attacks that cause the physical
destruction of these devices. Due the highly integrated design
of IoT devices, it is likely infeasible for damaged parts to be
replaced.

This paper tackles the issue of reliable multi-year storage
for the IoT by proposing MicroVault, a software-based reliable
storage unit for resource-constrained IoT devices. MicroVault
enables the developer to establish a lower-bound lifetime
guarantee for non-volatile IoT storage. MicroVault achieves
this by adaptively applying four well-known techniques: (i)
gray-coding, (ii) error-correction, (iii) micro-caching, and (iv)
wear-levelling. Evaluation shows that MicroVault provides
a dramatic improvement on the Flash memory lifetime of
examined MCUs while incurring minimal overhead in terms
of memory throughput. The contributions of MicroVault are
three-fold:

1) The first non-volatile storage system1 for IoT devices
that enforces life-time guarantees for non-volatile stor-
age across a range of devices and data types.

2) Adaptation techniques that optimise efficiency by select-
ing the most appropriate flash health techniques based
upon evolving application requirements.

3) A thorough evaluation of the performance of MicroVault
while serving various application requirements.

The remainder of the paper is organized as follows. Section
II provides background on IoT storage requirements and flash
memory health. Section III then introduces the design of
MicroVault. Evaluation results are then reported in Section IV.
Section V analyses related work. Finally, Section VI concludes
and gives directions for future work.

II. BACKGROUND

Internet of Things (IoT) devices are increasingly being
deployed in long-life applications. On the one hand, this

1https://github.com/arasem/MicroVault



includes devices that are embedded in long-lived Industry 4.0
equipment [3]–[5] On the other hand, it includes a growing
range of battery powered IoT devices that are capable of
offering operational lifetimes of over 10 years on a single
battery [6], [7].

The Micro Controller Units (MCUs) used in conventional
IoT devices were typically designed for single-purpose appli-
cations with predictable low data rate storage requirements.
However, this is increasingly at odds with rapid IoT product
development and evolution. Ensuring that flash storage meets
application lifetime goals in the face of heterogeneous hard-
ware and evolving application requirements is complex for the
application developer and therefore often neglected.

The remainder of this section explores the scope of this
problem through two application case-studies, which are pre-
sented in Section II-A. Section II-B then provides background
on flash memory technologies, the reliability of which is dis-
cussed in Section II-C. Based upon this analysis, we highlight
requirements for MicroVault in Section II-D.

A. Application Case Studies

In this section, we illustrate the importance of reliable long
term storage for the IoT through two case studies in the field of
smart lighting and Low-Power Wide Area Network (LPWAN).

1) Physically destructive attack on smart lighting: To eval-
uate the memory lifetime of typical smart home IoT devices,
we selected a WiFi-based smart bulb that is manufactured by
Tuya 2. At the time of writing, Tuya connects over 100 million
smart devices and handle more than 80 billion device requests
per day from 220 countries [8]. The Tuya light bulb uses an
ESP8285 System on Chip (SoC), which embeds a WiFi radio,
a Tensilica L106 32-bit MCU along with a 1MB of Flash
memory [9]. Tuya devices can be interacted with through an
open API3. We do not have access to the firmware source code
and we therefore treat the device as a black box.

The weak security of smart lighting devices has been
highlighted in prior work [10]. We followed a direct approach
to capture the ID of the device and its local secret key during
the commissioning phase (details of the attack is detailed
in the Appendix B). Leveraging the captured information and
the standard Tuya API, we created a script to repeatedly make
slight changes to the brightness and colour temperature of the
bulb. Even when the bulb was in use, these changes were too
small to be noticed. The device saves each of these changes
to EEPROM, so that the bulb will power on in the same state.

After 5.8 million parameter changes over 25 days, we were
able to physically destroy the EEPROM of this device, which
caused complete system failure. To validate our finding, we
conducted the same experiment on an ESP8285 development
board, where we also managed to destroy the flash after 641
thousand cycles.

2) Premature Device Failure in LoRaWAN: LoRaWAN is
a widely used Low-Power Wide Area Network (LPWAN)

2https://en.tuya.com/
3https://github.com/codetheweb/tuyapi

protocol for the IoT. It is available through more than 100
operators in over 100 countries world wide [11], making it an
important protocol in the IoT landscape.

LoRaWAN uses AES-128 in CTR mode to provide confi-
dentiality, authenticity and integrity for transmitted messages.
For correct operation, AES128-CTR requires that devices store
an incrementing frame counter in non-volatile memory to
prevent replay attacks when devices restart [12]. The rate at
which LoRa devices may send messages is dependent upon
the Spreading Factor (SF) of the device and regional duty
cycle regulations. This limits a device to sending between 30
messages (SF12, EU band G2, 0.1% duty cycle) and 7500
messages per hour (SF7, EU band G3, 10% duty cycle). If
devices update their frame counters upon every transmission,
their EEPROM will be destroyed in between 12 hours and 4
months. This is particularly unacceptable as LoRa has gained
significant traction for supporting communication with Smart
City and Industry 4.0 infrastructure.

We performed experiments to validate the durability of
non-volatile memories on three different widely used Lo-
RaWAN development boards; Lora32u4 (BsFrance), RN2483
(Microchip) and STM32 LoRa Discovery (STM). The em-
pirical validation showed that LoRa32u4 and STM32 LoRa
board do not take any countermeasures and the non-volatile
memory of these devices were broken after only a few hours of
experiments. On the other hand, MicroChip RN2483 module
utilizes countermeasures which kept it running reliably long
after the write endurance of its host microcontroller. The
details of empirical validation can be found in the Appendix A.

B. Flash Memory

Flash memory is the most ubiquitous form of non-volatile
storage available in conventional MCUs. According to industry
convention, EEPROM refers to byte-wise writable flash, while
’Flash’ typically refers to block-wise writable memory. To
avoid further confusion we use the same convention through-
out the rest of the paper.

Flash memory is typically constructed from NAND gates,
while EEPROM is built from NOR gates. The architectural
differences between EERPOM and Flash memory affects the
area density and functionality of the resulting storage medium.
A Flash memory cell of the same capacity is physically smaller
than equivalent EEPROM, however, accessing a single cell of
Flash is not possible due to the NAND gate architecture [13].
EEPROM memory is therefore preferred for flexible small-
scale storage, while Flash delivers high density storage at a
lower cost.

C. Memory Reliability

Due to their physical properties, every Flash and EEPROM
memory has a limited number of write-cycles or ’endurance’.
This limit varies widely across chips. However, in general,
Flash memory tends to wear out faster than EEPROM due to
the use of block-wise operations, which impact all cells in the
block regardless of how much data has been written. Table I
highlights the durability of various non-volatile memories that



TABLE (I) Memory and Size Comparison [14]
MCU

Family Model EERPOM
Size

EEPROM
Endurance

(Erase/Write Cycles)

Flash
Size

Flash
Endurance

(Erase/Write Cycles)
Atmel 8-bit

Avr AT32U4 1 KB 100000 32 KB 10000

NXP 16-bit
Hc12 MC68HC705 4 KB 30000 - -

CYPRESS
Psoc1 CY8C29X - - 32 KB 50000

INFENION
32-bit TriCore TC212L 64 KB 125000 512 KB 125000

Microchip
PIC16 PIC16F1574 128 B 100000 14 KB 10000

Silicon Labs
C8051 C8051F300 - - 8 KB 100000

STM32-F0 STM32F0x0 - - 16-256 KB 10000
TI MSP430 MSP430G2X - - 2 KB 10000

are used in popular IoT platforms. As can be seen from Table I,
the endurance of EEPROM and the ratio of available Flash
memory to EEPROM varies widely across MCU families.

D. Requirements Analysis

Based upon the analysis conducted above, we identify five
key requirements for the reliable long term storage of IoT data.

1) Guaranteed lifetime: Rather than employing best-effort
reliability techniques, we advocate that IoT storage
systems should support the explicit specification and
enforcement of lifetime requirements.

2) Manage hardware heterogeneity: MCUs offer various
mixes of EEPROM and/or flash with different endurance
and capacity. A generic approach is required to deliver
reliable non-volatile storage on IoT devices and thereby
reduce complexity of developing long life applications.

3) Manage software variability: IoT applications have dif-
ferent storage requirements in terms of both data rates
and variable types. Reliable long term storage must
efficiently deal with different data types.

4) Intelligent Caching : While Flash and EEPROM have
limited endurance, RAM does not. Exploiting this prop-
erty through the use of caching has the potential to
dramatically extend the lifetime of embedded devices.

5) Minimal Overhead: Software for IoT applications must
execute efficiently within the memory, computation and
energy limitations of IETF Class-1 devices [15] (10kB
RAM and 100kB Flash) as these are the most common
devices currently deployed in the field.

In Section III, we introduce the design of MicroVault, a system
that is designed to address these requirements.

III. MICROVAULT

In this section, we present the design of MicroVault, a prac-
tical and reliable software storage unit for IoT devices. The
software architecture and APIs of MicroVault are developed
around the following principles:

• Unified interface to long term storage that operates with
different software and hardware.

• Eliminate low-level complexity by providing a reliable
API independent from hardware and applications.

• Intelligent memory trade-offs should be made between
different memory mediums to maximise the life-time of
non-volatile memory.

MicroVault

Sensor Application

RAM EEPROM FLASH

de
cl

ar
e

re
ad

w
rit

e

U
pd

at
e 

Pa
ra

m
et

er
s

Driver
Layer

HAL
Layer

API
Layer

Application
Layer

Fig. (1) MicroVault Software architecture.

A. Software Architecture

Figure 1 shows the MicroVault architecture which consists
of three layers: low-level drivers, a hardware abstraction layer
and the MicroVault interface layer which exposes a standard
API to higher level software.

• The low level Driver layer provides an interface to the
different types of memory offered by the IoT device.
The current version of MicroVault supports three different
memory types; (i) RAM, (ii) EEPROM and (iii) Flash.
The software architecture utilizes a low-level memory li-
brary with a simple read/write functionality, which makes
MicroVault compatible with many types of MCU.

• The hardware abstraction layer implements adaptable
memory access functionality. This layer serves as a bridge
between the MicroVault API and the low-level drivers,
configuring low level parameters and selecting the most
suitable technique to extend the memory life-time based
on application requirements.

• The MicroVault API provides a unified interface be-
tween the application and long term storage. To use
MicroVault, an application first declares a variable us-
ing the API and then configure lifetime and data
parameters(wear-levelling size, read/write rate per day,
data consistency requirements). Based upon these pa-
rameters, MicroVault establishes a lower-bound on guar-
anteed life-time and then informs the application of it.
The API is compatible with many embedded operating
systems, including: FreeRTOS4 or TinyOS [16], as well
as frameworks such as Arduino5 or PlatformIO6. It may
also be included with bare-metal software.

B. Adaptive Approach

MicroVault is built around an adaptive algorithm which
combines different techniques and applies the best combina-
tion of flash health techniques. The selected combination of
techniques depends upon the available memory types and their
size as well as the consistency and reliability requirements of
the application, as defined through the MicroVault API.

4https://www.freertos.org
5https://www.arduino.cc
6https://platformio.org



Algorithm 1: MicroVault Adaptive Algorithm
Result: Allocate Data in MicroVault

1 begin
2 if Data is Counter then
3 Activate Gray Coding;
4 end
5 if EEPROM is avaliable then
6 Prepare EEPROM;
7 else
8 Prepare FLASH;
9 end

10 Calculate wear rate;
// Based on required lifetime, consistency

requirements and write rate

11 if Micro-Caching is on then
12 Prepare Micro-Cache;
13 Adjust wear levelling size;
14 end
15 Check available space on prepared memory;
16 if available memory ≥ wear levelling size then
17 Set wear levelling frames;
18 else
19 Set maximum wear levelling frames possible;
20 Activate Error Correction Algorithm;
21 end
22 Notify the application of guaranteed life time;
23 end

Algorithm 1 provides a high-level overview of the adaptive
algorithm behind MicroVault. Once a variable is declared
through the API, MicroVault calculates memory wear rates
based on the flash endurance limit, which is provided by the
vendor and the application requirements, which are given as
an argument through the API upon declaration of the variable.
MicroVault then applies the best combination of flash health
techniques to maximise memory life-time. If the guaranteed
life-time cannot be met, Error Correction Algorithm is acti-
vated as a last resort.

C. Flash Health Techniques

The techniques below are developed and optimized to
achieve low-energy overhead and latency while protecting
long-term data storage against corruption.

• Micro-caching : Caching is a well-known technique
commonly used in mainstream computing to improve per-
formance. High-end processors use independent caches,
that are realised as on-chip memory or implemented
on RAM, where the data is stored temporarily [17].
MicroVault implements micro-caching to limit memory
wear, while keeping memory footprint minimal. Micro-
caching is an adaptive version of regular caching. While
in regular caching, data is updated during every operation,
the micro-cache updates the non-volatile memory only

periodically, based upon an interval configured by the
application.

• Wear-levelling is a common technique used in both high-
end and embedded computers to mitigate the limited
write cycles of flash. Wear levelling distributes data
across the memory to extend the time until any single
location reaches its endurance limit [18]. MicroVault
applies an adaptable wear-levelling policy that may be
applied across regions of Flash or EEPROM.

• Reducing bit-flips: The storage of incrementing counters
is common in IoT applications. However a single counter
increment may flip multiple bits. MicroVault reduces
unnecessary bit flips by 50% for incrementing counters
using Gray coding. This technique generates a coded
value by performing an XOR operation between the value
and a right shifted version of it. This ensures that the
Least Significant Bit (LSB) changes every second count,
the next bit every forth and so on [19].

• Error Correction: Flash and EEPROM memory failure
is usually limited and random, which enables its de-
tection and correction using error-correction algorithms.
MicroVault implements an optimized version of Reed-
Solomon (RS) [20] error correction to increase the life-
time of the memory cells. The RS algorithm is used
as a last resort to increase lifetime in cases where the
aforementioned techniques cannot achieve a requested
life-time.

D. Implementation

MicroVault is written in C and uses standard vendor
drivers wherever possible. Currently, MicroVault has been
implemented for three MCU architectures: AVR, STM32
and MSP430. Software was compiled with AVR-GCC, Arm
Embedded GCC and msp430-gcc tool-chains. Our prototype
implementation of MicroVault has been tested with the Ar-
duino and Eclipse Development environments and executed
on various development boards.

IV. EVALUATION

This section evaluates MicroVault against the application
requirements described in Section II-D. We begin in IV-A by
describing our experimental methodology. Section IV-B then
evaluates the impact of each technique on memory capac-
ity. Section IV-C investigates performance implications. Sec-
tion IV-D sketches low power characteristics of MicroVault.
Section IV-E we present an integrated evaluation using all
techniques. Finally, Section IV-F discusses the implications
of these findings.

A. Experimental Methodology

All experiments were conducted using a representative IoT
Micro Controller Unit (MCU), the ATMega328. This MCU
offers an 8 bit 16MHz processor, 2kB of RAM, 32kB of Flash
and 1kB of EEPROM. Flash memory may be read in single
bytes, but must be written in sectors or pages of 128B, while
EEPROM provides single byte read/write access. Flash has an
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Fig. (2) Impact of Discrete Lifetime Extension Techniques
on Memory Capacity

endurance of 10K cycles, while EEPROM has an endurance
of 100K. In the case of micro-caching the memory checkpoint
parameter was set to 5 (i.e. variables are transferred from
volatile to non-volatile memory after 5 updates). The power
consumption is calculated using average execution time, input
voltage (3.3 V) and flash/eeprom programming current.

B. Impact of Individual Techniques on Memory Capacity

We evaluate the effectiveness of wear-leveling, gray coding
and micro-caching on memory lifetime. In this evaluation, we
focus on EEPROM. The results for Flash follow an identical
pattern with a 10x reduction in lifetime.

Figure 2 shows the impact of using each technique to store
32B of sequentially increasing counter data in EEPROM for a
guaranteed number of read/write cycles. Areas of the graph are
annotated from A0 to A3, each of which is explained below:

A0 - Standard Lifetime: The A0 zone shows the standard
lifetime of EEPROM. Without additional techniques, 100% of
the EEPROM is available for 100K write cycles.

A1 - MicroCaching provides a linear extension in memory
lifetime, as variables are only written to EEPROM after 5
updates. As expected, this leads to a 5x increase in memory
lifetime to 500K write cycles, at the expense of a bounded
inconsistency in stored data.

A2 - Wear-Levelling extends lifetime by spreading read-
/write cycles across a greater area of memory. As can be seen
in A2, the relationship between lifetime extension and memory
used is linear. In the case of a 32B variable, this enables a 10x
extension of lifetime at the cost of 32% capacity.

A3 - Gray Coding extends the lifetime of flash memory
by using an alternative binary representation to minimise bit-
flips for incrementing counters. As A3 shows, this extends the
lifetime of flash memory by 2x, with no impact upon capacity.
However this is only possible for counter storage.
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Fig. (3) Performance Overhead over different memories

As Error Correction Codes (ECC) provide a non-
deterministic extension of memory lifetime rather than guar-
antees, we do not evaluate their performance in this section.

C. Impact of Individual Techniques on Memory Performance

We evaluate the execution overhead of each lifetime exten-
sion technique when writing data blocks of 1B to 128B as
shown in Figure 3. As the aim of MicroVault is to provide a
unified interface to reliable long term storage, it allows single
byte read/write access to both Flash and EEPROM.

As expected, the error correction algorithm has the highest
execution time and therefore lowest throughput for both mem-
ory types. This leads to an overhead of 79% to 300% for Flash
and 2% to 89% for EEPROM when compared to standard write
operations. The impact of gray-coding and wear levelling is
lower with a worst case overhead of 0.4% for EEPROM and
0.07% for Flash respectively. Micro-caching actually improves
storage performance by up to 100x depending on the data size
as writing to RAM is significantly faster than writing to Flash
or EEPROM. The throughput of Flash memory increases with
data size as the MCU must write 128B pages in all cases.

D. Impact of Individual Techniques on Power Consumption

Figure 4 shows the energy consumption per byte during
write operations. As seen in the figure, the energy profile
does not change on EEPROM depending on the size whereas
a drastic decrease is observed in the power consumption of
flash memory. In addition, the limited overhead of both gray
coding and wear-levelling keeps the energy overhead low
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which increases the energy consumption by only 0.44% and
0.077% respectively.

E. Integrated Case-Study

In this section, we evaluate the overall impact of MicroVault
for three representative use-cases. In all cases, the sensor
node collects 32B of data which is stored in non-volatile
memory 10 times per hour using MicroVault. The application
requires 10 years of reliable operation, which equates to a
memory endurance of 876K writes. All use-cases have a
consistency requirement that data cannot be more than two
readings out of date. As shown in Figure 5, the default
100K write endurance of EEPROM is inadequate to support
our application use-cases. However, the lifetime extension
techniques of MicroVault enable the platform to meet its
lifetime goals in all cases. We review the implications of using
Micro-Vault for each case below:

1) Data logging: arbitrary data such as sensor readings is
periodically stored in non-volatile memory. As this data
is not a counter, Gray coding provides no benefits and is
not used. However, micro-caching (A1) extends mem-

TABLE (II) Configuration set by MicroVault for Different
Use-cases

Use-Case Micro-Caching
Frame Size

Wear-Leveling
Frame Size Gray Coding Error Correction

Algorithm
Guaranteed
Life-Time

Data Storage 2 5 Off Off 135 months
Counter Storage 2 3 On Off 165.6 months

Data with
Limited Memory 2 3 Off On 82.8 months

A0 A1

A1A1

A1A0

A2

A3 A2

A2

A4

Fig. (5) Impact of Integrated Micro-Vault Techniques on
Memory Capacity

ory lifetime by 2 years with no capacity penalty. The
remainder of the lifetime requirement is achieved using
wear-levelling (A2), which delivers a 8 year extension
at the cost of 15% of EEPROM capacity.

2) Counter storage: An incrementing counter is logged
in non-volatile memory as required for AES128-CTR
encryption in LoRaWAN. As before, micro-caching (A1)
delivers a 2 year extension of battery life with no loss of
capacity. As the variable is a counter, MicroVault also
applies Gray coding (A3) which delivers an additional
2 years of memory lifetime. The remaining 6 years are
delivered using wear-leveling (A2), leading to a capacity
reduction of 9.3% of EEPROM capacity.

3) Data logging with limited storage: This use case is the
same as (1), however, the memory that may be devoted
to lifetime extension is limited to 8% or 82 bytes of
EEPROM capacity. In this case, it is not possible for
MicroVault to guarantee the required 10 year lifetime.
MicroVault first applies micro-caching (A1), followed
by wear levelling (A2) until the capacity limit is reached
at 6 years. After this point, MicroVault applies error
correcting codes, (A4) to achieve an additional best-
effort lifetime extension.

In addition, we perform a memory throughput assessment
for the integrated techniques embodied by MicroVault. The
settings for this evaluation are shown in Table II. The perfor-
mance of these configurations is shown in Figure 6. As all use-
cases apply micro-caching in RAM, MicroVault often increase
memory throughput. In the data-storage with limited memory
case, MicroVault achieves better throughput in Flash when
writing smaller data sizes of 1 to 32B, compared to native flash
memory throughpout in contrast to EEPROM where writing
larger data achieves better performance against EEPROM
throughput. Using a larger wear-levelling frame does not affect
MicroVault performance over sequential operations since the
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Fig. (6) Performance Overhead in Difference Use-cases

execution time to find a next frame does not change depending
on the number of frames.

To conclude our evaluation, we performed an additional
evaluation to sketch the energy consumption of the MicroVault
to validate low-power characteristics. The energy profile of
MicroVault can be seen at Figure 7. As expected, energy
consumption depends on native memory overhead. The energy
cosumed by ECC has a significant impact on flash memory
for both EEPROM and flash. However, implementing micro-
caching lowers energy overhead in comparison to native
memory operations.

F. Discussion

Our evaluation results show that MicroVault meets the
requirements outlined in Section II-D, delivering a guaranteed
lifetime for long-term IoT storage. The generic MicroVault
interface adapts its data storage techniques based upon the
type of variables that it is required to store. Furthermore,
the overhead of MicroVault is minimal and well within the
capabilities of IETF Class-1 devices.

Considering prior approaches to IoT flash health such as
Coffee [21] and Matchbox [22], MicroVault requires only half
of the memory footprint of Coffee and one sixth the footprint
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of Matchbox. Furthermore, MicroVault consumes 178B of
static RAM without micro-caching, which is the same value
as Coffee and one fifth the RAM required by Coffee.

V. RELATED WORK

A. Embedded File Systems

Several file systems have been proposed for embedded
devices that consider flash memory health. ELF [23] was
one of the first Flash-based file systems to target resource-
constrained devices. It supports common sensor file operations
while keeping the power consumption minimal.

TFFS [24] is another file system for embedded devices. It
supports concurrent transactions and atomic operations as well
as crash recovery. While TFFS has a limited Flash footprint, it
uses significantly more RAM compared to other file systems
and thus it is not suitable for the IETF Class-1 devices that
are targeted by MicroVault.

Tsiftes et. al. [21] argue for a generic, high-speed, Flash-
based file system that supports a wide range of sensor devices.
This vision is realised in Coffee. Unlike other Flash-based file
systems, Coffee has a constant RAM footprint per file and
avoids excess flash wear by levelling it across all pages. How-



ever, the use of wear levelling without any other techniques
limits memory lifetime gains in comparison to MicroVault.

B. Mainstream Flash Management Systems

Memory wear has been studied widely on mainstream
computers. With the development of solid state drivers (SSD),
the reliability and durability of Flash has become a major
issue. In contrast to the wear-levelling algorithms which use
erase count as a wear levelling index, Woo et.al [25] argue
for a more sophisticated wear-levelling algorithm that takes
into account more diverse properties of Flash memory such
as error patterns within a Flash block and bit error counts.
Although their proposed algorithm improves Flash life-time
compared to existing techniques, it cannot be applied on
resource-constrained embedded devices.

Flash memory is also widely used in consumer mobile
devices. As stated in [26], the Flash memory of mobile devices
may wear out rapidly under heavy use. As with embedded
devices, it is not possible to replace memory upon failure.
Moreover, a malicious application or malware can make a
smartphone unbootable in few weeks. The authors propose
to tackle this through a rate-limiting algorithm that restricts
the usage of problematic applications, thereby protecting the
smartphone from wearing-out its Flash.

VI. CONCLUSION AND FUTURE WORK

Contemporary IoT applications are requiring longer op-
erational lifetimes while demanding higher data-rates and
reliability. This paper tackled this challenge by introducing
MicroVault, an adaptive software-based reliable storage unit
that dramatically extends the lifetime of non-volatile memory
for IETF Class-1 devices. MicroVault limits memory wear by
adapting and optimising four well-know techniques: (i) micro-
caching, (ii) wear-leveling, (iii) gray-coding, and (iii) Reed-
Solomon-based error correction. Our Evaluation results show
that MicroVault is able to prolong the operational life of non-
volatile memory far beyond the manufacturers specification,
while preserving a relatively low overhead in terms of memory
footprint and power consumption.

Our initial evaluation of MicroVault demonstrates the need
for a reliable software storage unit for embedded devices and
motivate us to extend the work further. Although, MicroVault
is designed to be compatible with popular types of memory
technologies(RAM, Flash and EEPROM), the library may also
be extended to achieve compatibility with emerging memory
technologies such as FRAM or NVRAM. Using different
type of memory will expose different trade-off between cost
and performance and thereby require the development of new
algorithms and techniques for MicroVault. In addition, the Mi-
croVault library can be extended to support more conventional
mass memory mediums such as SD cards.
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APPENDIX A

EMPIRICAL EXPERIMENTS

In order to investigate flash memory health, a set of empir-
ical experiments have been performed. The software used in
the experiments contains a simple erase/write task to maximize
the throughput of the operation. As previously mentioned,
widely used microcontrollers from AVR family, AT32U4, and
STM32 family, STM32F0x0, were used in these experiments,
the results of which can be seen in Figure 8. What stands out
from the both graphs is the significant number of failures that
occur after the guaranteed life-time by vendors. STM32 Flash
claims 10k reliable erase/write cycles and fails after 100k
cycles while AT32U4 EEPROM claims 100k reliable cycles
and it fails after 600k. We observed single bit failures after
exceeding endurance limits yet the number of failures were
limited and are therefore not visible in both figures. Moreover,
failure starts with small number of bits and slowly increases.

The first failure usually can be observed after 6 hours
on the EEPROM and 2 hours on the flash. This empirical
validation proved that the memory wear remains a challenge
on conventional MCUs and that high-data rate applications can
easily reach the limit for reliable cycles within the lifetime of
the device.

APPENDIX B

DETAILS OF SMART LIGHTING ATTACK

In general, to register a new WiFi-based smart bulb through
the Tuya companion app on the smartphone, the smart bulb
should be in the smartconfig mode of operation, wherein it is
not connected to a WiFi network and listens for UDP packets
on a predetermined port (in this case 6669). Taking into
account that the communication between any WiFi-based Tuya
device and its companion app is cloud-based, the companion
app must start by asking the cloud for a token and secret
key. Afterwards, the app sets up a UDP packet with a specific
structure which contains the token (that is valid for a few
minutes), the secret key (which will be the local key of the
device), the SSID and password of the WiFi network that the
device should connect to, and a Cyclic Redundancy Check
(CRC) to check the integrity of the packet once delivered.
It then broadcasts this packet on the pre-defined port after
encoding the data in the length of a UDP packet. The smart
bulb receives this packet, validates it by checking the CRC,
extracts the data, and connects to the WiFi network. This
network must have an Internet connectivity, so the smart
bulb can register with Tuya cloud and verifies the token
received. If this step ends up successfully, the cloud refreshes
the companion app by adding this smart bulb to its list of
registered devices. By then, both the companion app and the
smart bulb can communicate securely through the cloud, by
encrypting messages through the shared secret key.

We were able to obtain the secret key, smart device ID
and other sensitive without physical attack simply by setting
another device in the transmission range of the smartphone
that hosts the companion app to passively eavesdrop on

Fig. (8) Emprical Experiments on Flash and EEPROM

the communication and read packets (a passive man-in-the-
middle-attack). Alternative techniques, such as compromising
the insecure companion app, have been already reported to
leak these credentials.

All Tuya devices can be interacted with through an open
API as discussed previously. Leveraging the credentials that e
obtained (the device Id and its secret key), we have configured
a Raspberry PI to communicate secretly with the Internet-
connected smart bulb. Our script loops indefinitely, slightly
changing the brightness and colour temperature of the smart
bulb, so that even if it was turned on, such change will
never be detected by the smart home users. This change
requires reading and writing to EEPROM. Recalling that all
communications with Tuya smart devices are cloud-based, we
had to insert a delay of 1 second after reading/writing the Flash
memory for 50 times to avoid cloud-side DDOS prevention
policies.


